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WAVELET PACKETS ON LOCALLY
COMPACT ABELIAN GROUPS

Firdous Ahmad Shah, Abdul Wahid

Abstract

The objective of this paper is to construct wavelet packets associ-
ated with multiresolution analysis on locally compact Abelian groups.
Moreover, from the collection of dilations and translations of the wavelet
packets, we characterize the subcollections which form an orthonormal
basis for L2(G).

1 Introduction

The classic multiresolution analysis (MRA) as introduced by Mallat in [24],
is simply an increasing sequence of closed subspaces {Vj}j∈Z of L2(R) such that
∩j∈ZVj = {0} , ∪j∈ZVj is dense in L2(R), and which satisfies f(x) ∈ Vj if and
only if f(2x) ∈ Vj+1. Furthermore, there exists an element ϕ ∈ V0 such that
the collection of integer translates of a function ϕ, {ϕ(x− k) : k ∈ Z} repre-
sents a complete orthonormal system for V0. The function ϕ is called the
scaling function or the father wavelet. In recent years, the notion of MRA
and wavelets have been generalized in many different settings [5, 6, 12, 19,
24]. In his papers, Lang [13–15] constructed compactly supported orthogonal
wavelets on the locally compact Cantor dyadic group C by following proce-
dures of Mallat [18] and Daubechies [6] via scaling fillers and these wavelets
turn out to be certain lacunary Walsh series on the real line. Subsequently,
Farkov [7] extended the results of Lang in the wavelet analysis on the Cantor
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dyadic group C to the locally compact Abelian group G which is defined for
an integer p ≥ 2 and coincides with C when p = 2. Recently, Protasov and
Farkov [20] have provided the construction of the dyadic compactly supported
wavelets in L2(R+) and studied compactly supported non-trivial solutions of
the refinement equations generating multiresolution analysis in L2(R+). More
results in this direction can be found in [1, 8, 9] and the references therein.

For a given multiresolution analysis and the corresponding orthonormal
wavelet basis of L2(R), wavelet packets were constructed by Coifman, Meyer
and Wickerhauser [4]. This construction is an important generalization of
wavelet analysis. Wavelet packet functions consist of a rich family of build-
ing block functions and are localized in time, but offer more flexibility than
wavelets in representing different kinds of signals. The power of wavelet pack-
ets lies in the fact that we have much more freedom in selecting which basis
functions are to be used to represent the given function. The above cited
work is a good source of the basis selection criteria and applications to image
processing. The concept of wavelet packet was subsequently generalized to Rd

by taking tensor products, whereas Shen [23] formulated non-tensor products
wavelets in L2(Rs). Other notable generalizations are the non-orthogonal ver-
sion of wavelet packets (see Chui and Li [3]) and the wavelet frame packets
(see Chen [2]) on R for dilation 2. Long and Chen [16, 17] investigated the
orthogonal, biorthogonal and frame packets on Rd for dyadic dilation.

The main tool in obtaining wavelet packets is the so-called splitting trick,
which is a well known technique in constructing wavelet bases. So, the main
purpose of this paper is to give a construction of wavelet packets associated
with p-multiresolution analysis on locally compact Abelian groups using the
splitting trick for wavelets.

This paper is organized as follows: In Section 2, we state some basic pre-
liminaries, notations and definitions including the Walsh-Fourier transform,
Walsh functions and polynomials. In Section 3, we establish necessary and
sufficient conditions for shifts of a function ϕ ∈ L2(G) to be an orthonormal
system for L2(G) (splitting lemma). In Theorem 3.4, we prove that the in-
teger translates of the basic wavelet packets form an orthonormal basis for
L2(G). Moreover, from the collection of dilations and translations of the
wavelet packets, we characterize the sub-collections which form orthonormal
basis for L2(G) in Theorem 3.7.

2 Preliminaries
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All the definitions and properties in this section can be found in [7, 10, 11, 22].
Let p be a fixed natural number greater than 1. Let G be a locally compact
Abelian group of the form

x = (xj) = (..., 0, 0, xk, xk+1, xk+2, ...),

where xj ∈ {0, 1, ..., p− 1} for j ∈ Z and xj = 0 for j < k = k(x). The group
operation on G is denoted by ⊕ and is defined as coordinatewise addition
modulo p. The topology on G is defined by complete system of neighbourhoods
of zero as

U` =
{
(xj) ∈ G : xj = 0 for j ≤ `

}
, ` ∈ Z.

Clearly each neighbourhood U` is a subgroup of G, U`+1 ⊂ U` for ` ∈ Z and⋂
U` = {0}. Set U = U0 and denote by ª the operation inverse to ⊕.

For 1 ≤ q ≤ ∞, we denote Lq(G), as the Lebesgue spaces of Borel’s
subsets of G defined by the Haar measure µ with µ(U0) = µ(U) = 1. Let G∗

be the dual group of G consisting of all sequences of the form

ξ = (ξj) = (..., 0, 0, ξk, ξk+1, ξk+2, ...),

where ξj ∈ {0, 1, ..., p− 1} for j ∈ Z and ξj = 0 for j < k = k(x). The
operations addition modulo p, neighbourhoods U∗

` and the Haar measure µ∗

for G∗ are introduced as above for G. Suppose that H is a discrete subgroup
of G of the form

H =
{
(xj) ∈ G : xj = 0 for j > 0

}
.

Then it is easy to verify that the quotient group H/A(H) contains p elements
and the annihilator H⊥ of H consists of all sequences {ξj} of G∗ which satisfy
ξj = 0 for j > 0, where A is an automorphism of G (see [10]). Therefore, for
x ∈ G and ξ ∈ G∗, we have

χ(x, ξ) = exp


2πi

p

∞∑

j=1

x−jξj−1


 . (2.1)

Let R+ = [0,∞). We define a map λ : G → R+ by

λ(x) =
∑

j∈Z
xjp

−j , x ∈ G.

Note that λ takes the subgroup U onto the interval [0, 1] and defines an iso-
morphism of the measure spaces (G,µ) and (R+, ν), where ν is the Lebesgue
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measure on R+. Also, the image of H under λ is the set of non-negative inte-
gers: λ(H) = Z+. Thus, for every α ∈ Z+, let h[α] denote the element of H
such that λ(h[α]) = α. In a similar fashion, we can define a map λ∗ : G∗ → R+,
the automorphism B ∈ AutG∗, the subgroup U∗ and the element ξ[α] of H⊥

as we did for G. We note that χ(Ax, ξ) = χ(x,Bξ) for all x ∈ G, ξ ∈ G∗.

We now, define the generalized Walsh functions {Wα} for the group G as

Wα(x) = χ(x, ξ[α]), α ∈ Z+, x ∈ G.

and for G∗ by

W ∗
α(ξ) = χ(h[α], ξ), α ∈ Z+, ξ ∈ G∗.

It is shown in [11] that the systems {Wα}α∈Z+ and {W ∗
α}α∈Z+ are orthonormal

basis of L2(U) and L2(U∗) respectively.

The Walsh-Fourier transform of a function f ∈ L
1
(G) is defined by

f̂(ξ) =
∫

G

f(x)χ(x, ξ) dµ(x),

where χ(x, ξ) is given by (2.1). The properties of the Walsh-Fourier transform
are quite similar to those of the classic Fourier transform (see [11, 22]). In
particular, if f ∈ L

2
(G), then f̂ ∈ L

2
(G) and

‖f̂‖L2 (G) = ‖f‖L2(G).

As in [7, 8] we note, that for any function ϕ ∈ L2(G), we have
∫

G

ϕ(x)ϕ(xª h) dµ(x) =
∫

G∗
|ϕ̂(ξ)|2 χ(h, ξ) dµ∗(ξ)

=
∑

h∗∈H⊥

∫

U∗⊕h∗
|ϕ̂(ξ ª h∗)|2 χ(h, ξ ª h∗) dµ∗(ξ)

=
∫

U∗
χ(h, ξ)

∑

h∗∈H⊥

|ϕ̂(ξ ª h∗)|2 dµ∗(ξ).

Therefore, the necessary and sufficient condition for the system {ϕ(.ª h) : h ∈ H}
to be orthonormal in L2(G) is that
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∑

h∗∈H⊥

∣∣∣ϕ̂(ξ ª h∗)
∣∣∣
2

= 1 a.e. ξ ∈ G∗. (2.2)

Now, we recall the definition of multiresolution analysis in L2(G) and some of
its properties.

Definition 2.1. A sequence {Vj}j∈Z of closed subspaces of L2(G) is called a
multiresolution analysis of L2(G) if the following conditions are satisfied:

(i) Vj ⊂ Vj+1 for all j ∈ Z,

(ii)
⋃

j∈Z
Vj is dense in L2(G) and

⋂
j∈Z

Vj = {0},

(iii) f ∈ Vj if and only if f(A.) ∈ Vj+1 for all j ∈ Z,

(iv) there exists a function ϕ in L2(G), called the scaling function, such that
the system of functions {ϕ(.ª h) : h ∈ H} forms an orthonormal basis for V0.

Given a multiresolution analysis {Vj}j∈Z, we define another sequence
{Wj}j∈Z of closed subspaces of L2(G) by Wj = Vj+1 ª Vj , j ∈ Z. These
subspaces inherit the scaling property of {Vj}, namely

f ∈ Wj if and only if f(A.) ∈ Wj+1. (2.3)

Moreover, the subspaces {Wj} are mutually orthogonal, and we have the fol-
lowing orthogonal decompositions:

L2(G) =
⊕

j∈Z
Wj (2.4)

= V0 ⊕
( ⊕

j≥0

Wj

)
. (2.5)

A set of functions {ψ1, ψ2, ..., ψp−1} in L2(G) is said to be a set of basic wavelets
associated with the multiresolution analysis if the collection {ψ`(.ª h) : 1 ≤ ` ≤ p− 1, h ∈ H}
forms an orthonormal basis for W0.

Now, in view of (2.3) and (2.4), it is clear that if {ψ1, ψ2, ..., ψp−1} is a
basic set of wavelets, then

{
pj/2ψ`(Aj .ª h) : j ∈ Z, h ∈ H, 1 ≤ ` ≤ p− 1

}
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forms an orthonormal basis for L2(G) (see [7, 8, 24]). If we take p = 2, then
only one wavelet ψ can be obtained and the system

{
2j/2ψ(Aj .ª h) : j ∈ Z, h ∈ H

}
forms an orthonormal basis for L2(G) (see [15]).

We denote ψ0 = ϕ, the scaling function, and consider p− 1 functions ψ`, 1 ≤
` ≤ p − 1 in W0 as possible candidates for wavelets. Since p−1ψ`(A−1.) ∈
V−1 ⊂ V0, it follows from property (iv) of MRA that for each `, 0 ≤ ` ≤ p−1,
there exists a sequence

{
a`

α : α ∈ Z+
}

with
∑

α∈Z+ |a`
α|2 < ∞ such that

p−1ψ`

(
A−1x

)
=

∑

α∈Z+

a`
αϕ(xª h[α]). (2.6)

Taking Walsh- Fourier transform, we get

ψ̂` (Aξ) = m`(ξ) ϕ̂(ξ), (2.7)

where
m`(ξ) =

∑

α∈Z+

a`
α W ∗

α(ξ). (2.8)

The functions m`, 1 ≤ ` ≤ p− 1, are in L2(G) such that

M(ξ) =
(
m`(ξ + B−1ξ[k])

)p−1

`,k=0

is an unitary matrix (see [21, 24]).

3 Main Results

The following lemma give a necessary and sufficient condition for shifts of a
function ϕ ∈ L2(G) to be an orthonormal system in L2(G).

Lemma 3.1.(The splitting lemma). Let ϕ ∈ L2(G) such that the system{
p1/2ϕ(Axª h)

}
h∈H

is orthonormal. Let V be its closed linear span. Also,
let ψ` and m` be the functions defined by (2.6) and (2.8), respectively. Then

{ψ`(xª h) : 0 ≤ ` ≤ p− 1, h ∈ H, x ∈ G}

is an orthonormal system if and only if

∑

h∗∈H⊥

m`(ξ ⊕B−1h∗)mr(ξ ⊕B−1h∗) = δ`r, , 0 ≤ `, r ≤ p− 1. (3.1)
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Moreover, {ψ`(xª h) : 0 ≤ ` ≤ p− 1, h ∈ H, x ∈ G} is an orthonormal basis
of V whenever it is orthonormal.

Proof. For 0 ≤ ` ≤ p− 1 and h ∈ H, we have

〈
ψ`(x), ψr(xª h)

〉
=

〈(
ψ`(x)

)∧
,
(
ψr(xª h)

)∧〉

=
∫

G∗
ψ̂`(ξ) ψ̂r(ξ)W ∗

α(ξ) dµ∗(ξ)

=
∫

G∗
m`(B−1ξ)ϕ̂(B−1ξ)mr(B−1ξ)ϕ̂(B−1ξ)W ∗

α(ξ)dµ∗(ξ)

=
∫

U∗⊕h∗

∑

h∗∈H⊥

m`(B−1(ξ ⊕ h∗)) mr(B−1(ξ ⊕ h∗))

× ϕ̂(B−1(ξ ⊕ h∗)) ϕ̂(B−1(ξ ⊕ h∗)) W ∗
α(ξ) dµ∗(ξ)

=
∑

h∗∈H⊥

m`(B−1ξ ⊕B−1h∗) mr(B−1ξ ⊕B−1h∗)

×
∫

U∗⊕h∗

∑

h∗∈H⊥

ϕ̂
(
B−1(ξ⊕h∗)

)
ϕ̂
(
B−1(ξ ⊕ h∗)

)
W ∗

α(ξ)dµ∗(ξ)

=
∑

h∗∈H⊥

m`(B−1ξ ⊕B−1h∗) mr(B−1ξ ⊕B−1h∗)

×
∫

U∗

∑

t∈H⊥

∣∣ϕ̂(
B−1(ξ ⊕ k)⊕ t

)∣∣2 W ∗
α(ξ)dµ∗(ξ)

=
∫

U∗


 ∑

h∗∈H⊥

m`(B−1ξ ⊕B−1h∗)mr(B−1ξ ⊕B−1h∗)




× W ∗
α(ξ)dµ∗(ξ).

(
by (2.2)

)

Therefore,

〈
ψ`(x), ψr(xª h)

〉
= δ`rδ0h

⇔
∑

h∗∈H⊥

m`(B−1ξ ⊕B−1h∗)mr(B−1ξ ⊕B−1h∗) = δ`r, a.e. ξ ∈ G∗
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⇔
∑

h∗∈H⊥

m`(ξ ⊕B−1h∗)mr(ξ ⊕B−1h∗) = δ`r, a.e. ξ ∈ G∗.

We have proved the first part of the lemma.

We, now show the orthonormality of the system

F = {ψ`(xª h) : 0 ≤ ` ≤ p− 1, h ∈ H, x ∈ G} .

Let F is an orthonormal system, then we want to show that this system is an
orthonormal basis for V . Let f ∈ V , so there exists

{
a`

α

}p−1

`=0,α∈Z+ ∈ `2(Z+)
such that

f(x) =
∑

α∈Z+

a`
α p1/2ϕ(Axª h[α]).

Assume that f ⊥ ψ`(x ª h), for all h ∈ H, x ∈ G, 0 ≤ ` ≤ p − 1, then we
claim that f = 0. For all `, α such that 0 ≤ ` ≤ p− 1, α ∈ Z+, we have

0 =
〈
ψ`(xª h), f(x)

〉

=
〈
ψ`(xª h),

∑

α∈Z+

a`
α p1/2ϕ(Axª h[α])

〉

=

〈
(ψ`(xª h))∧ ,

( ∑

α∈Z+

a`
α p1/2ϕ(Axª h[α])

)∧〉

=
∫

G∗
ψ̂`(ξ)W ∗

α(ξ)
∑

α∈Z+

a`
α p−1/2ϕ̂(B−1ξ)W ∗

α(B−1ξ)dµ∗(ξ)

= p−1/2

∫

G∗
m`(B−1ξ)ϕ̂(B−1ξ) W ∗

α(ξ)

×
∑

α∈Z+

a`
α ϕ̂(B−1ξ)W ∗

α(B−1ξ)dµ∗(ξ)

= p1/2

∫

G∗
m`(ξ)ϕ̂(ξ)W ∗

α(ξ)
∑

α∈Z+

a`
α ϕ̂(ξ) W ∗

α(Bξ)dµ∗(ξ)

= p1/2
∑

α∈Z+

a`
α m`(ξ)W ∗

α(ξ)
∑

h∗∈H⊥

∫

U∗⊕h∗
|ϕ̂(ξ)|2 W ∗

α(Bξ)dµ∗(ξ)
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= p1/2
∑

α∈Z+

a`
α m`(ξ)W ∗

α(ξ)
∫

U∗

∑

h∗∈H⊥

|ϕ̂(ξ ª h∗)|2 W ∗
α(Bξ)dµ∗(ξ)

= p1/2

∫

U∗

( ∑

α∈Z+

a`
α m`(ξ)W ∗

α(ξ)

)
W ∗

α(Bξ)dµ∗(ξ).
(
by (2.2)

)

Since
{
p1/2W ∗

α(Bξ) : α ∈ Z+
}

is an orthonormal basis for L
2
(U∗), the above

equation give

∑

α∈Z+

a`
α m`(ξ)W ∗

α(ξ) = 0, a.e. for ` = 1, ..., p− 1.

Now for ` = 1, ..., p− 1, we have

A`(ξ) =
∑

α∈Z+

a`
α W ∗

α(ξ). (3.2)

So we have

A`(ξ) m`(ξ) = 0, ` = 1, ..., p− 1. (3.3)

Equation (3.1) is equivalent to saying that for ` = 1, ..., p−1 and for a.e. ξ ∈ G∗,
the functions {m`} are mutually orthogonal and each has norm 1. Equation
(3.3) says that the vector

{
A`(ξ) : ` = 1, ..., p− 1, ξ ∈ G∗

}
(3.4)

is orthogonal to each member of the above orthonormal basis of C+p

. Hence the
vector in the expression (3.4) is zero. Inparticular, A`(ξ) = 0 for ` = 1, ..., p−1.
That is, a`

α = 0, ` = 1, ..., p− 1, α ∈ Z+. Therefore, f = 0.

Using this splitting lemma, one can split an arbitrary Hilbert space into
mutually orthogonal subspaces.

Corollary 3.2. Let {Eα : α ∈ Z+} be an orthonormal basis of a separable
Hilbert space H, and m`, 0 ≤ ` ≤ p− 1, be as in Lemma 3.1 satisfying (3.1).
Define

F `
α =

∑

α∈Z+

p1/2aα−p`Eα, α ∈ Z+, 0 ≤ ` ≤ p− 1
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then
{
F `

α : α ∈ Z+, 0 ≤ ` ≤ p− 1
}

is an orthonormal basis for its closed
linear span H` and H =

⊕p−1
`=0 H`.

Proof. Let ϕ ∈ L2(G) be such that {ϕ(xª h) : h ∈ H, x ∈ G} is an orthonor-
mal system. Let V = span

{
p1/2ϕ(Axª h) : h ∈ H, x ∈ G

}
. Define a linear

operator T from the Hilbert space H into V by T (p1/2ϕ(Axª h)) = Eα. Let
ψ` be as in (2.6). Then, T (p1/2ϕ(Ax ª h)) = F `

α. The corollary now follows
from the splitting lemma.

Now, if ϕ is the scaling function associated with given MRA. Then there
exists the function m0 such that

ϕ̂(ξ) = m0(B−1ξ)ϕ̂(B−1ξ)

where m0(ξ) =
∑

α∈Z+

aαW ∗
α(ξ),

∑

α∈Z+

|αk|2 < +∞.

Applying the splitting lemma to the space V1, we get the functions ω`,
0 ≤ ` ≤ p− 1, where

ω̂`(ξ) = m`(B−1ξ)ϕ̂(B−1ξ) (3.5)

such that {ω`(xª h) : 0 ≤ ` ≤ p− 1, h ∈ H, x ∈ G} forms an orthonormal ba-
sis for V1. Observe that ω0 = ϕ, the scaling function and ω`, 1 ≤ ` ≤ p − 1,
are the basic p-wavelets.

We now define ωn for each integer n ≥ 0. Suppose that s ≥ 0, ωs already
defined. Then define ωs+pr, 0 ≤ s ≤ p− 1, by

ωs+pr(x) = p
∑

α∈Z+

as
α ωr(Axª h[α]). (3.6)

Note that (3.6) defines ωn for all n ≥ 0. Taking Walsh-Fourier transform
in both sides of (3.6), we get

(
ωs+pr

)∧(ξ) = ms(B−1ξ) ω̂r(B−1ξ), 0 ≤ s ≤ p− 1. (3.7)

The functions {ωn : n ≥ 0} will be called the basic p-wavelet packets associated
with multiresolution analysis {Vj}j∈Z.

We now obtain the expression for the Fourier transform of the p-wavelet pack-
ets in terms of the functions m` as:



WAVELET PACKETS ON LOCALLY COMPACT ABELIAN GROUPS 233

Proposition 3.3. Let {ωn : n ≥ 0} be the basic p-wavelet packets constructed
above and

n =
k∑

j=0

µjp
j , µj ∈ {0, 1, 2, ..., p− 1} , µk 6= 0, k = k(n) ∈ Z+ (3.8)

be the unique expansion of the integer n in the base p. Then

ω̂n(ξ) = mµ0(ξ)mµ1(B
−1ξ)mµ2(B

−2ξ)...mµk
(B−kξ) ϕ̂(B−kξ). (3.9)

Proof. We say that an integer n has length k if it has an expansion as in
(3.8). We use induction on the length of n to prove the proposition. Since ω0

is the scaling function and ω`, 1 ≤ ` ≤ p− 1, are the wavelets, it follows from
(3.5) that the claim is true for all n of length 1. Assume that it holds for all
integers of length k. Then an integer t of length k+1 is of the form t = µ+pn
where 0 ≤ µ ≤ p − 1, and n has length k. Suppose that n has the expansion
(3.8), then from (3.7) and (3.9), we have

ω̂t(ξ) = ω̂µ+pn(ξ)

= mµ(B−1ξ) ω̂n(B−1ξ)

= mµ(B−1ξ)mµ1(B
−1ξ)mµ2(B

−2ξ)...mµk
(B−(k+1)ξ) ϕ̂(B−(k+1)ξ).

Since t = µ + pn, ωt(ξ) has the desired form, and the induction is complete
.

The purpose of the construction of p-wavelet packets is to show that
their translates form an orthonormal basis for L2(G). This is proved in the
following theorem.

Theorem 3.4. Let {ωn : n ≥ 0} be the basic p-wavelet packets associated
with the multiresolution analysis {Vj}j∈Z. Then

(i)
{
ωn(.ª h) : pj ≤ n ≤ pj+1 − 1, h ∈ H

}
is an orthonormal basis of Wj , j ≥

0.

(ii)
{
ωn(.ª h) : 0 ≤ n ≤ pj − 1, h ∈ H

}
is an orthonormal basis of Vj , j ≥ 0.

(iii) {ωn(.ª h) : n ≥ 0, h ∈ H} is an orthonormal basis of L2(G).
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Proof. We prove the theorem by induction on j. Since {ωn : 1 ≤ n ≤ p− 1}
are the basic p-wavelets, so (i) is true for j = 0. Let us assume that it holds
for j. By (2.3) and the assumption, we have

{
p1/2ωn(A.ª h) : pj ≤ n ≤ pj+1 − 1, h ∈ H

}

is an orthonormal basis of Wj+1. Set En = span
{
p1/2ωn(A.ª h) : h ∈ H

}
so

that

Wj+1 =
pj+1−1⊕

n=pj

En. (3.10)

By applying the splitting lemma to En, we get the functions gn
` , 0 ≤ ` ≤ p−1,

defined by
(
gn

`

)∧(ξ) = m`(B−1ξ) ω̂n(B−1ξ), 0 ≤ ` ≤ p− 1 (3.11)

such that {gn
` (.ª h) : 0 ≤ ` ≤ p− 1, h ∈ H} is an orthonormal basis of En.

Now, if n has the expansion as in (3.8). Then, using (3.9), we get
(
gn

`

)∧(ξ) = m`(B−1ξ)mµ1(B
−1ξ)mµ2(B

−2ξ)...mµk
(B−(k+1)ξ) ϕ̂(B−(k+1)ξ).

But the expression on the right-hand side is precisely ω̂m(ξ), where

m = ` + pµ1 + p2µ2 + ... + pjµj = ` + pn.

Hence, we get gn
` = ω`+pn. Since

{
` + pn : 0 ≤ ` ≤ p− 1, pj ≤ n ≤ pj+1 − 1

}

=
{
n : 0 ≤ ` ≤ p− 1, pj+1 ≤ n ≤ pj+2 − 1

}
.

Thus we have proved (i) for j+1 and the induction is complete. Part (ii) follows
from the fact that Vj = V0⊕W0⊕ ...⊕Wj−1 and (iii) from the decomposition
(2.4).

We define now the general p-wavelet packets of L2(G) as:

Let {ωn : n ≥ 0} be the basic p-wavelet packets associated with the mul-
tiresolution analysis {Vj}j∈Z of L2(G). The collection of functions

F =
{

pj/2ωn(Aj .ª h) : n ≥ 0, h ∈ H, j ∈ Z
}
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will be called the general p-wavelet packets associated with {Vj}j∈Z.

Obviously, the system of functions in F is overcomplete in L2(G). For
example the subcollection with j = 0, n ≥ 0, h ∈ H, is the basic p-wavelet
packet basis constructed in the previous section. Secondly, the subcollection
with n = 1, 2, ..., p − 1, j ∈ Z , h ∈ H, is the p-wavelet basis. Now, we prove
several decompositions of the wavelet subspaces Wj .

For n ≥ 0 and j ∈ Z, define the subspaces

Sn
j = span

{
pj/2ωn(Aj .ª h) : h ∈ H

}
.

Since ω0 is the scaling function and ωn, 1 ≤ n ≤ p−1, are the basic p-wavelets,
we observe that

S0
j = Vj , S1

j = Wj =
p−1⊕
r=1

Sr
j , j ∈ Z

so that the orthogonal decomposition Vj+1 = Vj ⊕Wj , can be written as

S0
j+1 =

p−1⊕
r=0

Sr
j .

This fact can be generalized to decompose Sn
j+1 into p−1 orthogonal subspaces

as:

Proposition 3.5. If n ≥ 0 and j ∈ Z, we have

Sn
j+1 =

p−1⊕

`=0

S`+pn
j . (3.12)

Proof. By definition

Sn
j+1 = span

{
p(j+1)/2ωn(Aj+1.ª h) : h ∈ H

}
.

Let gα(x) = p(j+1)/2ωn(Aj+1. ª h[α]), α ∈ Z+. Then {gα : α ∈ Z+} is an
orthonormal basis for the Hilbert space Un

j+1. For 0 ≤ ` ≤ p− 1, define

F `
t (x) =

∑

α∈Z+

p1/2a`
α−pt gt(x), t ∈ Z+,
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and H` = span
{
F `

t : t ∈ Z+
}

. Then, by Corollary 3.2, we have

Sn
j+1 =

p−1⊕

`=0

H`.

Now

F `
t (x) =

∑

α∈Z+

p1/2a`
α−pt gt(x)

=
∑

α∈Z+

p1/2a`
α gt+pt(x)

=
∑

α∈Z+

a`
αp(j+2)/2ωn

(
Aj+1xª h[α] ªAt

)

= pj/2
∑

α∈Z+

p a`
α ωn

(
A(Ajxª t)ª h[α]

)

= pj/2ω`+pn

(
Ajxª t

) (
by (3.6)

)
.

Hence,

H` = S`+pn
j and Sn

j+1 =
p−1⊕

`=0

S`+pn
j .

The above decomposition can be used to obtain various decompositions of the
wavelet subspaces Wj , j ≥ 0.

Theorem 3.6. If j ≥ 0, then

Wj =
p−1⊕
r=1

Sr
j =

p
2−1⊕
r=p

Sr
j−1 = ......... =

p
m+1−1⊕

r=pm

Sr
j−m, m ≤ j

=
p

j+1−1⊕

r=p
j

Sr
0 . (3.13)

Proof. The proof is obtained by repeated application of the previous propo-
sition.
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By using Theorem 3.6 we can construct many orthonormal bases of L2(G).
We have the following decomposition:

L2(G) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ ...

Therefore, for each j ≥ 0, we can choose any of the decomposition of Wj

obtained above. For example, if we do not want to decompose any Wj , then
we have the usual wavelet decomposition. On the other hand, if we prefer the
last decomposition in (3.13) for each Wj , then we get the p-wavelet packet
decomposition. There are other decompositions as well. Observe that in
(3.13), the lower index of Sn

j ’s are decreased by 1 in each successive step. If
we keep some of these spaces fixed and choose to decompose others by using
(3.12), then we get decompositions of Wj which do not appear in (3.13). So
there is certain interplay between the indices n ∈ N0 and j ∈ Z.

Let T ⊂ N0 × Z. Our aim is to characterize the sets T such that the
collection

FT =
{

pj/2ωn(Aj .ª h) : h ∈ H, (n, j) ∈ S
}

will form an orthonormal basis of L2(G). In other words, we are looking for
those subsets T of N0 × Z for which

⊕

(n,j)∈T
Sn

j = L2(G) . (3.14)

Theorem 3.7. Let {ωn : n ≥ 0} be the basic p-wavelet packets associated
with the multiresolution analysis {Vj}j∈Z and T ⊂ N0 × Z. Then, FT is an
orthonormal basis of L2(G) if and only if {In,j : (n, j) ∈ T} is a partition of
N0, where In,j =

{
` ∈ N0 : pjn ≤ ` ≤ pj(n + 1)− 1

}
.

Proof. By using Proposition 3.5 repeatedly, we have

Sn
j =

p−1⊕

`=0

S`+pn
j−1 =

p(n+1)−1⊕

`=pn

S`
j−1 =

p(n+1)−1⊕

`=pn

[
p−1⊕
m=0

Sp`+m
j−2

]

=
p2(n+1)−1⊕

`=p2n

S`
j−2 = ... =

pj(n+1)−1⊕

`=pjn

S`
0 =

⊕

`∈In,j

S`
0.

Therefore,
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⊕

(n,j)∈T
Sn

j =
⊕

(n,j)∈T

⊕

`∈In,j

S`
0.

But we have already proved in Theorem 3.4 (iii) that L2(G) =
⊕

`∈N0
S`

0.
Hence, the necessary and sufficient condition for the equation (3.14) to be
true is that {In,j : (n, j) ∈ T} is a partition of N0.
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