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SOME PROPERTIES OF LOCALLY
HOMOGENEOUS GRAPHS

Salah Al-Addasi

Abstract

In this paper we determine when the join of two graphs is locally
homogeneous. It is shown that the Cartesian product of a locally H1

graph and a locally H2 graph is locally (H1∪ H2). All graphs H of order
at most 4 for which there are no locally H graphs are determined.

1 Introduction

For undefined concepts, the reader is referred to [2].
Let a graph H be given. A graph G is called locally H if for each vertex

v ∈ V (G), the subgraph induced by the set of neighbors of v is isomorphic to
H, see [3] and [7]. Given some fixed graph H, it is a natural question to ask
for a classification of all connected locally H graphs. For some graphs H, all
graphs that are locally H have been determined, see [6] for locally Petersen
graphs for example. A connected locally H graph G is locally recognizable if,
up to isomorphism, G is the unique connected locally H graph, see [5]. The
tetrahedron, the octahedron and the icosahedron are locally recognizable, they
are the connected locally Cn graphs where n = 3, 4, 5, respectively, see [11]
and [15]. It is remarked in [11] that the tetrahedron is k-null. The octahedron
and the icosahedron are k-divergent, see [4], [13] and [14]. There is an infinite
number of locally C6 graphs, see [9] and [10]. The k-behaviour of locally Cn

graphs, for n ≥ 7 are described in [11]. In section 4, we will characterize the
graphs H of order at most 4 for which there are no locally H graphs.
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Locally H graphs are also called locally homogeneous, a locally homoge-
neous graph is a locally H graph for some graph H, see [5] and [15].

If v is a vertex of a graph G and B ⊆ V (G), then N(v) is the set of
neighbors of v and 〈B〉 is the subgraph of G induced by B. For two graphs
G1 and G2, the union, the join, and the Cartesian product of G1 and G2 are
denoted by G1 ∪G2, G1 + G2, and G1¤G2, respectively.

2 When is the join of two graphs locally H?

The aim of this section is to determine precisely for which graphs G1 and G2,
the join G1 + G2 is locally homogeneous. First we determine when the join of
two locally homogeneous graphs is locally homogeneous.

Theorem 1. Let G1 be a locally H1 graph and G2 be a locally H2 graph, for
some graphs H1 and H2. Then the join G1 +G2 is locally homogeneous if and
only if H1 + G2 is isomorphic to G1 + H2. Moreover, if G1 + G2 is locally H,
then H is isomorphic to H1 + G2.

Proof. Let v ∈ V (G1). Then NG1+G2(v) = NG1(v) ∪ V (G2). Since G1 is
locally H1, the set NG1(v) induces in G1 +G2 a graph isomorphic to H1. The
set V (G2) induces in G1+G2 a graph isomorphic to G2. But in G1+G2, every
vertex in NG1(v) is adjacent to all vertices in V (G2). Thus 〈NG1+G2(v)〉 ∼=
H1 + G2. Similarly, for every vertex w ∈ V (G2), we have 〈NG1+G2(v)〉 ∼=
H2 + G1. Therefore G1 + G2 is locally homogeneous if and only if H1 + G2 is
isomorphic to G1 + H2. Obviously, G1 + G2 is locally (H1 + G2) whenever it
is locally homogeneous.

In particular, if we consider the join of a locally homogeneous graph with
itself, we get the following result.

Corollary 2. If G is a locally H graph, then G + G is locally (H + G).

If m > n ≥ 1, then the complete graph Km + Kn of order m + n is an
example of a join of two nonisomorphic locally homogeneous graphs that is
locally homogeneous.

Next, we consider the case in which at least one of the two graphs in the
join is an edgeless graph. We start by the following lemma.

Lemma 3. Let G be a graph such that nK1 +G is locally homogeneous. Then
either G ∼= nK1 or G is locally homogeneous.

Proof. Suppose that G is not isomorphic to nK1. Then G must have positive
size, for otherwise nK1+G would be not regular. Assume to the contrary that
G is not locally homogeneous. Then there exist two vertices x and y of G such
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that 〈NG(x)〉 6∼= 〈NG(y)〉. This implies that 〈NnK1+G(x)〉 6∼= 〈NnK1+G(y)〉,
which contradicts the assumption that nK1 + G is locally homogeneous.

The regular complete r-partite graph Kn, ..., n︸ ︷︷ ︸
r−times

is denoted by Kr(n), see [1].

By K1(n) we will mean the graph nK1.

Theorem 4. Let G be any graph. Then the join nK1 + G is locally homoge-
neous if and only if G ∼= Km(n) for some positive integer m.

Proof. Suppose that G ∼= Km(n) for some positive integer m. Then nK1+G ∼=
K(m+1)(n) which is locally Km(n).

For the converse, suppose that nK1 + G is locally homogeneous. Then,
since for each vertex v of nK1 we have 〈NnK1+G(v)〉 = G, the graph nK1 + G
is locally G. Let g be a vertex of G. Then NnK1+G(g) = V (nK1) ∪ NG(g).
But by Lemma 3, either G ∼= nK1 or G is locally G1 where G1 = 〈NG(g)〉.
The result follows when G ∼= nK1

∼= K1(n). So, suppose that G is locally
G1. Then 〈NnK1+G(g)〉 ∼= nK1 + G1. Thus, since nK1 + G is locally G,
we must have G ∼= nK1 + G1. Now, since G is locally homogeneous, again
by Lemma 3, either G1

∼= nK1 or G1 is locally G2 for some graph G2. If
G1

∼= nK1, then G ∼= nK1 + nK1
∼= K2(n), hence the result. So, suppose

that G1 is locally G2 and let g1 ∈ V (G1). Then 〈NnK1+G1(g1)〉 ∼= nK1 + G2.
Thus, since G ∼= nK1 + G1 is locally G1, we have G1

∼= nK1 + G2. Then G
∼= nK1 + G1

∼= nK1 + (nK1 + G2). Therefore, since G is finite, applying the
same argument on G2 and so on, we must end up with a graph Gi for some
i ≥ 0 (where G0 = G) such that Gi

∼= nK1. Then we have

G ∼= nK1 + (nK1 + (· · ·+ (nK1 + nK1 ) · · · ))︸ ︷︷ ︸
(i−1)−times

∼= K(i+1)(n).

Now we are in a position to determine for which graphs G1 and G2, the
join G1 + G2 is locally homogeneous.

Theorem 5. Let G1 and G2 be two graphs. Then the join G1 + G2 is locally
homogeneous if and only if either G1

∼= Ks(n) and G2
∼= Kt(n) for some positive

integers s, t and n, or G1 is locally H1 and G2 is locally H2 for some graphs
H1 and H2 where H1 + G2

∼= G1 + H2.

Proof. In view of Theorem 1 and Theorem 4, it would be enough to consider
the case in which each of G1 and G2 has positive size and at least one of
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them, say G1, is not locally homogeneous. But in this case, there exist two
vertices x and y in G1 such that 〈NG1(x)〉 6∼= 〈NG1(y)〉. Then 〈NG1+G2(x)〉 6∼=
〈NG1+G2(y)〉, which implies that G1 + G2 is not locally homogeneous.

3 Cartesian products of locally H graphs

The property of being locally homogeneous is preserved under Cartesian prod-
uct of graphs, this is shown in the next result.

Theorem 6. Let G1 be a locally H1 graph and G2 be a locally H2 graph
for some graphs H1 and H2. Then the Cartesian product G1¤G2 is locally
(H1 ∪H2).

Proof. Let v = (g1, g2) be a vertex of G1¤G2. Then N(v) = A ∪ B where
A = {(g1, y) : y ∈ V (G2), yg2 ∈ E(G2)} and B = {(x, g2) : x ∈ V (G1), xg1 ∈
E(G1)}. The elements of A are the neighbors of v in the copy of G2 corre-
sponding to the vertex g1, hence A induces in G1¤G2 a subgraph isomorphic
to H2. Similarly, B induces a subgraph isomorphic to H1. Obviously, there
is no edge in G1¤G2 joining a vertex in A with a vertex in B. Therefore
〈N(v)〉 = H1 ∪H2.

A locally 3K1 graph G must have order at least 6, because if v is a vertex
of G with N(v) = {x1, x2, x3}, then N(x1) = {v, y1, y2} for some two vertices
y1, y2 /∈ {v, x1, x2, x3}. Obviously, since G is 3-regular, the order of G must be
even. The following result assures the existence of a locally 3K1 graph of any
even order greater than or equal to 6.

Corollary 7. For any integer n ≥ 3, there exists a locally 3K1 graph of order
2n and diameter

⌊
n
2

⌋
+ 1.

Proof. For n = 3, the graph K3,3 is a locally 3K1 graph of order 6 and diameter
2. For n ≥ 4, the graph K2¤Cn is, by Theorem 6, locally 3K1. Clearly K2¤Cn

has order 2n and diameter
⌊

n
2

⌋
+ 1.

Note that the graph K2¤Cn is just the cycle permutation graph Pα(Cn),
where α is the identity permutation.

A graph G is a Hamming graph if G = Kn1¤Kn2¤ · · ·¤Knr , for some
r ≥ 1, where ni ≥ 2 for each i = 1, 2, ..., r, see [8] and [12]. The following
corollary follows by Theorem 6.

Corollary 8. The Hamming graph Kn1¤Kn2¤ · · ·¤Knr is locally (Kn1−1∪
Kn2−1 ∪ · · · ∪Knr−1). In particular, for any integer r ≥ 1, the hypercube Qr

is locally rK1.
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4 The graphs H of order at most 4 for which there are
no locally H graphs

In this section we characterize the graphs H of order at most 4 for which there
are no locally H graphs.

The graph K2 is locally K1. The triangle C3 and the cycle Cn, n ≥ 4, are
locally K2 and locally 2K1, respectively. Thus for any graph H of order less
than 3, there exists a locally H graph. According to the following result, 3
is the minimum possible order of a graph H for which there is no locally H
graph.

Theorem 9. For any integer n ≥ 3, there is no locally (Kn− e) graph, where
e is an edge of Kn.

Proof. Assume to the contrary that there exists a locally (Kn − e) graph G.
Let v be a vertex of G with N(v) = {x1, x2, ..., xn} where x1x2 /∈ E(〈N(v)〉).
Then N(x1) = {x3, x4, ..., xn}∪{v, y} for some vertex y of G. Clearly y is not
adjacent to any of the two vertices v, x3 because each of them has already its
n neighbors. Thus N(x1) does not induce a subgraph isomorphic to Kn − e,
a contradiction.

The 3-cube is locally 3K1, the complete graph K4 is locally K3, and, by
Theorem 6, the graph K2¤K3 is locally (K1 ∪K2). Therefore, by Theorem 9,
we have the following result.

Theorem 10. Let H be a graph of order 3. Then there is no locally H graph
if and only if H is the path P3.

Next, we consider locally H graphs where H has order 4.

Lemma 11. There is no locally (K1 + (K1 ∪K2)) graph.

Proof. Assume to the contrary that there exists a locally (K1 + (K1 ∪ K2))
graph G. Let v be a vertex of G with N(v) = {x1, x2, x3, x4}, where x1, x2

are the vertices of degrees 1, 3 in 〈N(v)〉 , respectively. Clearly, N(x2) =
{x1, v, x3, x4}. Then N(x1) = {v, x2, y1, y2} for some two vertices y1, y2 /∈
{x3, x4}. Now, since y1, y2 /∈ N(v)∪N(x2), the neighborhood N(x1) does not
induce a subgraph of G isomorphic to K1 + (K1 ∪K2), a contradiction.

Lemma 12. There is no locally K1,3 graph.

Proof. Assume to the contrary that there exists a locally K1,3 graph G. Let v
be a vertex of G with N(v) = {u, x1, x2, x3} where u is the vertex of degree 3
in 〈N(v)〉. Obviously, N(u) = {v, x1, x2, x3}. Then N(x1) = {u, v, y1, y2} for
some two vertices y1, y2 /∈ {x2, x3}. Since y1, y2 /∈ N(u)∪N(v), the set N(x1)
does not induce a subgraph isomorphic to K1,3, a contradiction.
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Lemma 13. There is no locally (P3 ∪K1) graph.

Proof. Assume to the contrary that there exists a locally (P3 ∪K1) graph G.
Let v be a vertex of G with N(v) = {x1, x2, x3, y} where x1x2x3 is a path in
G. Then N(x1) = {v, x2, y1, y2} for some two vertices y1, y2 /∈ {x3, y}. Since v
is not adjacent to any of the two vertices y1, y2, and N(x1) induces a subgraph
isomorphic to P3∪K1, the vertex x2 must be adjacent to exactly one of the two
vertices y1 and y2, say x2 is adjacent to y1. Then 〈N(x2)〉 = 〈{y1, x1, v, x3}〉
contains the 4-path y1x1vx3, and hence does not induce a subgraph isomorphic
to P3 ∪K1, a contradiction.

Now we can determine for which graph H of order 4 we do not have a
locally H graph.

Theorem 14. Let H be a graph of order 4. Then there is no locally H graph
if and only if H is isomorphic to one of the four graphs: K1 + (K1 ∪ K2),
K1,3, P3 ∪K1, and the kite K1,1,2.

Proof. There is no locally H graph when H is isomorphic to K1 + (K1 ∪K2),
K1,3, P3 ∪ K1, or K1,1,2, according to Lemma 11, Lemma 12, Lemma 13,
and Theorem 9 , respectively. For the converse, it would be enough to find a
locally H graph for each of the remaining seven possibilities of the graph H.
By Theorem 6, the graphs K2¤K4, K3¤K3, K3¤K2¤K2, and the hypercube
Q4 are locally (K1 ∪ K3), locally 2K2, locally (K2 ∪ 2K1), and locally 4K1,
respectively. The Octahedron is locally C4. Finally, the complete graph K5

and the 4-antiprism C8(1, 2) are locally K4 and locally P4, respectively. This
completes all possible eleven cases of H.
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