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ABSENCE OF EIGENVALUES FOR
INTEGRO-DIFFERENTIAL OPERATORS

WITH PERIODIC COEFFICIENTS

Marius Marinel Stanescu, Igor Cialenco

Abstract

The absence of the point spectrum for some nonselfadjoint integro-
differential operators is investigated by applying perturbation theory
methods. The considered differential operators could be of any order
and are assumed to act in Lp(R+) or Lp(R) (1 ≤ p < ∞). Finally, as an
application of general results, some spectral properties of the perturbed
Hill operator are derived.

1 Introduction

The spectral theory of integro-differential operators plays an important role
in theory of neutrons scattering, plasma oscillations, quantum physics, me-
chanics and chaos behavior (see for instance classical works by J. Lehner and
G.M. Wing [15], E.A. Catchpole [5], D. Bohm and E. Grose [3], N.G. van
Kampen [20], K.M. Case [4], and recent survey with application to chaos be-
havior by J. McCaw and B.H.J. McKeller [16]). One of the central question
in spectral theory is to describe quantitatively the spectral components of a
given operator. Usually, the essential spectrum can be easily determined by
applying Weyl’s type theorems about stability of the essential spectrum (see
T. Kato [13]). However, this is not the case for other components of the spec-
trum. In case of nonselfadjoint operators an important spectral component is
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the point spectrum (the set of all eigenvalues). Two fundamental properties
related to point spectrum are: the absence and the finiteness of the point
spectrum. While these problems look similar, the methods developed for their
study are different. Some important results on the absence of eigenvalues
of differential operators of any order have been obtained by P. Cojuhari [9].
Also, P. Cojuhari and M.M. Stanescu [10], [19] studied the same problem for
integro-differential operators, with the unperturbed operator being a differen-
tial operator with constant coefficients. The absence of the point spectrum for
tridiagonal opeartors have been investigated by C.G. Kokologiannaki [14].

In this paper we will investigate the problem of absence of the point spec-
trum for a large class of integro-differential operators. These operators are
generally assumed to be non-selfadjoint, of any order, and act in one of the
spaces Lp(R+) or Lp(R), 1 ≤ p < ∞. Applying methods from perturbation
theory, we consider the original operator as a sum of a differential operator with
periodic coefficients (the unperturbed operator) and an integro-differential op-
erator (the perturbation). We establish sufficient conditions on the coefficients
and kernels of the perturbation that guarantee that the point spectrum of the
original operator is empty. The paper is organized as follows. In Section 2 we
state the problem and derive some auxiliary results, mainly describing explic-
itly the spectrum and the resolvent of the unperturbed operator by applying
Floquet theory. In Section 3 we prove the main result. We conclude the pa-
per with an application of developed theory to perturbed Hill operator, hat
represents an important and interesting result by itself.

The absence of the point spectrum depends on how fast the coefficients
and the kernels of the perturbation vanish at infinity. The polynomial decay,
with order of decay depending on the multiplicity of the corresponding Floquet
multipliers, together with subdiagonal property of the kernels (k(t, s) = 0, s <
t), will guarantee the absence of the eigenvalues of the perturbed operator. The
results agree with those particular cases established in [9], [10], [19], and the
conditions are in some sense necessary (see for instance [7]).

2 The problem and some auxiliary results

In the space Lp(R+) consider the differential operator D = i d
dx with the

domain of definition determined by the set of all functions u ∈ Lp(R+) which
are absolutely continuous on every bounded interval of the positive semi-axis
and the generalized derivative u′ belonging to Lp(R+).

Let H be an integro-differential operator of the form

H =
n∑

j=0

HjD
j , (2.1)
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where

(Hju)(t) = hj(t)u(t) +
∫

R+

kj(t, s)u(s)ds , j = 0, . . . , n ,

the functions hj(t) and the kernels kj(t, s), j = 0, . . . , n; t, s ∈ R+, are
complex-valued functions and smooth as it will be necessary. We consider
the operator H on its maximal domain, i.e. on the set of all functions
u ∈ Wn

p (R+), 1 ≤ p < +∞, such that (HjD
j)(u) ∈ Wn

p (R+), j = 0, . . . , n,
where Wn

p (R+) denotes the Sobolev space of order n over R+.
Assume that the functions hj have the representation hj(t) = aj(t) + bj(t)

for t ∈ R+, j = 0, . . . , n, such that aj are periodic functions of period T ,
aj(t + T ) = aj(t), and suppose that an(t) ≡ 1. The operator H will be

considered as a perturbation of the differential operator A =
n∑

j=0

AjD
j by the

operator B =
n∑

j=0

BjD
j , where Aj and Bj , j = 0, . . . , n, are operators acting

in Lp(R+) and defined by

(Aju)(t) = aj(t)u(t) , (Bju)(t) = bj(t)u(t) +
∫

R+

kj(t, s)u(s)ds.

Under above notations, H = A+B, where A is a differential operator with
periodic coefficients and B is an integro-differential operator.

The problem is to find sufficient conditions on the coefficients bj and ker-
nels kj , j = 1, . . . , n, that guarantee that the point spectrum (the set of all
eigenvalues, including those on the continuous spectrum) of the perturbed op-
erator H is absent. To apply perturbation methods from operator theory, we
need to have at hand a manageable representation of the resolvent function
(A− λI)−1 of the unperturbed operator A.

The spectral properties of the operator A have been investigated by many
authors (see for instance [17, 18] and the references therein). In [18] the
operator A is considered in the space L2(R), while in [17] in Lp(R), 1 ≤ p ≤
∞. In these papers it is shown that the operator A has a purely continuous
spectrum which coincides with the set of those values λ (the zone of relative
stability) for which the equation Au = λu has a non trivial solution, bounded
on the whole real line. Although the spectrum of the operator H0 is well-known
(see for instance [17, 18]), we will present here a different method for describing
explicitly the resolvent of A, which relies on Floquet-Liapunov theory for linear
differential equations with periodic coefficients (see for instance [12, 21]).

Without loss of generality we can assume that T = 1.
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Let us consider the equation

Aϕ = λϕ , (2.2)

where λ is a complex number, or in vector form

dx

dt
= A(t, λ)x , (2.3)

where

A(t, λ) =




0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1

λ−A0 −A1 −A2 . . . −An−2 −An−1




,

and x = (u, Du, . . . , Dn−1u)t.
Denote by U(t) (= U(t, λ)) the matriciant of the equation (2.3), i.e. the

matrix which satisfies the following system of differential equations

dU(t)
dt

= A(t, λ)U(t), U(0) = En ,

where En is n× n identity matrix. The matrix U(1) is called the monodromy
matrix of the equation (2.3) and the eigenvalues ρ1(λ), . . . , ρm(λ) of the matrix
U(1) are called the multipliers (Floquet multipliers). Also, we will say that
U(1) is the monodromy matrix and ρ1(λ), . . . , ρm(λ) are multipliers of the
operator A− λI.

Consider the matrix Γ = ln U(1), where Γ is one of the solutions of equation
eY = U(1). Note that Γ exists since the monodromy matrix is nonsingular.
Hence, the matrix U(t) admits the Floquet representation

U(t) = F (t)etΓ, (2.4)

where F (t) is a nonsingular, differentiable matrix of period T = 1. The change
of variables x = F (t)y in (2.3) gives

dy

dt
= Γy, (2.5)

where Γ depends on λ only. The solution of the Cauchy equation (2.3) with
initial condition y(0) = y0 has the form

y(t) = etΓy0 . (2.6)
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Let us describe explicitly the structure of matrix exp(Γt). For this, we
write the matrix Γ in its Jordan canonical form, Γ = SJS−1, where J =
diag[J(1), . . . , J(m)], and J(α), α = 1, . . . , m, are the Jordan canonical blocks

J(α) =




λα 1 0 . . . 0
0 λα 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . λα




.

Thus,
exp(Jt) = diag[t expJ(1), . . . , t exp J(m)] , (2.7)

with

exp (tJ(α)) = exp(tλα)




1 t . . . tpα−1

(pα−1)!

0 1 . . . tpα−2

(pα−2)!

. . . . . . . . . . . .
0 0 . . . 1


 ,

where pα is the dimension of the Jordan block J(α), α = 1, . . . , m.
From (2.5)-(2.7), we conclude that the components of the general solution

y(t) of (2.5) are linear combinations of exp(λ1t), . . . , exp(λmt) with polynomial
coefficients in t.

Note that if Re(λ) > 0, then |tk exp(tλ)| → ∞, for k = 1, 2, . . . , and if
Re(λ) = 0, then |tketλ| → ∞ for k = 1, 2, . . . and |tketλ| → 1 for k = 0. By
spectral mapping theorem, for each eigenvalue λα, α = 1, . . . , m, of the matrix
Γ the corresponding multiplier ρα = exp(λα), α = 1, . . . , m, is in interior,
exterior or on the unit circle if Re(λα) < 0, Re(λα) > 0, or Re(λα) = 0.

Remark 2.1. The solution y(t) of equation (2.5) belongs to Ln
p (R+) if the

coefficients of the terms exp(tλα) with Reλα ≥ 0 are zero. Thus, if we have
multipliers inside the unit circle (and only in this case), then the equations
(2.3) has a nontrivial solutions in the space Lp(R+), and the inverse operator
(A− λI)−1 does not exist.

Suppose that λ is such that all corresponding multipliers satisfy the condi-
tion |ρ| ≥ 1. Then the inverse operator (possible unbounded) of A−λI exists,
and to describe its structure, we consider the equation Au − λu = ν, where
ν is an arbitrary element from Ran(A− λI). Similarly to (2.3), we write the
last equation in its vector-form

dx

dt
= A(t, λ)x + f, (2.8)
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where f = (0, . . . , ν)t. The change of variable x = F (t)y in equation (2.8)
implies

dy

dt
= Γy + F−1(t)f. (2.9)

The vector-valued function

y(t) = −
∞∫

t

exp(Γ(t− s))F−1(s)f(s)ds

is the solution of nonhomogeneous equation (2.9), and hence the solution of
equation (2.8) has the form

x(t) = −F (t)

∞∫

t

exp(Γ(t− s))F−1(s)f(s)ds. (2.10)

Taking into account the relations (2.4)-(2.7) and the representation (2.10)
we get

(
(A− λI)−1ν

)
(t) =

m∑
α=1

pα∑

k=0

gαk(t)

∞∫

t

(t− s)k exp(λα(t− s))hαk(s)ν(s)ds,

(2.11)
where gαk and hαk are some continuous and periodic functions, with period
T = 1.

Remark 2.2. If the unperturbed operator A acts in Lp(R), then λ ∈ σ(A) if
and only if there exists at least one multiplier which belongs on the unit circle
T = {z ∈ C : |z| = 1}. Moreover, the point spectrum of A is absent (for
details, see for instance [6]).

3 The main result

In this section will present some general results about the absence of the
point spectrum of the perturbed operator H = A + B. A natural condition,
typical for perturbation methods, is to assume that the perturbation B is
subordinated, in some sense, to the unperturbed operator A. In what follows,
we assume that bn(t) = 0 and kn(t, s) = 0, for every t, s ∈ R+.

By Weyl’s type theorem, if the perturbation B is a compact operator,
then the essential spectrum of operators H and A coincide. This is true, for
example, if the coefficients bj ’s decay fast enough to zero, as t → ∞, and
the kernels kj ’s are completely continuous. However, even if the unperturbed
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operator A has no eigenvalues, the operator H can have infinitely many eigen-
values, including on continuous spectrum. Some more restrictive conditions
on the coefficients and kernels will imply the absence of point spectrum of H.

The following result holds true.

Theorem 3.1. Let ρα = ρα(λ), α = 1, . . . , m, be the Floquet multipliers
corresponding to the operator A−λI such that |ρα| ≥ 1, α = 1, . . . ,m. Assume
that l is the maximum order of canonical Jordan blocks corresponding to unit
multipliers |ρα| = 1. If there exists δ > l such that

(1 + t)δbj(t) ∈ L∞(R+), j = 0, . . . , n ,

the integral operators with kernels

(1 + t)δkj(t, s) , δ > l, j = 0, . . . , n ,

are bounded in Lp(R+), and

kj(t, s) = 0, t > s, j = 0, . . . , n ,

then λ is not an eigenvalue of the perturbed operator H.

Proof. To simplify the presentation of the proof, we will introduce several
auxiliary notations. Denote by C the Banach space obtained as the direct sum
of n copies of Lp(R+), i.e. C = ⊕n−1

j=0 Lp(R+). We define the norm in C as

follows ‖ψ‖C =
n−1∑
j=0

‖ψj‖Lp(R+), with ψ := (ψj)n−1
j=0 ∈ C.

Let S de the operator acting on Wn
p (R+) with values in C, and defined by

Su = (u,Du, . . . , Dn−1u), u ∈ Wn
p (R+) .

We also consider the following family of operators

(Tju)(t) = bj(t)u(t) +
∫

R+

kj(t, s)u(s)ds, t ∈ R+, j = 0, . . . , n− 1 ,

which, obviously, are bounded in Lp(R+). We associate to this family the
operator T acting in the space C and defined by

Tψ =
n−1∑

j=0

Tjψj , ψ = (ψj)n−1
j=0 ∈ C .

Note that B = TS and H = A + TS.
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For every τ ≥ 0, we define

(Lτx)(t) = (1 + t)τx(t), t ∈ R+ ,

and for every p ∈ [1,∞), we consider the following family of spaces

Lp,τ (R+) := {u ∈ Lp(R+) | Lτu ∈ Lp(R+)},

with corresponding norm ‖u‖p,τ := ‖L−1
τ u‖.

Suppose by the contrary, that λ is an eigenvalue of H, i.e. there exists an
element u ∈ Lp(R+), u 6= 0, such that

Hu = λu . (3.1)

Taking into account that H = A + TS, and since λ cannot be an eigenvalue
of A, the equation (3.1) implies

Su + S(A− λI)−1TSu = 0 .

We note that Su 6= 0, since otherwise the equation (3.1) would imply that
Au = λu with u 6= 0, that is a contradiction. In what follows we denote
x = Su. The equation (3.1), written in vector form, implies

dx

dt
= A(t, λ)x + B(t)x, (3.2)

where

B(t) =




0 0 . . . 0
0 0 . . . .

. . . . . . . . . . . .
0 0 . . . .

−B0 −B1 . . . −Bn−1




, x =




u
Du
. . .

Dn−1u


 .

The change of variables x = F (t)y in (3.2) implies

dy

dt
= Γy + F−1(t)B(t)y

and consequently, we deduce

x(t) = −F (t)

∞∫

t

exp(Γ(t− s))F−1(s)B(s)x(s)ds. (3.3)
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Note that the vector’s components from the right hand side of (3.3) are the
sums of the following quantities

(Kαxj)(t) = q(t)

∞∫

t

(t− s)lα−1 exp(λα(t− s))p(s)Bn−j+1(s)xj(s)ds ,

where p(t) and q(t) are continuous periodic functions of period 1, lα takes one
of the values 1, . . . , pα, and α = 1, . . . ,m, j = 0, . . . , n− 1.

To complete the proof will use the following result.
Suppose that operators A and B act in a Banach space D, and assume

that:

(i) σp(A) = ∅;
(ii) B = TS, with S acting from D into C, and T acting from C into D,

provided that Dom(S) ⊃ Dom(T );

(iii) There exists a family of operators Lτ , τ ≥ 0, on C, such that for every
τ ≥ 0 the operator Lτ is one-to-one, i.e. Ker(Lτ ) = 0. In addition,
L0 = IC (IC is the identity operator on the space C).

(iv) There exists τ ≥ 0 such that, if ψ ∈ C and Tψ ∈ Ran(A − λI), then
ψ ∈ Cτ , S(A− λI)−1Tψ ∈ Cτ , and

‖S(A− λI)−1Tψ‖C,τ ≤ a‖ψ‖C,τ , 0 < a < 1 ,

where |u|τ := ‖Lτu‖C for u ∈ Dτ := Dom(Lτ );

(v) For every ψ ∈ Cτ such that Tψ ∈ Ran(A− λI), the following inequality
holds true

‖S(A− λI)−1Tψ‖C,τ ≤ c‖ψ‖C,τ ′ ,

where τ > τ ′ ≥ 0 and c is a positive constant independent of ψ.

Conditions (i)-(v) imply that λ is not an eigenvalue of the perturbed operator
A + B. For detailed proof see for instance [9].

Following the same notations, we observe that our operators satisfy condi-
tions (i)-(iii). To check the conditions (iv) and (v) we define the operator

(R(λ)u)(t) =

∞∫

t

exp(λ(t− s))u(s)ds, 0 < t < ∞ .

For all τ ≥ 0 and Re(λ) > 0, the operator L−1
τ R(λ)Lτ is bounded in Lp(R+),

since ‖L−1
τ R(λ)Lτ‖ ≤ (Re(λ))−1 (see for instance Lemma 1 and 2 from [8]).
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Moreover, for all ε > 0 we have a(τ) = ‖L−1
τ R(λ)Lτ+ε‖ → 0, when τ → ∞.

If Reλ = 0, the operator L−1
τ R(λ)Lτ+1 is bounded in Lp(R+), given that

‖L−1
τ R(λ)Lτ+1‖ ≤ 2. Note that

(Rm(λ)u)(t) = (−1)m−1

∞∫

t

(t− s)m−1 exp(λ(t− s))u(s)ds .

Let us estimate the norm ‖(Kαxk)(t)‖p,τ = ‖L−1
τ (Kαxk)(t)‖. For Re(λα) > 0,

using the assumptions on the functions bj and kernels kj , j = 0, . . . , n, we
obtain the following estimate

‖(Kαxk)(t)‖p,τ = ca(τ)‖xk‖p,τ . (3.4)

For Re(λα) = 0 the following equalities hold true

(I − iD)R(1)x = x,

(I − iD)R(λ)x = x + (1− λ)R(λ)x ,

where x ∈ Dom(R(λ)). The above, together with initial assumptions, implies
(3.4). Hence, (3.4) is satisfied for every λα. Consequently, we get

‖x‖C,τ ≤ ca(τ)‖x‖C,τ . (3.5)

Similarly to (3.5), for Re(λα) ≥ 0 we obtain

‖(Kαxk)(t)‖p,τ = c(τ)‖xk‖p,τ ′ , (3.6)

and thus
‖x‖C,τ ≤ c(τ)‖x‖C,τ ′ (3.7)

where c is a constant, and τ > τ ′ ≥ 0.
Let τ ′ = τ − ε, ε > 0. From estimate (3.7), it follows that ‖x‖C,ε < ∞.

Hence, again from (3.7), we get ‖x‖C,2ε < ∞ and, in general ‖x‖C,nε < ∞.
Since ε can be chosen arbitrarily, we have that ‖x‖C,ε < ∞, for every τ ≥ 0.
However, as we mentioned above, x 6= 0, and by (3.6), we get 1 ≤ c(τ). This
is a contradiction, since c(τ) → 0, as τ →∞. The proof is complete.

We conclude this section with the case of the whole real line. Using Remark
2.2, by similar arguments as in Theorem 3.1, one can prove the following

Theorem 3.2. Assume that the operator H acts in the space Lp(R), and
ρα = ρα(λ), α = 1, . . . ,m, are all unimodular multipliers. Suppose that l is the
maximum value for the orders of canonical Jordan blocks corresponding to the
multipliers ρα, α = 1, . . . , m. If (1+|t|)δbj(t) ∈ L∞,δ(R+), δ > l, j = 0, . . . , n,
and the kernels kj(t, s), j = 0, . . . , n, are such that kj(t, s) = 0 for |t| > |s|,
and the integral operators with kernels (1 + |t|)δkj(t, s), δ > l, j = 0, . . . , n,
are bounded in the space Lp(R), then λ is not an eigenvalue of the operator
H.
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4 Application

In this section we will apply the general results from Section 3 to perturbed
Hill operator.

In the space Lp(R+), 1 ≤ p < ∞, we consider the following integro-
differential operator

(Hu)(t) = (D2u)(t) + p(t)u(t) + b1(t)(Du)(t) + b2(t)u(t) +

+

∞∫

0

k1(t, s)(Du)(s)ds +

∞∫

0

k2(t, s)u(s)ds ,

0 < t < ∞, u ∈ W 2
p (R+),

where p(t + 1) = p(t), bj(t) ∈ L∞(R+), j = 1, 2, and kernels kj(t, s) ∈
L∞(R+ × R+), j = 1, 2.

The unperturbed operator

(Au)(t) = (D2u)(t) + p(t)u(t)

is Hill operator (see for example [11]). It is known (see for instance [18] or [11])
that the multipliers corresponding to λ ∈ σ(A) are simple and of modulus 1.
Hence, by Theorem 3.1, we have the following result.

Proposition 4.1. If

(1 + t)δbj(t) ∈ L∞,δ(R+), δ > 1, j = 1, 2;

the kernels kj(t, s), j = 1, 2, are such that kj(t, s) = 0 for t > s; the integral
operators with kernels

(1 + t)δkj(t, s), δ > 1; j = 1, 2; t, s ∈ R+,

are bounded on the space Lp(R+), then the inner point of the continuous spec-
trum of the operator H is not an eigenvalue.

If λ is an end point of the continuous spectrum of H, then there exists only
one multiplier equal to 1 or −1 and it has multiplicity two (see [18] or [11]).
Thus, based on Theorem 1 we obtain the following statement.

Proposition 4.2. If (1 + t)δbj(t) ∈ L∞(R+), δ > 2, j = 1, 2; the kernels
kj(t, s), j = 1, 2, are such that kj(t, s) = 0, t > s; the integral operators
with kernels (1 + t)δkj(t, s), δ > 2; j = 1, 2; t, s ∈ R+, are bounded on the
space Lp(R+), then the end points of the continuous spectrum of H cannot be
eigenvalues.

Similar results can be proved for the case when operator H is considered on
the whole real line R. Some particular cases of integro-differential operators
(second and forth order) are discussed in [1] and [2].
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(Timişoara, 1992), Oper. Theory Adv. Appl., vol. 61, Birkhäuser, 1993,
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