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REGULARIZATION AND NEW ERROR
ESTIMATES FOR A MODIFIED

HELMHOLTZ EQUATION

Nguyen Huy Tuan, Pham Hoang Quan and Dang Duc Trong

Abstract

We consider the following Cauchy problem for the Helmholtz equa-
tion with Dirichlet boundary conditions at x = 0 and x = π





∆u− k2u = 0, (x, y) ∈ (0, π)× (0, 1)

u(0, y) = u(π, y) = 0, y ∈ (0, 1)

uy(x, 0) = f(x), (x, y) ∈ (0, π)× (0, 1)

u(x, 0) = ϕ(x), 0 < x < π

(1)

The problem is shown to be ill-posed, as the solution exhibits unstable
dependence on the given data functions. Using a modified regularization
method, we regularize the problem and to get some new error estimates.
The numerical results show that our methods work effectively. This
paper extends the work by T.Wei and H.H.Quin[8].

1 Introduction

Many physical and engineering problems in areas like geophysics and seis-
mology require the solution of a Cauchy problem for the Laplace equation.
For example, certain problems related to the search for mineral resources,
which involve interpretation of the earth’s gravitational and magnetic fields,
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are equivalent to the Cauchy problem for the Laplace equation. The continu-
ation of the gravitational potential observed on the surface of the earth in a
direction away from the sources of the field is again such a problem.

The Cauchy problem for the Laplace equation and for other elliptic equa-
tions is in general ill-posed in the sense that the solution, if it exists, does not
depend continuously on the initial data. This is because the Cauchy prob-
lem is an initial value problem which represents a transient phenomenon in
a time-like variable while elliptic equations describe steady-state processes in
physical fields. A small perturbation in the Cauchy data, therefore, affects
the solution largely [2, 3, 4]. Due to the severe ill-posedness of the problem,
it is impossible to solve Cauchy problem of elliptic equation by using classi-
cal numerical methods and it requires special techniques, e.g., regularization
strategies. In recent years, the Cauchy problems associated with the modified
Helmholtz equation have been studied by using different numerical methods,
such as the Landweber method with boundary element method (BEM) [14],
the method of fundamental solutions (MFS) [13, 22] and so on.

For a recent paper on modified Helmholtz equation, we refer the reader
to [17]. In there, the authors used quasi-reversibility method and truncation
method for solving a Cauchy problem of modified Helmhotlz equation in a
rectangle domain. They established the error estimates be as in the logarithmic
forms (See Theorem 3.1 and Theorem 3.3). The convergence rates is too weak.
The main aim of this paper is to present a different regularization method and
investigate the error estimate between the regularization solution and the exact
one with the Holder form.
The paper is organized as follows. In Section 2, the modified regularization
method is introduced; in Section 3 and Section 4, some stability estimate are
proved under different priori conditions; in Section 5, some numerical results
are reported.

2 Mathematical problem and regularization

We shall consider the following Cauchy problem for the modified Helmholtz
equation 




∆u− k2u = 0, (x, y) ∈ (0, π)× (0, 1)
u(0, y) = u(π, y) = 0, y ∈ (0, 1)
uy(x, 0) = f(x), (x, y) ∈ (0, π)× (0, 1)
u(x, 0) = g(x), 0 < x < π

(2)

where g(x), f(x) are given functions in L2(0, π) and k > 0 is a real number.
By the method of separation of variables, the solution of problem (2) is as
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follows. If we denote by
tnk(y) = e

√
n2+k2y

then:

u(x, y) =
∞∑

n=1

[(
tnk(y) + 1/tnk(y)

2

)
gn +

(
tnk(y)− 1/tnk(y)

2
√

n2 + k2

)
fn

]
sin nx (3)

where

f(x) =
∞∑

n=1

fn sin nx, g(x) =
∞∑

n=1

gn sinnx.

Physically, g can only be measured, there will be measurement errors, and we
would actually have as data some function gε ∈ L2(0, π), for which

‖gε − g‖ ≤ ε,

where the constant ε > 0 represents a bound on the measurement error,
‖.‖denotes the L2-norm.
The case f = 0, the problem (2) becomes





∆u− k2u = 0, (x, y) ∈ (0, π)× (0, 1)
u(0, y) = u(π, y) = 0, y ∈ (0, 1)
uy(x, 0) = 0, (x, y) ∈ (0, π)× (0, 1)
u(x, 0) = g(x), 0 < x < π.

(4)

Very recently, in [17], H.H.Quin and T.Wei considered (2) by the quasi-
reversibility method. They established the following problem for a fourth-
order equation





∆uε − k2uε − β2uβ
xxyy = 0, (x, y) ∈ (0, π)× (0, 1)

uε(0, y) = uε(π, y) = 0, y ∈ (0, 1)
uε

y(x, 0) = 0, (x, y) ∈ (0, π)× (0, 1)

u(x, 0) = g(x), 0 < x < π.

(5)

The separation of variables leads to the solution of problem (5) as follows

uε(x, y) =
∞∑

n=1


exp{

√
n2+k2

1+β2n2 y}+ exp{−
√

n2+k2

1+β2n2 y}
2


 gn sin nx. (6)

We note the reader that the term tnk(y) in (3) increases rather quickly when
n becomes large, so it is the unstability cause. To regularization the problem
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(3), we should replace it by the better terms. In [17], the authors replaced

tnk(y) and e−ny by two better terms exp{
√

n2+k2

1+βn2 y} and exp{−
√

n2+k2

1+βn2 y}
respectively.
In this paper, we replace tnk(y) by the better terms tnk(y)

1+αtnk(a) for a > 1 be a
fixed number and modify the exact solution as follows

uε(x, y) =

=
∞∑

n=1







tnk(y)
1+αtnk(a) + 1

tnk(y)

2


 gn +




tnk(y)
1+αtnk(a) − 1

tnk(y)

2
√

n2 + k2


 fn


 sin nx.

(7)

Let vε be the regularizing solution corresponding to the noisy data gε

vε(x, y) =
∞∑

n=1







tnk(y)
1+αtnk(a) + 1

tnk(y)

2


 gε

n +




tnk(y)
1+αtnk(a) − 1

tnk(y)

2
√

n2 + k2


 fn


 sin nx.

(8)

where gε
n = 2

π

∫ π

0
gε(x) sin(nx)dx.

3 The main results

Theorem 1.
Let ϕ(x), g(x) ∈ L2(0, π). Then we have

‖vε(., y)− uε(., y)‖ ≤ α−
y
a ε.

Proof. We have

vε(x, y)− uε(x, y) =
∞∑

n=1







tnk(y)
1+αtnk(a) + 1

tnk(y)

2


 (gε

n − gn)


 sin nx.

For n, x, α, 0 < a < b, It is not difficult to prove the inequality

ena

1 + αenb
≤ α−

a
b . (9)
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Thus, we have

ena

1 + αenb
=

ena

(1 + αenb)
a
b (1 + αenb)1−

a
b

≤ ena

(1 + αenb)
a
b

≤ α−
a
b .

Using this inequality, we get

‖vε(., y)− uε(., y)‖2 =
π

2

∞∑
n=1







tnk(y)
1+αtnk(a) + 1

tnk(y)

2


 (gε

n − gn)




2

≤ π

2

∞∑
n=1

[(
eny

1 + αena

)
(gε

n − gn)
]2

≤ α−2 y
a ‖gε − g‖2

≤ α−2 y
a ε2.

Hence

‖vε(., y)− uε(., y)‖ ≤ α−
y
a ε.

Theorem 2. Let E, E3 be positive numbers such that ‖u(., 1)‖ ≤ E and

∞∑
n=1

e2
√

n2+k2af2
n < E3. (10)

If we select α = εa, then one has

‖vε(., y)− u(., y)‖ ≤ ε1−y(
√

2E + πε2a−2E3 + 1), (11)

for every y ∈ [0, 1].
Proof. Since (3) and (8) give

u(x, y)− uε(x, y) =
∞∑

n=1

[(
tnk(y)− tnk(y)

1+αtnk(a)

2

)
gn +

(
tnk(y)− tnk(y)

1+αtnk(a)

2
√

n2+k2

)
fn

]
sin nx.

It follows from (3) that

gn =
2

e
√

n2+k2 + e−
√

n2+k2
< u(x, 1), sin nx > −
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− e
√

n2+k2 − e−
√

n2+k2

(e
√

n2+k2 + e−
√

n2+k2)
√

n2 + k2
fn.

By directly transform, we have

< u(x, y)− uε(x, y), sin nx >=

=
tnk(y)− tnk(y)

1+αtnk(a)

e
√

n2+k2 + e−
√

n2+k2
< u(x, 1), sin nx > +

+
tnk(y)− tnk(y)

1+αtnk(y)

(e
√

n2+k2 + e−
√

n2+k2)2
√

n2 + k2
(e
√

n2+k2
+ e−

√
n2+k2 − 1)gn

=
αtnk(a + y)

(1 + αtnk(a))(e
√

n2+k2 + e−
√

n2+k2)
< u(x, 1), sin nx > +

+
αtnk(a + y)(e

√
n2+k2 + e−

√
n2+k2 − 1)

2
√

n2 + k2(1 + αtnk(a))(e
√

n2+k2 + e−
√

n2+k2)
fn.

Thus

| < u(x, y)− uε(x, y), sin nx > | ≤
αtnk(a + y − 1)

1 + αtnk(a)
| < u(x, 1), sin nx > |+ αtnk(y)

1 + αtnk(a)
tnk(a)gn (12)

≤ α
1−y

a | < u(x, 1), sinnx > |+ α1− y
a tnk(a)fn.

Using the inequality (c + d)2 ≤ 2c2 + 2d2, we obtain

‖u(., y)− uε(., y)‖2 =
π

2

∞∑
n=1

| < u(x, y)− wε(x, y), sin nx > |2

≤ 2α2 1−y
a

π

2

∞∑
n=1

| < u(x, 1), sin nx > |2

+ 2α2− 2y
a

π

2

∞∑
n=1

e2naf2
n

≤ 2α2 1−y
a ‖u(., 1)‖2 + πα2− 2y

a

∞∑
n=1

tnk(a)f2
n.
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Apply the triangle inequality and we get

‖u(., y)− vε(., y)‖ ≤ ‖u(., y)− uε(., y)‖+ ‖uε(., y)− vε(., y)‖

≤
√√√√2α2 1−y

a ‖u(., 1)‖2 + πα2− 2y
a

∞∑
n=1

tnk(a)f2
n + α−

y
a ε

≤
√

2α2 1−y
a E + πα2− 2y

a E3 + α−
y
a ε

≤
√

2α2−2yE + πα2a−2yE3 + ε1−y

≤ ε1−y(
√

2E + πα2a−2E3 + 1).

Remark 1. From (11), as y → 1, the accuracy of regularized solution be-
comes progressively lower. Moreover, the error in y = 1 is not given. This is a
common thing in the theory of ill-posed problems, if we do not have additional
conditions on the smoothness of the solution. To retain the continuous depen-
dence of the solution at y = 1, we introduce a stronger a priori assumption.
We have the following theorem

Theorem 3. Let (10) holds. Suppose that there are positive real numbers
γ, E4 such that

∞∑
n=1

e2γn| < u(x, 1), sin nx > |2 < E4. (13)

Let us select α = ε
a

1+γ , b = min{1 + γ, a}, then one has

‖vε(., y)− u(., y)‖ ≤ ε
b−y
1+γ (

√
2E4 + πE3 + 1), (14)

for every y ∈ [0, 1].
Proof. For the first term on the right-hand side of (12), we have

αtnk(a + y − 1)
1 + αtnk(a)

| < u(x, 1), sin nx > |

=
αtnk(a + y − 1− γ)

1 + αtnk(a)
tnk(γ)| < u(x, 1), sinnx > |

≤ αα
1+γ−y−a

a tnk(k)| < u(x, 1), sinnx > |
= α

1+γ−y
a tnk(γ)| < u(x, 1), sin nx > |.
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Using the inequality (c + d)2 ≤ 2c2 + 2d2, we obtain

‖u(., y)− uε(., y)‖2 =
π

2

∞∑
n=1

| < u(x, y)− wε(x, y), sin nx > |2

≤ 2α2 1+γ−y
a

π

2

∞∑
n=1

e2γn| < u(x, 1), sin nx > |2

+ 2α2− 2y
a

π

2

∞∑
n=1

tnk(2a)f2
n

≤ 2α2 1+γ−y
a

∞∑
n=1

e2γn| < u(x, 1), sin nx > |2 + πα2− 2y
a E3

≤ 2α2 1+γ−y
a E4 + πα2− 2y

a E3.

Applying the triangle inequality, we get

‖u(., y)− vε(., y)‖ ≤ ‖u(., y)− uε(., y)‖+ ‖uε(., y)− vε(., y)‖
≤

√
2α2 1+γ−y

a E4 + πα2− 2y
a E3 + α−

y
a ε

≤
√

2α2 1+γ−y
a E4 + πα2− 2y

a E3 + α−
y
a ε

≤
√

2ε2
1+γ−y

1+k E4 + πε
2a−2y
1+γ E3 + ε

1+γ−y
1+γ .

≤ ε
b−y
1+γ (

√
2E4 + πE3 + 1).

Remark 2.
1. We separately consider the case 0 ≤ y < 1 and the case y = 1 in order
to emphasize the following facts. For the case 0 ≤ y < 1, the a priori bound
‖u(., 1)‖ ≤ E is sufficient. However, for the case y = 1, the stronger a priori
bound in (13) must be imposed.
2. The error (14) is the order of Holder type for all y ∈ [0, 1]. As we know,
the convergence rate of εp, (0 < p) is more quickly than the logarithmic order(
ln( 1

ε )
)−q (q > 0) when ε → 0. Thus, up to know, Holder order type is optimal

order. Note that this error is not investigated in [7,8,9,13,14,16]. This proves
the advantages of our method.

4 Numerical result.

In this section, a simple example is devised for verifying the validity of the
proposed method. For the reader can make a comparison between this paper
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with [7] and [17] by using same example with the same parameters, we consider
the problem 




uxx + uyy = 3u, (x, t) ∈ (0, π)× (0, 1)
u(0, y) = u(π, y) = 0, yy ∈ (0, 1)
uy(x, 0) = 0, (x, y) ∈ (0, π)× (0, 1)

u(x, 0) =
sin(x)

4
, 0 < x < π.

(15)

The exact solution to this problem is

u(x, y) =
e2y + e−2y

8
sin x.

Let y = 1, we get u(x, 1) = 0.940548922770908 sin x.
Let gm be the measured data

gm(x) =
1
4

sin(x) +
1
m

sin(mx).

So the data error, at t = 0, is

F (m) = ‖gm − g‖ =

√∫ π

0

1
m2

sin2(mx)dx =
√

π

2
1
m
≤ ε.

The solution of (15) corresponding the gm is

um(x, y) =
ey + e−y

2
sin x +

e
√

m2+3y + e−
√

m2+3y

2m
sin mx.

The error in y = 1 is

O(n) := ‖um(., 1)− u(., 1)‖ =

√∫ π

0

(e
√

m2+3 + e−
√

m2+3)2

4m2
sin2(mx) dx

=
(e2

√
m2+3 + e−2

√
m2+3 + 2)

4m2

√
π

2
.

Then, we notice that

lim
m→∞

F (m) = lim
m→∞

1
m

√
π

2
= 0, (16)

lim
m→∞

O(m) = lim
m→∞

(e2
√

m2+3 + e−2
√

m2+3 + 2)
4m2

√
π

2
= ∞. (17)
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From the two equalities above, we see that (15) is an ill-posed problem.
Hence, the Cauchy problem (15) cannot be solved by using classical numerical
methods and it needs regularization techniques.
Let ε =

√
π
2

1
m . By applying the method in this paper, we have the approxi-

mated solution

vε(x, y) =
∞∑

n=1







e
√

n2+3y

1+αea
√

n2+3
+ e−

√
n2+3y

2


 < gm(x), sin nx >


 sin nx. (18)

Choose α = ε2 and a = 2, let y = 1, we have

vε(x, 1) =
∞∑

n=1







e
√

n2+3

1+ε2e2
√

n2+3
+ e−

√
n2+3

2


 < gm(x), sin nx >


 sin nx.(19)

=
e2

1+ε2e2 + e−2

8
sin x +

e
√

m2+3

1+ε2e2
√

m2+3
+ e−

√
m2+3

2m
sin mx. (20)

The error between vε(., 1) and u(., 1) is as follows

‖vε(., 1)− u(., 1)‖2 =

=
π

2




(
e2

1+ε2e2 + e−2

8
− e2 + e−2

8

)2

+




e
√

m2+3

1+ε2e2
√

m2+3
+ e−

√
m2+3

2m




2



=
π

2




ε4e4

64(1 + ε2e2)2
+




e
√

m2+3

1+ε2e2
√

m2+3
+ e−

√
m2+3

2m




2

 .

Table 1 shows the the error between the regularization solution vε and the
exact solution u, for three values of ε. We have the table numerical test by
choose some values as follows (aε = ‖vε(., 1)− u(., 1)‖).

By applying the method in [17], we have the approximated solution

wε(x, y) =

=
∞∑

p=1





exp{

√
p2+3
1+βp2 y}+ exp{−

√
p2+3
1+βp2 y}

2


 < gm(x), sin px >


 sin px.
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Table 1: The error of the method in this paper.
ε vε aε

ε1 = 10−2
√

π
2 0.9394781334 sin(x) 0.0013420

+1.166691975× 10−42 sin(100x)
ε2 = 10−5

√
π
2 0.9405489216 sin(x) 1.343592× 10−9

+1.34122070× 10−43425 sin(105x)
ε3 = 10−10

√
π
2 0.940548922770 sin(x) 1.3435930× 10−17

+3.977391112813× 10−434294474

Let y = 1, we have

wε(x, 1) =

=
∞∑

p=1





exp{

√
p2+3
1+βp2 }+ exp{−

√
p2+3
1+βp2 }

2


 < gm(x), sin px >


 sin px

=
exp{

√
4

1+β }+ exp{−
√

4
1+β }

8
sin x +

exp{
√

m2+3
1+βm2 }+ exp{−

√
m2+3
1+βm2 }

2m
sinmx. (21)

This implies that

‖wε(., 1)− u(., 1)‖ =

=
π

2




exp{
√

4
1+β }+ exp{−

√
4

1+β }
8

− e2 + e−2

8




2

+
π

2


exp{

√
m2+3
1+βm2 }+ exp{−

√
m2+3
1+βm2 }

2




2

.

We note that if we chooseing β = ε and m such that ε =
√

π
2

1
m then ‖wε(., 1)−

u(., 1)‖ does not converges to zero. Thus, by choose some differrent values, we
have the table numerical test as follows
1. ε = 10−2

√
π
2 corresponding to m = 1020.

2. ε = 10−5
√

π
2 corresponding to m = 1020.

3. ε = 10−10
√

π
2 corresponding to m = 1050.

Looking at Tables 1, 2 in order to do a comparison between the three methods,
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Table 2: The error of the method in the paper [17]

ε wε ‖wε − u‖
10−2

√
π
2 v1 = 0.929362 sin(x) + 3.7868× 10−17 sin(1020x) 0.0140196

10−5
√

π
2 0.939414 sin(x) + 9.2559× 10−9 sin(1020x) 0.00142200

10−10
√

π
2 0.940435 sin(x) + 3.1049× 10−12 sin(1050x) 0.000142403

we can see the error results in Table 1 are smaller than the errors in Table
2. In the same parameter regularization, the error in Table 1 converges to
zero more quickly than in Table 2 . This shows that our approach has a nice
regularizing effect and give a better approximation in comparison to many
previous results, such as [2, 3, 4, 5, 17, 15, 16].
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