STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR TWO ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH SPACES

Lin Wang, Isa Yildirim and Murat Özdemir

Abstract

The purpose of this paper is to introduce an implicit iteration process for approximating common fixed points of two asymptotically nonexpansive mappings and to prove strong convergence theorems in uniformly convex Banach spaces.

1. Introduction

Let K be a nonempty closed convex subset of a real normed linear space E, and $T: K \rightarrow K$ be a mapping. T is said to be nonexpansive if $\|T x-T y\| \leq$ $\|x-y\|$, for all $x, y \in K ; T$ is said to be asymptotically nonexpansive if there exists a real sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ such that $\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|x-y\|$ for all $x, y \in K$ and all positive integer $n \geq 1$. Denote by $F(T)$ the set of fixed points of T, that is, $F(T)=\{x \in K: T x=x\}$. Throughout this paper, we always assume that $F(T) \neq \phi$.

In 1972, the class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [3] as an important generalization of the class of nonexpansive mappings. Since then, many authors used different iteration processes to approximate the fixed points of asymptotically nonexpansive mappings, such

[^0]as Mann and Ishikawa iteration processes, CQ method, Viscosity approximation method and some implicit or explicit iteration methods $[1,4,5,7,10]$.

In 2001, Xu and Ori [11] introduced the following implicit iteration process for a finite family of nonexpansive mappings $\left\{T_{j}: j \in J\right\}$ (here $J=$ $\{1,2, \cdots, N\})$. From an initial point $x_{0} \in K,\left\{x_{n}\right\}$ is define as follows:

$$
\begin{equation*}
x_{n}=\alpha_{n} x_{n-1}+\left(1-\alpha_{n}\right) T_{n} x_{n}, \quad n \geq 1, \tag{1.1}
\end{equation*}
$$

where $T_{n}=T_{(\bmod N)}$ (here the $\bmod N$ function takes values in $\left.J\right),\left\{\alpha_{n}\right\}$ is a real sequence in $(0,1)$.

In 2004, Sun [9] extended the process (1.1) to a process for a finite family of asymptotically quasi-nonexpansive mappings $\left\{T_{j}: j \in J\right\}$, and an initial point $x_{0} \in K$, which is defined as follows:

$$
\begin{equation*}
x_{n}=\alpha_{n} x_{n-1}+\left(1-\alpha_{n}\right) T_{i}^{k} x_{n}, \quad n \geq 1, \tag{1.2}
\end{equation*}
$$

where $n=(k-1) N+i, 1 \leq i \leq N,\left\{\alpha_{n}\right\}$ is a real sequence in $(0,1)$. In addition, Zhao et al. [12] introduced a new implicit iteration scheme:

$$
\begin{equation*}
x_{n}=\alpha_{n} x_{n-1}+\beta_{n} T_{n} x_{n-1}+\gamma_{n} T x_{n}, \quad n \geq 1 \tag{1.3}
\end{equation*}
$$

for fixed points of a nonexpansive mapping T in Banach space.
Recently, Zhao and Wang [13] introduced the following implicit iteration scheme for fixed points of an asymptotically nonexpansive mapping T in Banach spaces. For arbitrarily chosen $x_{0} \in K,\left\{x_{n}\right\}$ is define as follows:

$$
\begin{equation*}
x_{n}=\alpha_{n} x_{n-1}+\beta_{n} T_{n}^{n-1} x_{n-1}+\gamma_{n} T^{n} x_{n}, \quad n \geq 1 \tag{1.4}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are three real sequences in $[0,1]$ satisfying $\alpha_{n}+\beta_{n}+$ $\gamma_{n}=1$ for $n \geq 1$. And they obtained the following strong convergence theorems.

Theorem 1.1. Let E be a real uniformly convex Banach space, K be a nonempty closed convex subset of E. Suppose that $T: K \rightarrow K$ is an asymptotically nonexpansive mapping with sequence $\left\{k_{n}\right\} \subset[1, \infty)$ such that $\lim _{n \rightarrow \infty} k_{n}=1, \sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$. Let $\left\{x_{n}\right\}$ be generated by (1.4) and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ be three real sequences in $[0,1]$ satisfying $\alpha_{n}+\beta_{n}+\gamma_{n}=1$, $\gamma_{n} k_{n}<1$ for each integer $n \geq 1$ and $s \leq \gamma_{n} \leq 1-s$ for some $s \in(0,1)$. If T satisfies condition (A) and $F(T)=\{x \in K: T x=x\} \neq \phi$, then $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.

Theorem 1.2. Let E be a real uniformly convex Banach space, K be a nonempty closed convex subset of E. Suppose that $T: K \rightarrow K$ is an asymptotically nonexpansive mapping with sequence $\left\{k_{n}\right\} \subset[1, \infty)$ such that $\lim _{n \rightarrow \infty} k_{n}=1, \sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty$. Let $\left\{x_{n}\right\}$ be generated by (1.4) and
$\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ be three real sequences in $[0,1]$ satisfying $\alpha_{n}+\beta_{n}+\gamma_{n}=1$, $\gamma_{n} k_{n}<1$ for each integer $n \geq 1$ and $s \leq \gamma_{n} \leq 1-s$ for some $s \in(0,1)$. If T is semi-compact and $F(T)=\{x \in K: T x=x\} \neq \phi$, then $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.

Now, we introduce an implicit iteration process which can be viewed as an extension for two asymptotically nonexpansive mappings of implicit iteration process of Zhao and Wang [13]. This implicit iteration process is defined as follows:

Let E be a Banach space, K be a nonempty closed convex subset of E and $T, S: K \rightarrow K$ be two asymptotically nonexpansive mappings. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, $\left\{\gamma_{n}\right\},\left\{\alpha_{n}^{\prime}\right\},\left\{\beta_{n}^{\prime}\right\},\left\{\gamma_{n}^{\prime}\right\}$ be real sequences in $[0,1)$ satisfying $\alpha_{n}+\beta_{n}+\gamma_{n}=$ $\alpha_{n}^{\prime}+\beta_{n}^{\prime}+\gamma_{n}^{\prime}=1$. We have the following iteration process: for arbitrarily chosen $x_{0} \in K$,
$x_{n}=\alpha_{n} x_{n-1}+\beta_{n} T^{n-1} x_{n-1}+\gamma_{n} T^{n}\left[\alpha_{n}^{\prime} x_{n}+\beta_{n}^{\prime} S^{n-1} x_{n-1}+\gamma_{n}^{\prime} S^{n} x_{n}\right], \quad n \geq 1$.

Putting $y_{n}=\alpha_{n}^{\prime} x_{n}+\beta_{n}^{\prime} S^{n-1} x_{n-1}+\gamma_{n}^{\prime} S^{n} x_{n}$, we have the following composite iterative scheme:

$$
\begin{align*}
x_{n} & =\alpha_{n} x_{n-1}+\beta_{n} T^{n-1} x_{n-1}+\gamma_{n} T^{n} y_{n} \\
y_{n} & =\alpha_{n}^{\prime} x_{n}+\beta_{n}^{\prime} S^{n-1} x_{n-1}+\gamma_{n}^{\prime} S^{n} x_{n}, \quad n \geq 1 \tag{1.5}
\end{align*}
$$

We remark that the implicit iterative process (1.5) is more general than the algorithms (1.3) and (1.4), and includes the algorithms (1.3) and (1.4) as the special cases.

The purpose of this paper is to establish strong convergence theorems of the implicit iteration process (1.5) for two asymptotically nonexpansive mappings in uniformly convex Banach spaces. Our results improve and extend the corresponding ones announced by Zhao et al. [12] and Zhao and Wang [13].

2. Preliminaries

Let E be a Banach space, K be a nonempty closed convex subset of E and $T, S: K \rightarrow K$ be two asymptotically nonexpansive mappings with sequences $\left\{k_{n}\right\},\left\{r_{n}\right\} \subset[1, \infty)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\alpha_{n}^{\prime}\right\},\left\{\beta_{n}^{\prime}\right\},\left\{\gamma_{n}^{\prime}\right\}$ be numbers in $[0,1]$ satisfying $\alpha_{n}+\beta_{n}+\gamma_{n}=\alpha_{n}^{\prime}+\beta_{n}^{\prime}+\gamma_{n}^{\prime}=1$. For arbitrarily chosen $x_{0} \in K$, define a mapping $W: K \rightarrow K$ by $W x=\alpha x_{0}+\beta T^{n-1} x_{0}+\gamma T^{n}\left[\alpha^{\prime} x+\right.$
$\left.\beta^{\prime} S^{n-1} x_{0}+\gamma^{\prime} S^{n} x\right]$. Thus for any $x, y \in K$, we have

$$
\begin{aligned}
\|W x-W y\|= & \| \gamma T^{n}\left[\alpha^{\prime} x+\beta^{\prime} S^{n-1} x_{0}+\gamma^{\prime} S^{n} x\right] \\
& -\gamma T^{n}\left[\alpha^{\prime} y+\beta^{\prime} S^{n-1} x_{0}+\gamma^{\prime} S^{n} x\right] \| \\
\leq & \gamma k_{n}\left\|\alpha^{\prime}(x-y)+\gamma^{\prime}\left(S^{n} x-S^{n} y\right)\right\| \\
\leq & \left.\gamma k_{n}\left(\alpha^{\prime}\|x-y\|+\gamma^{\prime} r_{n} \| x-y\right) \|\right) \\
= & \gamma k_{n}\left(\alpha^{\prime}+\gamma^{\prime} r_{n}\right)\|x-y\| .
\end{aligned}
$$

If $\gamma k_{n}\left(\alpha^{\prime}+\gamma^{\prime} r_{n}\right)<1$, then W is a contraction. By Banach contraction mapping principle, W has a unique fixed point. Thus, if $\gamma k_{n}\left(\alpha^{\prime}+\gamma^{\prime} r_{n}\right)<1$, the implicit iteration processes (1.5) can be employed for the approximation of common fixed points of asymptotically nonexpansive mappings T and S.

Let E be a real normed linear space. The modulus of convexity of E is the function $\delta_{E}:(0,2] \rightarrow[0,1]$ defined by

$$
\delta_{E}(\epsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|:\|x\|=\|y\|=1, \epsilon=\|x-y\|\right\} .
$$

E is called uniformly convex if $\delta_{E}(\epsilon)>0$ for all $\epsilon \in(0,2]$. Let K be a nonempty closed subset of a real Banach space $E . T: K \rightarrow K$ is said to be semi-compact if for any bounded sequence $\left\{x_{n}\right\}$ with $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$, there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{j}}\right\}$ converges strongly to $p \in K$.

Two mappings $T, S: K \rightarrow E$ with $F:=F(T) \bigcap F(S)=\{x \in K: T x=$ $S x=x\} \neq \phi$ are said to satisfy condition $\left(A^{\prime}\right)$ [2], if there exists a nondecreasing function $f:[0, \infty) \rightarrow[0, \infty)$ with $f(0)=0, f(t)>0$ for all $t>0$ such that
$\|x-T x\| \geq f(d(x, F))$ or $\|x-S x\| \geq f(d(x, F))$,
for all $x \in K$, where $d(x, F)=\inf \{\|x-q\|: q \in F\}$.
In what follows, we will state the following useful lemmas:
Lemma 2.1.[6] Let $\left\{\alpha_{n}\right\},\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of nonnegative real numbers satisfying

$$
\alpha_{n+1} \leq\left(1+a_{n}\right) \alpha_{n}+b_{n}, \quad \forall n \geq 1
$$

If $\sum_{n=1}^{\infty} a_{n}<\infty$ and $\sum_{n=1}^{\infty} b_{n}<\infty$, then $\lim _{n \rightarrow \infty} \alpha_{n}$ exists in R. If, in addition, $\left\{\alpha_{n}\right\}$ has a subsequence which converges to zero, then $\lim _{n \rightarrow \infty} \alpha_{n}=$ 0.

Lemma 2.2.[1] Let E be a real uniformly convex Banach space, K be a nonempty closed convex subset of E and $T: K \rightarrow E$ be an asymptotically nonexpansive mapping. Then $I-T$ is demiclosed at zero, that is, for each sequence $\left\{x_{n}\right\}$ in K, if $\left\{x_{n}\right\}$ converges weakly to $q \in K$ and $\left\{(I-T) x_{n}\right\}$ converges strongly to 0 , then $(I-T) q=0$.

Lemma 2.3.[8] Let E be a real uniformly convex Banach space and let a, b be two constants with $0<a<b<1$. Suppose that $\left\{t_{n}\right\} \subset[a, b]$ is a real sequence and $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are two sequences in E. Then the conditions
$\lim _{n \rightarrow \infty}\left\|t_{n} x_{n}+\left(1-t_{n}\right) y_{n}\right\|=d, \limsup _{n \rightarrow \infty}\left\|x_{n}\right\| \leq d, \limsup _{n \rightarrow \infty}\left\|x_{n}\right\| \leq d$ imply that $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$, where $d \geq 0$ is a constant.

3. Main Results

Lemma 3.1 Let E be a real uniformly convex Banach space, K be a nonempty closed convex subset of E. Suppose that $T, S: K \rightarrow K$ are two asymptotically nonexpansive mappings with sequences $\left\{k_{n}\right\},\left\{r_{n}\right\} \subset[1, \infty)$ such that $\lim _{n \rightarrow \infty} k_{n}=\lim _{n \rightarrow \infty} r_{n}=1$ and $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty, \sum_{n=1}^{\infty}\left(r_{n}-\right.$ $1)<\infty$. Let $\left\{x_{n}\right\}$ be generated by (1.5), where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\alpha_{n}^{\prime}\right\},\left\{\beta_{n}^{\prime}\right\}$, and $\left\{\gamma_{n}^{\prime}\right\}$ are real sequences in $[0,1)$ satisfying:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=\alpha_{n}^{\prime}+\beta_{n}^{\prime}+\gamma_{n}^{\prime}=1, \gamma k_{n}\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime} r_{n}\right)<1$ for each integer $n \geq 1$;
(ii) $s \leq \alpha_{n}, \beta_{n}, \gamma_{n}, \alpha_{n}^{\prime}, \beta_{n}^{\prime}, \gamma_{n}^{\prime} \leq 1-s$, for some $s \in(0,1)$.

If $F:=F(T) \bigcap F(S) \neq \phi$, then
(1) $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for each $p \in F$.
(2) $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0$.

Proof. (1) Let $p \in F$. Set $k_{n}=1+u_{n}, r_{n}=1+v_{n}$. Since $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<$ ∞ and $\sum_{n=1}^{\infty}\left(r_{n}-1\right)<\infty$, so $\sum_{n=1}^{\infty} u_{n}<\infty, \sum_{n=1}^{\infty} v_{n}<\infty$. Using (1.5), we have

$$
\begin{align*}
\left\|y_{n}-p\right\| & \leq \alpha_{n}^{\prime}\left\|x_{n}-p\right\|+\beta_{n}^{\prime} r_{n-1}\left\|x_{n-1}-p\right\|+\gamma_{n}^{\prime} r_{n}\left\|x_{n}-p\right\| \\
& =\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime} r_{n}\right)\left\|x_{n}-p\right\|+\beta_{n}^{\prime} r_{n-1}\left\|x_{n-1}-p\right\|, \tag{3.1}
\end{align*}
$$

and

$$
\begin{align*}
\left\|x_{n}-p\right\| & \leq \alpha_{n}\left\|x_{n-1}-p\right\|+\beta_{n} k_{n-1}\left\|x_{n-1}-p\right\|+\gamma_{n} k_{n}\left\|y_{n}-p\right\| \\
& =\left(\alpha_{n}+\beta_{n} k_{n-1}\right)\left\|x_{n-1}-p\right\|+\gamma_{n} k_{n}\left\|y_{n}-p\right\| . \tag{3.2}
\end{align*}
$$

Substituting (3.1) into (3.2), we have

$$
\begin{align*}
\left\|x_{n}-p\right\| \leq & \alpha_{n}\left\|x_{n-1}-p\right\|+\beta_{n} k_{n-1}\left\|x_{n-1}-p\right\|+ \\
& +\gamma_{n} k_{n}\left[\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime} r_{n}\right)\left\|x_{n}-p\right\|+\beta_{n}^{\prime} r_{n-1}\left\|x_{n-1}-p\right\|\right] \\
= & \left(\alpha_{n}+\beta_{n} k_{n-1}+\gamma_{n} k_{n} \beta_{n}^{\prime} r_{n-1}\right)\left\|x_{n-1}-p\right\|+ \\
& +\gamma_{n} k_{n}\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime} r_{n}\right)\left\|x_{n}-p\right\| . \tag{3.3}
\end{align*}
$$

which leads to

$$
\left[1-\gamma_{n} k_{n}\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime} r_{n}\right)\right]\left\|x_{n}-p\right\| \leq\left(\alpha_{n}+\beta_{n} k_{n-1}+\gamma_{n} k_{n} \beta_{n}^{\prime} r_{n-1}\right)\left\|x_{n-1}-p\right\|
$$

Since $\gamma_{n} k_{n}\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime} r_{n}\right)<1$, then $1-\gamma_{n} k_{n}\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime} r_{n}\right)>0$, that is,

$$
1-\gamma_{n}\left(1+u_{n}\right)\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime}\left(1+v_{n}\right)\right)>0
$$

for all $n \geq 1$. Thus, it implies that

$$
\begin{equation*}
\left\|x_{n}-q\right\| \leq \frac{\left[\alpha_{n}+\beta_{n}\left(1+u_{n-1}\right)+\gamma_{n} \beta_{n}^{\prime}\left(1+u_{n}\right)\left(1+v_{n-1}\right)\right]}{1-\gamma_{n}\left(1+u_{n}\right)\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime}\left(1+v_{n}\right)\right)}\left\|x_{n-1}-p\right\| \tag{3.4}
\end{equation*}
$$

By using (3.4), we have:

$$
\left\|x_{n}-p\right\| \leq
$$

$$
\leq\left[1+\frac{\gamma_{n} \gamma_{n}^{\prime} v_{n}+\gamma_{n} u_{n}+\gamma_{n} \gamma_{n}^{\prime} u_{n} v_{n}+\beta_{n} u_{n-1}+\gamma_{n} \beta_{n}^{\prime} v_{n-1}+\gamma_{n} \beta_{n}^{\prime} u_{n} v_{n-1}}{\left.1-\gamma_{n}\left(1-\beta_{n}^{\prime}\right)-\gamma_{n} \gamma_{n}^{\prime} v_{n}-\gamma_{n} u_{n}\left(1-\beta_{n}^{\prime}\right)-\gamma_{n} \gamma_{n}^{\prime} u_{n} v_{n}\right)}\right] \times
$$

$$
\left\|x_{n-1}-p\right\|
$$

On the other hand, since

$$
\lim _{n \rightarrow \infty} \gamma_{n} \gamma_{n}^{\prime} v_{n}=\lim _{n \rightarrow \infty} \gamma_{n} u_{n}\left(1-\beta_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} \gamma_{n} \gamma_{n}^{\prime} u_{n} v_{n}=0
$$

for given $\frac{\epsilon_{0}}{3}, \frac{\epsilon_{1}}{3}, \frac{\epsilon_{2}}{3} \in(0, s), \epsilon=\max \left\{\epsilon_{0}, \epsilon_{1}, \epsilon_{2}\right\}$, there exists positive integer n_{0} such that

$$
\begin{equation*}
\left.\gamma_{n}\left(1-\beta_{n}^{\prime}\right)+\gamma_{n} \gamma_{n}^{\prime} v_{n}+\gamma_{n} u_{n}\left(1-\beta_{n}^{\prime}\right)+\gamma_{n} \gamma_{n}^{\prime} u_{n} v_{n}\right) \leq 1-s+\epsilon \tag{3.5}
\end{equation*}
$$

as $n \geq n_{0}$. From (3.4) and (3.5), we have

$$
\begin{align*}
\left\|x_{n}-p\right\| \leq & \left(1+\frac{\gamma_{n} \gamma_{n}^{\prime}}{s-\epsilon} v_{n}+\frac{\gamma_{n}}{s-\epsilon} u_{n}+\frac{\gamma_{n} \gamma_{n}^{\prime}}{s-\epsilon} u_{n} v_{n}+\frac{\beta_{n}}{s-\epsilon} u_{n-1}\right. \\
& \left.+\frac{\gamma_{n} \beta_{n}^{\prime}}{s-\epsilon} v_{n-1}+\frac{\gamma_{n} \beta_{n}^{\prime}}{s-\epsilon} u_{n} v_{n-1}\right)\left\|x_{n-1}-p\right\| \\
\leq & \left(1+\frac{1}{s-\epsilon} v_{n}+\frac{1}{s-\epsilon} u_{n}+\frac{1}{s-\epsilon} u_{n} v_{n}+\frac{1}{s-\epsilon} u_{n-1}\right. \\
& \left.+\frac{1}{s-\epsilon} v_{n-1}+\frac{1}{s-\epsilon} u_{n} v_{n-1}\right)\left\|x_{n-1}-p\right\| . \tag{3.6}
\end{align*}
$$

From $\sum_{n=1}^{\infty} u_{n}<\infty$ and $\sum_{n=1}^{\infty} v_{n}<\infty$, we obtain that

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(\frac{1}{s-\epsilon} v_{n}+\frac{1}{s-\epsilon} u_{n}+\frac{1}{s-\epsilon} u_{n} v_{n}\right. & \left.+\frac{1}{s-\epsilon} u_{n-1}+\frac{1}{s-\epsilon} v_{n-1}+\frac{1}{s-\epsilon} u_{n} v_{n-1}\right) \\
& <\infty
\end{aligned}
$$

Hence, it follows from (3.6) and Lemma 2.1 that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for each $p \in F$.
(2) From (1), we know that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for each $p \in F$. We suppose that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=d$, that is,

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|= & \lim _{n \rightarrow \infty} \| \alpha_{n}\left(x_{n-1}-p\right)+\beta_{n}\left(T^{n-1} x_{n-1}-p\right) \\
& +\gamma_{n}\left(T^{n} y_{n}-p\right) \| \\
= & \lim _{n \rightarrow \infty} \|\left(1-\gamma_{n}\right)\left[\frac{\alpha_{n}}{1-\gamma_{n}}\left(x_{n-1}-p\right)\right. \\
& \left.+\frac{\beta_{n}}{1-\gamma_{n}}\left(T^{n-1} x_{n-1}-p\right)\right]+\gamma_{n}\left(T^{n} y_{n}-p\right) \|=d \tag{3.7}
\end{align*}
$$

From (3.1) and (3.7), we have

$$
\begin{align*}
\left\|T^{n} y_{n}-p\right\| \leq & k_{n}\left\|y_{n}-p\right\| \\
\leq & k_{n}\left(\alpha_{n}^{\prime}\left\|x_{n}-p\right\|+\beta_{n}^{\prime} r_{n-1}\left\|x_{n-1}-p\right\|+\gamma_{n}^{\prime} r_{n}\left\|x_{n}-p\right\|\right) \\
= & k_{n}\left[\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime} r_{n}\right)\left\|x_{n}-p\right\|+\beta_{n}^{\prime} r_{n-1}\left\|x_{n-1}-p\right\|\right] \\
= & k_{n}\left[\left(\alpha_{n}^{\prime}+\gamma_{n}^{\prime}+\gamma_{n}^{\prime} v_{n}\right)\left\|x_{n}-p\right\|+\beta_{n}^{\prime}\left(1+v_{n-1}\right)\left\|x_{n-1}-p\right\|\right] \\
= & k_{n}\left[\left(1-\beta_{n}^{\prime}+\gamma_{n}^{\prime} v_{n}\right)\left\|x_{n}-p\right\|+\left(\beta_{n}^{\prime}+\beta_{n}^{\prime} v_{n-1}\right)\left\|x_{n-1}-p\right\|\right] \\
= & k_{n}\left[\left\|x_{n}-p\right\|+\beta_{n}^{\prime}\left(\left\|x_{n-1}-p\right\|-\left\|x_{n}-p\right\|\right)+\gamma_{n}^{\prime} v_{n}\left\|x_{n}-p\right\|+\right. \\
& \left.+\beta_{n}^{\prime} v_{n-1}\left\|x_{n-1}-p\right\|\right] . \tag{3.8}
\end{align*}
$$

Taking limsup on both sides in the inequality (3.8), we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T^{n} y_{n}-p\right\| \leq \limsup _{n \rightarrow \infty}\left\|y_{n}-p\right\| \leq d \tag{3.9}
\end{equation*}
$$

On the other hand, by using (3.7) we obtain

$$
\begin{align*}
\limsup _{n \rightarrow \infty} \| \frac{\alpha_{n}}{1-\gamma_{n}} & \left(x_{n-1}-p\right)+\frac{\beta_{n}}{1-\gamma_{n}}\left(T^{n-1} x_{n-1}-p\right) \| \\
& \leq \lim _{\sup }^{n \rightarrow \infty} \\
& \left.\left(\frac{\alpha_{n}}{1-\gamma_{n}}\left\|x_{n-1}-p\right\|+\frac{\beta_{n}}{1-\gamma_{n}} k_{n-1} \| x_{n-1}-p\right) \|\right) \\
& =\limsup _{n \rightarrow \infty}\left(\frac{\alpha_{n}+\beta_{n}\left(1+u_{n-1}\right)}{1-\gamma_{n}}\right)\left\|x_{n-1}-p\right\| \tag{3.10}\\
& =\limsup _{n \rightarrow \infty}\left(1+\frac{\beta_{n}}{1-\gamma_{n}} u_{n-1}\right)\left\|x_{n-1}-p\right\|=d
\end{align*}
$$

By using (3.7), (3.9), (3.10) and Lemma 2.3, we obtain that

$$
\lim _{n \rightarrow \infty}\left\|\frac{\alpha_{n}}{1-\gamma_{n}} x_{n-1}+\frac{\beta_{n}}{1-\gamma_{n}} T^{n-1} x_{n-1}-T^{n} y_{n}\right\|=0
$$

Thus, from (1.5), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T^{n} y_{n}\right\|=0 \tag{3.11}
\end{equation*}
$$

It follows from (3.2) that

$$
\left\|x_{n}-p\right\|-\left(\alpha_{n}+\beta_{n}+\beta_{n} u_{n-1}\right)\left\|x_{n-1}-p\right\| \leq \gamma_{n} k_{n}\left\|y_{n}-p\right\|
$$

$\left(\alpha_{n}+\beta_{n}\right)\left[\left\|x_{n}-p\right\|-\left\|x_{n-1}-p\right\|\right]+\gamma_{n}\left\|x_{n}-p\right\|-\beta_{n} u_{n-1}\left\|x_{n-1}-p\right\| \leq \gamma_{n} k_{n}\left\|y_{n}-p\right\|$ and this implies that
$\frac{\alpha_{n}+\beta_{n}}{\gamma_{n}}\left[\left\|x_{n}-p\right\|-\left\|x_{n-1}-p\right\|\right]+\left\|x_{n}-p\right\|-\frac{\beta_{n}}{\gamma_{n}} u_{n-1}\left\|x_{n-1}-p\right\| \leq k_{n}\left\|y_{n}-p\right\|$.
Taking limsup on both sides in the inequality (3.12), we obtain

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-p\right\| \leq \liminf _{n \rightarrow \infty} k_{n}\left\|y_{n}-p\right\|
$$

and so

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|y_{n}-p\right\| \geq d \tag{3.13}
\end{equation*}
$$

Combining (3.9) and (3.13), we have

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-p\right\|=d
$$

It implies that

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|y_{n}-p\right\|= & \lim _{n \rightarrow \infty} \| \beta_{n}^{\prime}\left(S^{n-1} x_{n-1}-p\right)+\gamma_{n}^{\prime}\left(S^{n} x_{n}-p\right) \\
& +\alpha_{n}^{\prime}\left(x_{n}-p\right) \| \\
= & \lim _{n \rightarrow \infty} \|\left(1-\alpha_{n}^{\prime}\right)\left[\frac{\beta_{n}^{\prime}}{1-\alpha_{n}^{\prime}}\left(S^{n-1} x_{n-1}-p\right)\right. \\
& \left.+\frac{\gamma_{n}^{\prime}}{1-\alpha_{n}^{\prime}}\left(S^{n} x_{n}-p\right)\right]+\alpha_{n}^{\prime}\left(x_{n}-p\right) \|=d . \tag{3.14}
\end{align*}
$$

We know that $\lim \sup _{n \rightarrow \infty}\left\|x_{n}-p\right\| \leq d$. Put $w_{n}=\max \left\{v_{n-1}, v_{n}\right\}$ for $n \geq 2$. Since $w_{n}=\frac{v_{n}+v_{n-1}+\left|v_{n}-v_{n-1}\right|}{2}$ and $\lim _{n \rightarrow \infty} v_{n}=0$, we have $\lim _{n \rightarrow \infty} w_{n}=0$. Thus, from (3.14), we have

$$
\begin{align*}
& \lim \sup _{n \rightarrow \infty}\left\|\frac{\beta_{n}^{\prime}}{1-\alpha_{n}^{\prime}}\left(S^{n-1} x_{n-1}-p\right)+\frac{\gamma_{n}^{\prime}}{1-\alpha_{n}^{\prime}}\left(S^{n} x_{n}-p\right)\right\| \\
& \left.\quad \leq \lim \sup _{n \rightarrow \infty}\left(\frac{\beta_{n}^{\prime}}{1-\alpha_{n}^{\prime}} r_{n-1}\left\|x_{n-1}-p\right\|+\frac{\gamma_{n}^{\prime}}{1-\alpha_{n}^{\prime}} r_{n} \| x_{n}-p\right) \|\right) \\
& \left.\quad \leq \lim \sup _{n \rightarrow \infty}\left(\frac{\beta_{n}^{\prime}\left(1+w_{n}\right)}{1-\alpha_{n}^{\prime}}\left\|x_{n-1}-p\right\|+\frac{\gamma_{n}^{\prime}\left(1+w_{n}\right)}{1-\alpha_{n}^{\prime}} \| x_{n}-p\right) \|\right) \\
& \quad \leq \lim \sup _{n \rightarrow \infty}\left[\left(1+w_{n}\right) \frac{\beta_{n}^{\prime}\left(\left\|x_{n-1}-p\right\|-\left\|x_{n}-p\right\|\right)+\left(1-\alpha_{n}^{\prime}\right)\left\|x_{n}-p\right\|}{1-\alpha_{n}^{\prime}}\right]=d . \tag{3.15}
\end{align*}
$$

By using (3.14), (3.15), Lemma 2.3 and $\limsup _{n \rightarrow \infty}\left\|x_{n}-p\right\| \leq d$, we obtain that

$$
\lim _{n \rightarrow \infty}\left\|\frac{\beta_{n}^{\prime}}{1-\alpha_{n}^{\prime}} S^{n-1} x_{n-1}+\frac{\gamma_{n}^{\prime}}{1-\alpha_{n}^{\prime}} S^{n} x_{n}-x_{n}\right\|=0
$$

which means that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 \tag{3.16}
\end{equation*}
$$

In addition, since

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|= & \lim _{n \rightarrow \infty} \| \alpha_{n}\left(x_{n-1}-p\right)+\beta_{n}\left(T^{n-1} x_{n-1}-p\right) \\
& +\gamma_{n}\left(T^{n} y_{n}-p\right) \| \\
= & \lim _{n \rightarrow \infty} \|\left(1-\beta_{n}\right)\left[\frac{\alpha_{n}}{1-\beta_{n}}\left(x_{n-1}-p\right)\right. \\
& \left.+\frac{\gamma_{n}}{1-\beta_{n}}\left(T^{n} y_{n}-p\right)\right]+\beta_{n}\left(T^{n-1} x_{n-1}-p\right) \|=d \tag{3.17}
\end{align*}
$$

so, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T^{n-1} x_{n-1}-p\right\| \leq \limsup _{n \rightarrow \infty} k_{n-1}\left\|x_{n-1}-p\right\|=d \tag{3.18}
\end{equation*}
$$

and
$\limsup _{n \rightarrow \infty}\left\|\frac{\alpha_{n}}{1-\beta_{n}}\left(x_{n-1}-p\right)+\frac{\gamma_{n}}{1-\beta_{n}}\left(T^{n} y_{n}-p\right)\right\|$

$$
\begin{align*}
& \left.\leq \lim \sup _{n \rightarrow \infty}\left(\frac{\alpha_{n}}{1-\beta_{n}}\left\|x_{n-1}-p\right\|+\frac{\gamma_{n}}{1-\beta_{n}} \| T^{n} y_{n}-p\right) \|\right) \\
& \left.\leq \lim \sup _{n \rightarrow \infty}\left(\frac{\alpha_{n}}{1-\beta_{n}}\left\|x_{n-1}-p\right\|+\frac{\gamma_{n}}{1-\beta_{n}} k_{n} \| y_{n}-p\right) \|\right) \\
& =\lim \sup _{n \rightarrow \infty}\left(\frac{\alpha_{n}\left\|x_{n-1}-p\right\|+\gamma_{n}\left\|y_{n}-p\right\|+\gamma_{n} u_{n}\left\|y_{n}-p\right\|}{1-\beta_{n}}\right) \\
& =\lim \sup _{n \rightarrow \infty}\left(\frac{\gamma_{n}\left(\left\|y_{n}-p\right\|-\left\|x_{n-1}-p\right\|\right)+\left(1-\beta_{n}\right)\left\|x_{n-1}-p\right\|+\gamma_{n} u_{n}\left\|y_{n}-p\right\|}{1-\beta_{n}}\right)=d . \tag{3.19}
\end{align*}
$$

By the inequalities (3.17), (3.18), (3.19) and using Lemma 2.3, we get

$$
\lim _{n \rightarrow \infty}\left\|\frac{\alpha_{n}}{1-\beta_{n}} x_{n-1}+\frac{\gamma_{n}}{1-\beta_{n}} T^{n} y_{n}-T^{n-1} x_{n-1}\right\|=0
$$

which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T^{n-1} x_{n-1}\right\|=0 \tag{3.20}
\end{equation*}
$$

By using (3.11), (3.16) and (3.20), we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n-1}\right\|=0 \tag{3.21}
\end{equation*}
$$

Using the same method and Lemma 2.3 for the equality (3.14), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-S^{n} x_{n}\right\|=0 \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-S^{n-1} x_{n-1}\right\|=0 \tag{3.23}
\end{equation*}
$$

Therefore, we have

$$
\begin{aligned}
&\left\|x_{n}-T x_{n}\right\| \leq\left\|x_{n}-T^{n} y_{n}\right\|+\left\|T^{n} y_{n}-T^{n} x_{n}\right\|+\left\|T^{n} x_{n}-T x_{n}\right\| \\
& \leq\left\|x_{n}-T^{n} y_{n}\right\|+k_{n}\left\|y_{n}-x_{n}\right\|+k_{1}\left\|T^{n-1} x_{n}-x_{n}\right\| \\
& \leq\left\|x_{n}-T^{n} y_{n}\right\|+k_{n}\left\|y_{n}-x_{n}\right\| \\
&+k_{1}\left(\left\|T^{n} x_{n}-T^{n-1} x_{n-1}\right\|+\left\|T^{n-1} x_{n-1}-x_{n}\right\|\right) \\
& \leq\left\|x_{n}-T^{n} y_{n}\right\|+k_{n}\left\|y_{n}-x_{n}\right\| \\
&+k_{1}\left(k_{n-1}\left\|x_{n}-x_{n-1}\right\|+\left\|T^{n-1} x_{n-1}-x_{n}\right\|\right)
\end{aligned}
$$

and it follows from (3.11), (3.16), (3.20) and (3.21) that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0
$$

Moreover,

$$
\begin{aligned}
\left\|x_{n}-S x_{n}\right\| \leq & \left\|x_{n}-y_{n}\right\|+\left\|y_{n}-S^{n} x_{n}\right\|+\left\|S^{n} x_{n}-S x_{n}\right\| \\
\leq & \left\|x_{n}-y_{n}\right\|+\left\|y_{n}-S^{n} x_{n}\right\|+r_{1}\left\|S^{n-1} x_{n}-x_{n}\right\| \\
\leq & \left\|x_{n}-y_{n}\right\|+\left\|y_{n}-S^{n} x_{n}\right\| \\
& +r_{1}\left(\left\|S^{n} x_{n}-S^{n-1} x_{n-1}\right\|+\left\|S^{n-1} x_{n-1}-y_{n}\right\|+\left\|y_{n}-x_{n}\right\|\right) \\
\leq & \left\|x_{n}-y_{n}\right\|+\left\|y_{n}-S^{n} x_{n}\right\| \\
& +r_{1}\left(\left\|x_{n}-x_{n-1}\right\|+\left\|S^{n-1} x_{n-1}-y_{n}\right\|+\left\|y_{n}-x_{n}\right\|\right)
\end{aligned}
$$

and by using (3.16), (3.21), (3.22) and (3.23), we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0
$$

This completes the proof.
Remark 3.2. Lemma 3.1 generalizes Lemma 3.1 of Wang and Zhao [13] to two asymptotically nonexpansive mappings. In addition, if Opial's condition of Theorem 2.1 of [12] is removed, Lemma 3.1 improves Theorem 2.1 of Zhao et al. [12].

Theorem 3.3. Let E be a real uniformly convex Banach space, K be a nonempty closed convex subset of E. Suppose that $T, S: K \rightarrow K$ are two asymptotically nonexpansive mappings with sequences $\left\{k_{n}\right\},\left\{r_{n}\right\} \subset[1, \infty)$ such that $\lim _{n \rightarrow \infty} k_{n}=\lim _{n \rightarrow \infty} r_{n}=1$ and $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty, \sum_{n=1}^{\infty}\left(r_{n}-\right.$ $1)<\infty$. Let $\left\{x_{n}\right\}$ be generated by (1.5) and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\alpha_{n}^{\prime}\right\},\left\{\beta_{n}^{\prime}\right\}$, and $\left\{\gamma_{n}^{\prime}\right\}$ be same as in Lemma 3.1. If T and S satisfy condition (A^{\prime}) and $F:=F(T) \bigcap F(S) \neq \phi$, then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of T and S.

Proof. From Lemma 3.1, we know that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for each $p \in F$. Assume $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=c$ for some $c \geq 0$. If $c=0$, there is nothing to prove. So, let $c>o$ and it follows from Lemma 3.1 that

$$
\begin{aligned}
\left\|x_{n}-p\right\| \leq & \left(1+\frac{\gamma_{n} \gamma_{n}^{\prime}}{s-\epsilon} v_{n}+\frac{\gamma_{n}}{s-\epsilon} u_{n}+\frac{\gamma_{n} \gamma_{n}^{\prime}}{s-\epsilon} u_{n} v_{n}+\frac{\beta_{n}}{s-\epsilon} u_{n-1}+\frac{\gamma_{n} \beta_{n}^{\prime}}{s-\epsilon} v_{n-1}\right. \\
& \left.+\frac{\gamma_{n} \beta_{n}^{\prime}}{s-\epsilon} u_{n} v_{n-1}\right)\left\|x_{n-1}-p\right\|
\end{aligned}
$$

which leads to

$$
\begin{align*}
d\left(x_{n}, F\right) \leq & \left(1+\frac{\gamma_{n} \gamma_{n}^{\prime}}{s-\epsilon} v_{n}+\frac{\gamma_{n}}{s-\epsilon} u_{n}+\frac{\gamma_{n} \gamma_{n}^{\prime}}{s-\epsilon} u_{n} v_{n}+\frac{\beta_{n}}{s-\epsilon} u_{n-1}\right. \\
& \left.+\frac{\gamma_{n} \beta_{n}^{\prime}}{s-\epsilon} v_{n-1}+\frac{\gamma_{n} \beta_{n}^{\prime}}{s-\epsilon} u_{n} v_{n-1}\right) d\left(x_{n-1}, F\right) \tag{3.24}
\end{align*}
$$

Putting
$\lambda_{n}=\frac{\gamma_{n} \gamma_{n}^{\prime}}{s-\epsilon} v_{n}+\frac{\gamma_{n}}{s-\epsilon} u_{n}+\frac{\gamma_{n} \gamma_{n}^{\prime}}{s-\epsilon} u_{n} v_{n}+\frac{\beta_{n}}{s-\epsilon} u_{n-1}+\frac{\gamma_{n} \beta_{n}^{\prime}}{s-\epsilon} v_{n-1}+\frac{\gamma_{n} \beta_{n}^{\prime}}{s-\epsilon} u_{n} v_{n-1}$.
Since $\sum_{n=1}^{\infty} u_{n}<\infty$ and $\sum_{n=1}^{\infty} v_{n}<\infty, \sum_{n=2}^{\infty} \lambda_{n}<\infty$. By using (3.24) and Lemma 2.1 we get $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)$ exists. By Lemma 3.1, we have $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0$. It follows from condition (A^{\prime}) that

$$
\lim _{n \rightarrow \infty} f\left(d\left(x_{n}, F\right)\right) \leq \lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0
$$

or

$$
\lim _{n \rightarrow \infty} f\left(d\left(x_{n}, F\right)\right) \leq \lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0
$$

In the both cases, $\lim _{n \rightarrow \infty} f\left(d\left(x_{n}, F\right)\right)=0$. Since $f:[0, \infty) \rightarrow[0, \infty)$ is a nondecreasing function satisfying $f(0)=0, f(t)>0$ for all $t>0$, we obtain that $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$. Next we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in K. Taking $\sum_{n=2}^{\infty} \lambda_{n}=M>0$. Since $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$, for any given $\epsilon>0$, there exists a natural number n_{0} such that $d\left(x_{n}, F\right)<\frac{\epsilon}{3 e^{M}}$ as $n \geq n_{0}$. So, we can find $q \in F$ such that $\left\|x_{n_{0}}-q\right\|<\frac{\epsilon}{2 e^{M}}$. For $n \geq n_{0}$, from (3.6) we have

$$
\begin{aligned}
\left\|x_{n}-q\right\| & \leq\left(1+\lambda_{n}\right)\left\|x_{n-1}-q\right\| \\
& \leq \prod_{i=n_{0}}^{n}\left(1+\lambda_{i}\right)\left\|x_{n_{0}}-q\right\| \leq e^{\sum_{i=n_{0}}^{n} \lambda_{i}}\left\|x_{n_{0}}-q\right\| \leq e^{M}\left\|x_{n_{0}}-q\right\|
\end{aligned}
$$

Therefore, for any $n, m \geq n_{0}$

$$
\left\|x_{n}-x_{m}\right\| \leq\left\|x_{n}-q\right\|+\left\|x_{m}-q\right\| \leq e^{M}\left\|x_{n_{0}}-q\right\|+e^{M}\left\|x_{n_{0}}-q\right\|<\epsilon
$$

This shows that $\left\{x_{n}\right\}$ is a Cauchy sequence and so $\left\{x_{n}\right\}$ is convergent since E is complete. Let $\lim _{n \rightarrow \infty} x_{n}=p$. From Lemma 3.1, we have

$$
\begin{aligned}
\|p-T p\| & \leq\left\|p-x_{n}\right\|+\left\|x_{n}-T x_{n}\right\|+\left\|T x_{n}-T p\right\| \\
& \leq\left(1+k_{1}\right)\left\|x_{n}-p\right\|+\left\|x_{n}-T x_{n}\right\| \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

This implies that p is a fixed point of T. Using the same method, we can obtain that p is also a fixed point of S. So $p \in F$. This completes the proof.

Remark 3.4. Theorem 3.3 also extends the result of Wang and Zhao [13] to the case of implicit iteration process for two asymptotically nonexpansive mappings.

Theorem 3.5. Let E be a real uniformly convex Banach space, K be a nonempty closed convex subset of E. Suppose that $T, S: K \rightarrow K$ are two asymptotically nonexpansive mappings with sequences $\left\{k_{n}\right\},\left\{r_{n}\right\} \subset[1, \infty)$ such that $\lim _{n \rightarrow \infty} k_{n}=\lim _{n \rightarrow \infty} r_{n}=1$ and $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty, \sum_{n=1}^{\infty}\left(r_{n}-\right.$ $1)<\infty$. Let $\left\{x_{n}\right\}$ be generated by (1.5) and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, $\left\{\gamma_{n}\right\},\left\{\alpha_{n}^{\prime}\right\},\left\{\beta_{n}^{\prime}\right\}$, and $\left\{\gamma_{n}^{\prime}\right\}$ be same as in Lemma 3.1. If one of T and S is semi-compact and $F:=F(T) \bigcap F(S) \neq \phi$, then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of T and S.

Proof. From Lemma 3.1, we know that $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=\lim _{n \rightarrow \infty} \| x_{n}-$ $S x_{n} \|=0$. Since one of T and S is semi-compact, then there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{j}}\right\}$ converges strongly to p. It follows from Lemma 2.2 that $p \in F$. Therefore, from Lemma 3.1, $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. Since the subsequence $\left\{x_{n_{j}}\right\}$ converges strongly to p, then $\left\{x_{n}\right\}$ converges strongly to a common fixed point $p \in F$. This completes the proof.

Remark 3.6. Since the class of asymptotically nonexpansive mappings includes the class of nonexpansive mappings, we have that Theorem 3.5 is a generalization of Theorem 3.3 of Zhao and Wang [13] and Theorem 2.2 of Zhao et al. [12].

Remark 3.7.The implicit iteration process (1.5) can be generalized for two finite families asymptotically nonexpansive mappings $\left\{T_{j}: j \in J\right\}$ and $\left\{S_{j}: j \in J\right\}$ (here $\left.J=\{1,2, \cdots, N\}\right)$.

Acknowledgement. The authors would like to thank the referee for his/her valuable comments. This work was partially supported by the Research Foundation of Yunnan University of Finance and Economics.

References

[1] S.S. Chang, Y. J. Cho, H.Y. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean

Math. Soc., Vol. 38, no. 6 (2001), 1245-1260.
[2] H. Fukhar-ud-din, S. H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J. Math. Anal. Appl. 328 (2007), 821-829.
[3] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Vol. 35, no. 1 (1972), 171-174.
[4] A. Moudafi, Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl. 241 (2000), 46-55.
[5] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and non-expansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379.
[6] M.O. Osilike, S.C. Aniagbosor, G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Pan Amer. Math. J., 12 (2002), 77-88.
[7] S. Plubtieng, R. Wangkeeree, R. Punpaeng, On the convergence of modified Noor iterations with errors for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 322 (2) (2006), 1018-1029.
[8] J. Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.
[9] Z.H. Sun, Strong convergence of an implicit iteration process for a finite familyof asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 286 (2003), 351-358.
[10] B. Xu, M.A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 267 (2002), 444-453.
[11] H.K. Xu, R.G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. And Optimiz., 22 (2001), 767-773.
[12] J. Zhao, S. He, Y. Fu Su, Weak and strong convergence theorems for nonexpansive mappings in Banach spaces, Fixed Point Theory and Appl., vol. 2008, article ID 751383, 7 pages, doi:10.1155/2008/751383.
[13] P. Zhao, L. Wang, Strong convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, International Mathematical forum, 4(2009), 185-192.

College of Statistics and Mathematics
Yunnan University of Finance and Economics,
Kunming, Yunnan, 650221, P. R. China
Email: WL64mail@yahoo.com.cn

Department of Mathematics
Faculty of Science,
Ataturk University, Erzurum, 25240, Turkey
Email: isayildirim@atauni.edu.tr

Department of Mathematics
Faculty of Science,
Ataturk University, Erzurum, 25240, Turkey
Email: mozdemir@atauni.edu.tr

[^0]: Key Words: Asymptotically nonexpansive mapping; Implicit iteration; Common fixed point; Strong convergence

 2010 Mathematics Subject Classification: 47H09, 47J25
 The corresponding author: Lin Wang
 Received: September, 2009
 Accepted: January, 2010

