# SOME PROPERTIES OF AUTOMORPHISM GROUPS OF PAVING MATROIDS 

Hua Mao, Sanyang Liu


#### Abstract

This paper deals with the relation between the automorphism groups of some paving matroids and $\mathbb{Z}_{3}$, where $\mathbb{Z}_{3}$ is the additive group of modulo 3 over $\mathbb{Z}$. It concludes that for paving matroids under most cases, $\mathbb{Z}_{3}$ is not isomorphic to the automorphism groups of these paving matroids. Even in the exceptional cases, we reasonably conjecture that $\mathbb{Z}_{3}$ is not isomorphic to the automorphism groups of the corresponding paving matroids. Actually, the result here is relative to the Welsh's open problem that for any group $G$, there is a paving matroid with automorphism group isomorphic to $G$.


## 1 Introduction and Preliminaries

Welsh indicates [5,p.40] that paving matroids are essentially a class of relatively well-behaving matroids. Additionally, J.Oxley points out [4,p.26] that paving matroids is an important class of matroids. In fact, there are many unsolved open problems relative with paving matroids such as the open problem respectively in [5,p.41], [5,p.331] and so on. This paper is relative to the open problem in [5,p.331]. The problem is that for any group $H$, whether there is a paving matroid with automorphism group isomorphic to $H$. Actually, if we take $H=\mathbb{Z}_{3}$, i.e. the additive group of modulo 3 , then under most cases except the unsolved completely special cases, we get that the automorphism group of a paving matroid is not isomorphic to $H$. Even for the unsolved special cases, by the discussion in this paper, we conjecture that for any of paving matroids belonged to these unsolved special cases, its automorphism

[^0]group is not isomorphic to $H$.

It starts by reviewing some knowledge what we need in the sequel. We assume that $E$ is a finite set. In this paper, all informations relative to matroids are referred to $[4,5]$ and that relative to permutations and groups are found in [1].

Definition 1 [4,p.26\&5] Let $M$ be a matroid. Then $M$ is uniform if and only if it has no circuits of size less than $\rho(M)+1 . M$ is paving if it has no circuits of size less than $\rho(M)$.

Lemma 1 (1)[5,p.9\&4] A collection $\mathcal{C}$ of subsets of $E$ is the set of circuits of a matroid on $E$ if and only if conditions (c1) and (c2) are satisfied
(c1) If $X \neq Y \in \mathcal{C}$, then $X \nsubseteq Y$;
(c2) If $C_{1}, C_{2} \in \mathcal{C}, C_{1} \neq C_{2}$ and $z \in C_{1} \cap C_{2}$, then there exists $C_{3} \in \mathcal{C}$ satisfying $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash z$.
(2)[3] Let $M$ be a matroid on $E$. A permutation $\pi: E \rightarrow E$ is an automorphism of $M$ if $\pi X$ is a circuit in $M$ if and only if $X$ is a circuit in $M$.
(3)[1,p.26] If $S_{n}$ is denoted the symmetric group on $n$ letters, then $\left|S_{n}\right|=$ $n$ !.
(4) [2,p.439] Every restriction of a paving matroid is paving.

Remark 1 We denote the automorphism group of a matroid $M$ by $A u t(M)$. Based on (1) in Lemma 1, a matroid $M$ on $E$ with $\mathcal{C}(M)$ as its collection of circuits can be in notation $(E, \mathcal{C}(M))$. In addition, if a group $H_{1}$ is isomorphic to a group $H_{2}$, then it is denoted as $H_{1} \cong H_{2}$. Otherwise, we write $H_{1} \not \equiv H_{2}$.

## 2 Properties relative to matroids

This section presents some properties of a matroid in preparation for Section 3.

Lemma 2 Let $M=\left(E, \mathcal{C}(M)=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}\right)$ be a matroid, $n=$ $\left|\bigcup_{j=1}^{k} C_{j}\right|$ and $E \backslash \bigcup_{j=1}^{k} C_{j}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Then the following properties are true.
(1) $|A u t(M)| \geq m$ !.
(2) $M^{\prime}=\left(\bigcup_{j=1}^{k} C_{j}, \mathcal{C}(M)\right)$ is a matroid and $|\operatorname{Aut}(M)| \geq\left|\operatorname{Aut}\left(M^{\prime}\right)\right| \times m$ !.
(3) If $k=1$, then $|A u t(M)|=\left|C_{1}\right|!\times m$ !.
(4) If there is $C_{i} \in \mathcal{C}(M)$ satisfying $C_{i} \cap C_{j}=\emptyset,(j \neq i ; j=1,2, \ldots, k)$.

Then $|\operatorname{Aut}(M)| \geq\left|C_{i}\right|!\times m$. Besides, $M_{C_{i}}=\left(\left(\bigcup_{j=1}^{k} C_{j}\right) \backslash C_{i}, \mathcal{C}(M) \backslash C_{i}\right)$ is still a matroid, and further, if $M$ is paving and $m=0$, then $M_{C_{i}}$ is paving.
(5) If $\rho(M)=0$, then $\operatorname{Aut}(M) \cong S_{n+m}$.
(6) Let $C_{i 1}, C_{i 2} \in \mathcal{C}(M)$ and $m=0$. Then $N=\left(C_{i 1} \cup C_{i 2},\left\{C_{j}: C_{j} \in \mathcal{C}(M)\right.\right.$ and $\left.\left.C_{j} \subseteq C_{i 1} \cup C_{i 2}\right\}\right)$ is a matroid. If $M$ is paving, and so is $N$.
(7) If $m=0$ and $k \geq 2$. Then $M$ satisfies $C_{1} \cap C_{2} \cap \ldots \cap C_{k}=\emptyset$.

Proof Routine verification from the related definitions and Lemma 1.

## 3 Main results

Let $H=\mathbb{Z}_{3}$, i.e the additive group of $\mathbb{Z}$ modulo 3 . Evidently, $|H|=3$. Let $M=\left(E, \mathcal{C}(M)=\left\{C_{1}, \ldots, C_{k}\right\}\right)$ be a paving matroid, $n=\left|\bigcup_{j=1}^{k} C_{j}\right|$ and $m=\left|E \backslash \bigcup_{j=1}^{k} C_{j}\right|$. In this section, we consider that under what conditions, $M$ will satisfy $\operatorname{Aut}(M) \cong H$.

First, we may state that $\operatorname{Aut}(M) \nexists H$ holds if one of the following $(\alpha 1),(\beta 1)$, ( $\gamma 1$ ) happens.
$(\alpha 1)$ If $M$ is uniform. Definition 1 informs $|A u t(M)|=C_{n+m}^{\rho(M)+1} \times(\rho(M)+1)!\neq$ 3.
( $\beta 1$ ) If $\rho(M)=0$. (5) in Lemma 2 shows $\operatorname{Aut}(M) \cong S_{n+m}$. Lemma 1 proves $\left|S_{n+m}\right|=(n+m)$ !. No matter the values of $n$ and $m$, it has $|A u t(M)| \neq 3$.
$(\gamma 1)$ If $\left|E \backslash \bigcup_{j=1}^{k} C_{j}\right|=m \geq 2$. Let $M^{\prime}=\left(\bigcup_{j=1}^{k} C_{j}, \mathcal{C}(M)\right)$. (2) in Lemma 2 demonstrates $|\operatorname{Aut}(M)| \geq 2!\times\left|A u t\left(M^{\prime}\right)\right|$. In addition, in view of $\mathcal{C}\left(M^{\prime}\right)=\mathcal{C}(M)$ and
(2) in Lemma 1, we may describe that
if $\left|A u t\left(M^{\prime}\right)\right|=1$ holds, it leads to $|\operatorname{Aut}(M)|=\left|A u t\left(M^{\prime}\right)\right|=1 \times m$ !, further, $\mid$ Aut $(M) \mid \neq 3$;
if $\left|A u t\left(M^{\prime}\right)\right| \geq 2$ holds, it causes $|A u t(M)| \geq 2!\times 2=4$, and so $|A u t(M)| \neq 3$.
Second, (2) in Lemma 1 expresses that if $E \backslash \bigcup_{j=1}^{k} C_{j}=\{x\}$ and $\rho(M) \geq 1$, then both $\operatorname{Aut}(M) \cong \operatorname{Aut}\left(M^{\prime}\right)$ and $\pi(x)=x$ for any $\pi \in \operatorname{Aut}(M)$ are correct, where $M^{\prime}=\left(\bigcup_{j=1}^{k} C_{j}, \mathcal{C}(M)\right)$.

According to the above two points, in what follows, we only consider the non-uniform paving matroid $M=(E, \mathcal{C}(M))$ with $\rho(M) \geq 1$, where $\mathcal{C}(M)=\left\{C_{j}: j=1,2, \ldots, k\right\}$ and $E$ satisfies $\left|E \backslash \bigcup_{j=1}^{k} C_{j}\right|=m=0$. We will divide different cases into discussion.

The following Lemma 3 is to consider the case of $\rho(M)=1$.
Lemma 3 Let $M=\left(\bigcup_{j=1}^{k} C_{j}, \mathcal{C}(M)=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}\right)$ be a non-uniform paving matorid and $\rho(M)=1$. Then $\operatorname{Aut}(M) \nexists H$ and
if $k \geq 2$, then $|\operatorname{Aut}(M)| \geq 2$; if $k \geq 3$, then $|\operatorname{Aut}(M)| \geq 4$.
Proof Assume $k=1$. Lemma 2 shows $|\operatorname{Aut}(M)|=\left|C_{1}\right|$ !, and so $\operatorname{Aut}(M) \not \equiv$ $H$.

Since $M$ is paving, one has $1=\rho(M) \leq\left|C_{j}\right| \leq \rho(M)+1=2,(j=1, \ldots, k)$.
Let $k \geq 2$.
If $\left|C_{i}\right|=\rho(M)=1$. This causes $C_{i}=\left\{a_{i}\right\},(i=1, \ldots, k)$. Then $\pi: a_{i} \mapsto$ $a_{j}(i=1, \ldots, k ; j=1, \ldots, k)$ satisfies $\pi\left(C_{i}\right) \in \mathcal{C}(M)(i=1, \ldots, k)$, and so $\pi \in \operatorname{Aut}(M)$. Thus $|\operatorname{Aut}(M)|=\left|\bigcup_{i=1}^{k} C_{i}\right|!=k!$. So if $k=2$, then $|A u t(M)|=2$; if $k \geq 3$, then $|\operatorname{Aut}(M)| \geq 6 \geq 4$. These follow $\operatorname{Aut}(M) \nsubseteq H$.

Suppose that there is $C_{i}$ satisfying $\left|C_{i}\right|=\rho(M)+1=2$. No matter to suppose $\left|C_{k}\right|=2$. Distinguishing four steps to fulfil the proof.

Step 1. Assume $k=2$.
It is no harm to suppose $C_{1}=\left\{a_{1}, \ldots, a_{t}\right\}$ and $C_{2}=\left\{a_{s-1}, a_{s}\right\}$ where $1 \leq t \leq 2$. In virtue of Lemma $1, C_{i} \nsubseteq C_{j}$ is correct $(i \neq j ; i, j=1,2)$. We assert $C_{1} \cap C_{2}=\emptyset$. Otherwise, $a_{s} \in C_{1} \cap C_{2}$ and Lemma 1 lead to $C_{3} \subseteq C_{1} \cup C_{2} \backslash a_{s}$ and $C_{3} \in \mathcal{C}(M) \backslash\left\{C_{1}, C_{2}\right\}$, this is a contradiction to $k=|\mathcal{C}(M)|=2$. Thus, we have $|A u t(M)| \geq\left|C_{1}\right|!\times\left|C_{2}\right|!\geq t!\times 2!\geq 2$.

Obviously, $t=1$ follows $|A u t(M)|=2 ; t=2$ follows $|A u t(M)| \geq 4$. So $\operatorname{Aut}(M) \not \approx H$.

Step 2. Assume $k=3$.
The following (2.1) and (2.2) will carry out the proof of this step.
(2.1) Let $C_{1}=\left\{a_{1}\right\}$ and $C_{3}=\left\{a_{2}, a_{3}\right\}$. Divided two cases $(\alpha)$ and $(\beta)$ for discussion.
$(\alpha)$ If $\left|C_{2}\right|=1$, i.e. $C_{2}=\left\{a_{4}\right\}$. Then by Lemma $1, a_{i} \neq a_{j},(i \neq j ; i, j=$ $1,2,3,4)$. Define

$$
\begin{gathered}
\pi_{01}: a_{i} \mapsto a_{i}(i=1,2,3,4) ; \quad \pi_{11}: a_{1} \mapsto a_{4}, a_{4} \mapsto a_{1}, a_{i} \mapsto a_{i}(i=2,3) \\
\pi_{21}: a_{i} \mapsto a_{i}(i=1,4), a_{2} \mapsto a_{3}, a_{3} \mapsto a_{2} ; \quad \pi_{31}: a_{1} \mapsto a_{4}, a_{4} \mapsto
\end{gathered}
$$ $a_{1}, a_{2} \mapsto a_{3}, a_{3} \mapsto a_{2}$.

Then $\operatorname{Aut}(M) \supseteq\left\{\pi_{01}, \pi_{11}, \pi_{21}, \pi_{31}\right\}$, so $\operatorname{Aut}(M) \nsupseteq H$ and $|\operatorname{Aut}(M)| \geq 4$.
$(\beta)$ If $\left|C_{2}\right|=2$.
By Lemma 1, $C_{2} \cap C_{3} \neq \emptyset$ yields out $C_{2}=\left\{a_{2}, a_{5}\right\}$. However, $C_{2} \cup$ $C_{3} \backslash a_{2}=\left\{a_{3}, a_{5}\right\} \nsupseteq C_{j},(j \in\{1,2,3\})$ will bring about a contradiction to Lemma 1. Moreover, $C_{2} \cap C_{3}=\emptyset$, i.e. $C_{2}=\left\{a_{4}, a_{5}\right\}$, and in addition, $a_{i} \neq a_{j},(i \neq j ; i, j=1,2,3,4,5)$. Define
$\pi_{02}: a_{i} \mapsto a_{i}(i=1,2,3,4,5) ; \pi_{12}: a_{2} \mapsto a_{3}, a_{3} \mapsto a_{2}, a_{i} \mapsto a_{i}(i=1,4,5) ;$
$\pi_{22}: a_{i} \mapsto a_{i}(i=1,2,3), a_{4} \mapsto a_{5}, a_{5} \mapsto a_{4} ;$
$\pi_{32}: a_{1} \mapsto a_{1}, a_{2} \mapsto a_{3}, a_{3} \mapsto a_{2}, a_{4} \mapsto a_{5}, a_{5} \mapsto a_{4}$.
Then $\pi_{j 2} \in \operatorname{Aut}(M)(j=0,1,2,3)$. So $\operatorname{Aut}(M) \not \equiv H$ and $|\operatorname{Aut}(M)| \geq 4$.
(2.2) Let $\left|C_{j}\right|=\rho(M)+1=2(j=1, \ldots, k)$. Then $M$ satisfies one of the following statuses
(i) $C_{1}=\left\{a_{1}, a_{2}\right\}, C_{2}=\left\{a_{1}, a_{3}\right\}, C_{3}=\left\{a_{2}, a_{3}\right\}\left(a_{i} \neq a_{j}, i \neq j ; i, j=1,2,3\right)$.
(ii) $C_{1}=\left\{a_{1}, a_{2}\right\}, C_{2}=\left\{a_{3}, a_{4}\right\}, C_{3}=\left\{a_{5}, a_{6}\right\} \quad\left(a_{i} \neq a_{j}, i \neq j ; i, j=\right.$ $1,2,3,4,5,6)$.

We may easily obtain that if (i) happens, then $|\operatorname{Aut}(M)| \geq 6 \geq 4$; if (ii) happens, then $|\operatorname{Aut}(M)| \geq 8 \geq 4$. Hence, no matter which happens between (i) and (ii), it follows $\operatorname{Aut}(M) \nexists H$.

Step 3. Let $\left|C_{j}\right|=2(j=1, \ldots, k)$ and $3<k$.
(3.1) Assume $C_{1} \cap C_{j}=\emptyset(j=2, \ldots, k)$. We will carry out the proof using the induction method. In light of Lemma 2, it has $|A u t(M)| \geq\left|C_{1}\right|!\times$ $|\operatorname{Aut}(N)|=2|\operatorname{Aut}(N)|$, where $N=\left(\bigcup_{j=1}^{k} C_{j} \backslash C_{1}, \mathrm{C}(M) \backslash C_{1}\right)$. Recalling Step 2, $k-1 \geq 3$ and the supposition of the inductive, we may indicate $|A u t(N)| \geq 4$, and so $|\operatorname{Aut}(M)| \geq|\operatorname{Aut}(N)| \geq 4$, and hence $\operatorname{Aut}(M) \nsupseteq H$.
(3.2) Assume for any $C_{i} \in \mathcal{C}(M)$, there is $C_{j} \in \mathcal{C}(M) \backslash C_{i}$ satisfying $C_{i} \cap C_{j} \neq \emptyset$.

Using (6) in Lemma 2, $N_{i j}=\left(C_{i} \cup C_{j},\left\{C_{p}: C_{p} \subseteq C_{i} \cup C_{j}, C_{p} \in \mathcal{C}(M)\right\}\right)=$ $\left(C_{i} \cup C_{j}, C_{i}=\left\{a_{i 1}, a_{i 2}\right\}, C_{j}=\left\{a_{i 1}, a_{j 2}\right\},\left\{a_{i 2}, a_{j 2}\right\}\right)$ is a paving matroid. In addition $N_{i j} \neq M$ is effective because of $k>3$. Additionally, $\left|\mathcal{C}\left(N_{i j}\right)\right|=3$ and Step 2 together produce $\left|A u t\left(N_{i j}\right)\right| \geq 4$.

First of all, we prove that if for any paving matroid $N=\left(\bigcup_{p=1}^{t} C_{i_{p}},\left\{C_{i_{p}}\right.\right.$ : $\left.\left.C_{i_{p}} \in \mathcal{C}(M), p=1, \ldots, t\right\}\right) \neq M$, there is $C_{h} \in \mathcal{C}(M) \backslash \mathcal{C}(N)$ satisfying $C_{h} \cap$ $\bigcup_{p=1}^{t} C_{i_{p}} \neq \emptyset$, then we assert that $M$ is uniform.

Combining $\rho(M)=1$ and $\left|C_{j}\right|=2(j=1, \ldots, k)$ with the property of $M$ as a non-uniform together, it brings about the existence of $C=\{1,2\} \subseteq \bigcup_{j=1}^{k} C_{j}$ and $C \notin \mathcal{C}(M)$. Herein, there is $C_{1}, C_{2} \in \mathcal{C}(M)$ satisfying $1 \in C_{1}=\{1, q\}$, $2 \in C_{2}$ and $C_{1} \cap C_{2} \neq \emptyset$. In view of $\left|C_{2}\right|=2$, it follows $C_{2}=\{2,3\}$. If $\bigcup_{j=1}^{k} C_{j}=\{1,2,3\}$, then it follows $|\mathcal{C}(M)| \leq 3$. This is a contradiction to $k>3$. That is to say, there is at least $4 \in \bigcup_{j=1}^{k} C_{j} \backslash\{1,2,3\}$. Let $\{2,3,4\} \subseteq \bigcup_{j=1}^{k} C_{j}$ and $\{2,3\} \in \mathcal{C}(M)$.

We notice that $\{2,3\} \in \mathcal{C}(M)$ and the supposition above for $N$ taken to-
gether leads to $\{3,4\} \in \mathcal{C}(M)$, and further $\{2,4\} \in \mathcal{C}(M)$. Hence, $N_{23}=$ $(\{2,3,4\},\{\{2,3\},\{2,4\},\{3,4\}\})$ is a paving matroid and $N_{23} \neq M$. This causes $C_{5}=\{4,5\} \in \mathcal{C}(M) \backslash \mathcal{C}(N)$ and $C_{5}=\{4,5\} \cap\{2,3,4\} \neq \emptyset$. Thus, $N_{2345}=\{\{2,3,4,5\},\{\{i, j\}: i \neq j, i, j=2,3,4,5\}) \neq M$ is a uniform matroid with $\rho\left(N_{2345}\right)=1$ and $1 \notin\{2,3,4,5\}$. By the supposition, induction and $k<\infty$, we may express that there is a uniform matroid $N \neq M$ satisfying $\mathcal{C}\left(N_{2345}\right) \subseteq \mathcal{C}(N) \subseteq \mathcal{C}(M)$, and $\mathcal{C}(M) \ni C_{1}=\{1, q\}$ and $C_{1} \cap\left(\bigcup_{C_{p} \in \mathcal{C}(N)} C_{p}\right) \neq \emptyset$.

If $C_{1} \cap\left(\bigcup_{C_{p} \in \mathcal{C}(N)} C_{p}\right)=1$. That is $\{1, t\} \in \mathcal{C}(N)$. In light of $2 \in \bigcup_{C_{p} \in \mathcal{C}(N)} C_{p}$ and the uniform property of $n$, it follows $\{2, t\} \in \mathcal{C}(N)$. According to Lemma 1, it assures $\{1, t\} \cup\{2, t\} \backslash t=\{1,2\} \in \mathcal{C}(M)$, a contradiction.

If $C_{1} \cap \bigcup_{C_{p} \in \mathbb{C}(N)} C_{p}=\{q\}$. Therefore, $\{s, q\} \in \mathcal{C}(N)$ and $\{1, q\} \in \mathcal{C}(M)$ follows $\{1, s\} \in \mathcal{C}(M)$. Since $\{2, s\} \in \mathcal{C}(N)$, it gets $\{1, s\} \cup\{2, s\} \backslash s=\{1,2\} \in$ $\mathcal{C}(M)$, a contradiction.

But the uniform of the assertion is a contradiction to the non-uniform property of $M$.

Second, if for any $C_{h} \in \mathcal{C}(M) \backslash\left(C_{i} \cup C_{j}\right), C_{h} \cap\left(C_{i} \cup C_{j}\right)=\emptyset$ holds. Let $\pi_{i j} \in \operatorname{Aut}\left(N_{i j}\right)$. We define $\pi: x \mapsto \pi_{i j}(x)$ for $x \in C_{i} \cup C_{j}, \quad x \mapsto x$ for $\bigcup_{t=1}^{k} C_{t} \backslash\left(C_{i} \cup C_{j}\right)$. We may easily have $\pi \in \operatorname{Aut}(M)$. Further, it follows $|\operatorname{Aut}(M)| \geq\left|A u t\left(N_{i j}\right)\right| \geq 4$.

If there exists a paving matroid $N=\left(\bigcup_{p=1}^{t} C_{i_{p}},\left\{C_{i_{p}} \in \mathcal{C}(M), p=1, \ldots, t\right\}\right) \neq$ $M,(t>2)$. Then for any $C_{h} \in \mathcal{C}(M) \backslash \mathcal{C}(N), C_{h} \cap \bigcup_{p=1}^{t} C_{i_{p}}=\emptyset$ holds. Herein, there is $\mathcal{C}(M) \backslash \mathcal{C}(N) \neq \emptyset$. Additionally, it evidently obtains $\mid$ Aut $(M) \mid \geq$ $|A u t(N)|$. By induction and $t>2$, it has $|\operatorname{Aut}(N)| \geq 4$. So it follows $|\operatorname{Aut}(M)| \geq|\operatorname{Aut}(N)| \geq 4$ and $\operatorname{Aut}(M) \nsubseteq H$.

Step 4. Suppose there are $C_{i}, C_{j} \in \mathcal{C}(M)$ satisfying $\left|C_{j}\right|=1,(j=1, \ldots, t, 1 \leq$ $t<k)$ and $\left|C_{i}\right|=2,(i=t+1, \ldots, k)$. Recalling Lemma 2, we bring about $\left|\operatorname{Aut}(M) \geq t!\times\left|\operatorname{Aut}\left(M_{t}\right)\right|\right.$ where $M_{t}=\left(\bigcup_{i=t+1}^{k} C_{i},\left\{C_{t+1}, \ldots, C_{k}\right\}\right)$ is a paving matroid by Lemma 2 .

If $t=1$. Then by $k-1 \geq 3$, Step 2 and Step 3, we may indicate $\left|A u t\left(M_{t}\right)\right| \geq$ 4. Furthermore, $|\operatorname{Aut}(M)| \geq 4$ is right. So $\operatorname{Aut}(M) \nexists H$ holds.

If $t \geq 2$. Then $k-2 \geq 2$ and Step 1 together ensure $\left|A u t\left(M_{t}\right)\right| \geq 2$. Therefore, it leads to $|\operatorname{Aut}(M)| \geq 2 \times 2=4$, and so $\operatorname{Aut}(M) \nexists H$.

In the following, we will handle with $\rho(M) \geq 2$.

Lemma 4 Let $M=\left(\bigcup_{j=1}^{k} C_{j}, \mathcal{C}(M)=\left\{C_{1}, \ldots, C_{k}\right\}\right)$ be a non-uniform paving matroid with $r=\rho(M) \geq 2$.
(1) Assume $k=1$. Then $\operatorname{Aut}(M) \not \neq H$ is right.
(2) Assume $k \geq 2$. Then there are the following expressions.
(i) If there is $C_{i} \in \mathcal{C}(M)$ satisfying $C_{i} \cap C_{j}=\emptyset,(j \neq i ; j=1,2, \ldots, k)$, then $|A u t(M)| \geq 4$ and $\operatorname{Aut}(M) \neq H$.
(ii) Suppose for any $C_{i} \in \mathcal{C}(M)$, there is $C_{j_{i}} \in \mathcal{C}(M) \backslash C_{i}$ satisfying $C_{i} \cap$ $C_{j_{i}} \neq \emptyset$. If there is $C_{i_{1}}, C_{i_{2}} \in \mathcal{C}(M) \quad\left(i_{1} \neq i_{2}\right)$ such that $C_{i_{1}} \cap C_{i_{2}} \neq$ $\emptyset, C_{i_{3}}, \ldots, C_{i_{p}} \subseteq C_{i_{1}} \cup C_{i_{2}}$, and $C_{i_{t}} \cap\left(C_{i_{1}} \cup C_{i_{2}}\right)=\emptyset,(t=p+1, \ldots, k)$, where $C_{i_{j}} \in \mathcal{C}(M)(j=1,2, \ldots, p, p+1, \ldots, k)$ and $0 \neq p<k$ and $k-p \geq 1$. Let $M_{1}=\left(C_{i_{1}} \cup C_{i_{2}},\left\{C_{i_{1}}, \ldots, C_{i_{p}}\right\}\right)$ and $M_{2}=\left(\bigcup_{t=p+1}^{k} C_{i_{t}},\left\{C_{i_{t}}: t=p+1, \ldots, k\right\}\right)$.
Then, we have the following statements.
State 1. If one of $M_{1}$ and $M_{2}$ are uniform, then $|A u t(M)| \geq 4$ and Aut $(M) \nexists H$.

State 2. If both of $M_{1}$ and $M_{2}$ are non-uniform paving, and in addition, for some $h \in\{1,2\}, M_{h}$ satisfies
(a1) there exist $C_{t}, C_{s} \in \mathcal{C}(M)$ satisfying $C_{t} \cap C_{s} \neq \emptyset$ and $N_{t s}=\left(C_{t} \cup\right.$ $\left.C_{s},\left\{C_{t s} \in \mathcal{C}\left(M_{h}\right): C_{t s} \subseteq C_{t} \cup C_{s}\right\}\right) \neq M_{h} ;$
(a2) for any $C_{j} \in \mathcal{C}\left(M_{h}\right) \backslash \mathcal{C}\left(N_{t s}\right)$, it has $C_{j} \cap\left(C_{t} \cup C_{s}\right)=\emptyset$, where $1 \leq\left|\mathcal{C}\left(N_{t s}\right)\right|<p$.

Then $|\operatorname{Aut}(M)| \geq 4$ and $\operatorname{Aut}(M) \nsubseteq H$.
Proof (1) Assume $k=1$. By Lemma 2, it follows $|\operatorname{Aut}(M)|=\left|C_{1}\right|$, and so $\operatorname{Aut}(M) \not \approx H$.
(2) (i) According to Lemma 2, $M^{\prime}=\left(\bigcup_{j \neq i, j=1}^{k} C_{j},\left\{C_{j}: j \neq i, j=1,2, \ldots, k\right\}\right)$ is a paving matroid. Evidently, $|A u t(M)| \geq\left|C_{i}\right|!\times\left|A u t\left(M^{\prime}\right)\right|$ is correct. In light of $r=\rho(M) \leq\left|C_{t}\right| \leq \rho(M)+1,(t=1, \ldots, k)$, we may carry out $\mid$ Aut $(M)\left|\geq r!\times\left|\operatorname{Aut}\left(M^{\prime}\right)\right|\right.$. Hence, if $r \geq 3$, then $| \operatorname{Aut}(M) \mid \geq r!\geq 4$. So $\operatorname{Aut}(M) \nsubseteq H$ is true.

Next we prove that if $r=2$, then $|A u t(M)| \geq 4$ and $\operatorname{Aut}(M) \nexists H$.
Assume $k=2 . \quad C_{1} \cap C_{2}=\emptyset$ holds, and in addition, $M^{\prime}=\left(C_{2}, C_{2}\right)$ holds. Furthermore, it yields out $|\operatorname{Aut}(M)| \geq\left|C_{1}\right|!\times\left|C_{2}\right|!\geq r^{2} \geq 4$, and so $\operatorname{Aut}(M) \nRightarrow H$.

Assume $k>2$.
If $M^{\prime}$ is uniform. ( $\alpha 1$ ) informs us $\left|A u t\left(M^{\prime}\right)\right| \geq 2$, and so $|A u t(M)| \geq 4$. Thus $A u t(M) \not \equiv H$.

If $M^{\prime}$ is non-uniform and there is $C_{i_{0}} \cap\left(\underset{j \neq i, j \neq i_{0}, j=1}{k} C_{j}\right)=\emptyset$. By the
induction supposition, we obtain $\left|A u t\left(M^{\prime}\right)\right| \geq 4$, and so $|A u t(M)| \geq 2 \times 4=8$. Therefore, it causes $\operatorname{Aut}(M) \not \equiv H$.

If $M^{\prime}$ is non-uniform paving, and in addition, for any $C_{s} \in \mathcal{C}\left(M^{\prime}\right)$, there is $C_{t} \in \mathcal{C}\left(M^{\prime}\right)$ fitting $C_{s} \cap C_{t} \neq \emptyset$. Then we may easily indicate that by induction on $\left|\mathcal{C}\left(M^{\prime}\right)\right|$, it assures that $M^{\prime}$ is the following status:

Status: Posit $N_{j}=\left(\bigcup_{q=1}^{m_{j}} C_{j_{q}},\left\{C_{j_{q}} \in \mathcal{C}\left(M^{\prime}\right): q=1, \ldots, m_{j}\right\}\right),(j=1,2)$. We may carry out $\mathcal{C}\left(M^{\prime}\right)=\mathcal{C}\left(N_{1}\right) \cup \mathcal{C}\left(N_{2}\right) ; N_{j}$ is a uniform with $\left|\mathcal{C}\left(N_{j}\right)\right|>$ $1,(j=1,2) ; C_{1_{x}} \cap C_{2_{y}}=\emptyset$ for any $C_{1_{x}} \in \mathcal{C}\left(N_{1}\right)$ and $C_{2_{y}} \in \mathcal{C}\left(N_{2}\right)$.

Evidently, for this status, $\left|\operatorname{Aut}\left(M^{\prime}\right)\right| \geq 4$ is true. Moreover, $|A u t(M)| \geq 4$ is real, and so $\operatorname{Aut}(M) \nexists H$.
(ii) By Lemma 2, both of $M_{1}=\left(C_{i_{1}} \cup C_{i_{2}},\left\{C_{i_{1}}, C_{i_{2}}, \ldots, C_{i_{p}}\right\}\right)$ and $M_{2}=$ $\left(\bigcup_{t=p+1}^{k} C_{i_{t}},\left\{C_{i_{t}}: t=p+1, \ldots, k\right\}\right)$ are paving matroids. In view of the given, we may easily receive that $|\operatorname{Aut}(M)| \geq\left|\operatorname{Aut}\left(M_{1}\right)\right| \times\left|A u t\left(M_{2}\right)\right|$ and $\rho(M) \leq$ $\left|C_{j}\right| \leq \rho(M)+1,(j=1, \ldots, k)$.

If $k=2, \mathcal{C}\left(M_{1}\right) \neq \emptyset$ and $\mathcal{C}\left(M_{2}\right) \neq \emptyset$. Then, the need result is followed from (i).

If $k=2, \mathcal{C}\left(M_{1}\right) \neq \emptyset$ and $\mathcal{C}\left(M_{2}\right)=\emptyset$. Then, it follows $k-p \nsupseteq 1$, a contradiction.

In one word, if $k=2$, it will have $|\operatorname{Aut}(M)| \geq 4$ and $\operatorname{Aut}(M) \nsubseteq H$.
By induction on $k$, we will prove $|\operatorname{Aut}(M)| \geq 4$ and $\operatorname{Aut}(M) \nsubseteq H$.
According to the given, we know $\mathcal{C}\left(M_{j}\right) \neq \emptyset(j=1,2)$ and $\left|\mathcal{C}\left(M_{1}\right)\right|=p \geq 1$, $\mathcal{C}\left(M_{2}\right)=k-p \geq 1$.

State 1. Assume both of $M_{1}$ and $M_{2}$ are uniform. By Lemma 2, one gets $\left|\operatorname{Aut}\left(M_{1}\right)\right| \geq\left|\left(C_{i_{1}} \cup C_{i_{2}}\right)\right|!\geq 3!$ and $\left|\operatorname{Aut}\left(M_{2}\right)\right| \geq\left|\left(\bigcup_{t=p+1}^{k} C_{i_{t}}\right)\right|!\geq 1$. Hence, we get the need result.

Assume $M_{1}$ is uniform and $M_{2}$ is non-uniform. This assumption and Lemma 2 together cause $\left|A u t\left(M_{1}\right)\right| \geq 6$. Additionally, it causes $\left|A u t\left(M_{2}\right)\right| \geq$ 1. Thus the need consequent is followed.

Assume $M_{2}$ is uniform and $M_{1}$ is non-uniform. If $k-p=1$. Then (i) brings about $|\operatorname{Aut}(M)| \geq 4$ and $\operatorname{Aut}(M) \nsupseteq H$. If $k-p>1$. Then Lemma 2 yields out $\left|\operatorname{Aut}\left(M_{2}\right)\right| \geq 4$. Hence, it easily produces $|A u t(M)| \geq 4$, and so, $\operatorname{Aut}(M) \nRightarrow H$ is provided.

State 2. Assume both $M_{1}$ and $M_{2}$ are non-uniform paving. According to (i) or the inductive supposition and the property of $M_{h}$, we have $\left|A u t\left(M_{h}\right)\right| \geq 4$, and so $|\operatorname{Aut}(M)| \geq 4 \times 1=4$, further, $\operatorname{Aut}(M) \nsupseteq H$.

Lemma 5 Let $M=\left(\bigcup_{j=1}^{k} C_{j}, \mathcal{C}(M)=\left\{C_{j}: j=1, \ldots, k\right\}\right)$ and $k \geq 2$ be a
non-uniform paving matroid with $\rho(M)=r \geq 2$. If $M$ satisfies the following
(1) and (2)
(1) for any $C_{i} \in \mathcal{C}(M)$, there is $C_{j} \in \mathcal{C}(M) \backslash C_{i}$ satisfying $C_{i} \cap C_{j} \neq \emptyset$;
(2) for any $C_{i_{1}}, C_{i_{2}} \in \mathcal{C}(M)$, if $C_{i_{1}} \cap C_{i_{2}} \neq \emptyset$, then $N=\left(\bigcup_{t=1}^{q} C_{i_{t}}=C_{i_{1}} \cup\right.$ $\left.C_{i_{2}}, \mathcal{C}(N)=\left\{C_{i_{t}}: C_{i_{t}} \subseteq C_{i_{1}} \cup C_{i_{2}}, C_{i_{t}} \in \mathcal{C}(M), t=1,2, \ldots, q\right\}\right)=M$.

Then $3 \leq|\mathcal{C}(M)| \leq 4$.
Proof Since $M$ is non-uniform and $C_{1} \cap C_{2}=\{1, \ldots, t\} \neq \emptyset$. We will suppose $C_{1}=\left\{1, \ldots, t, a_{1(t+1)}, \ldots, a_{1 r_{1}}\right\}$ and $C_{2}=\left\{1, \ldots, t, a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\}$, where $r_{1}, r_{2} \in\{r, r+1\}$.

By the given condition and $C_{j} \cap C_{3} \neq \emptyset(j=1,2)$, we present $C_{1} \cup C_{2} \backslash$ $1 \supseteq C_{3} \in \mathcal{C}(M)$ and $N=\left(\bigcup_{j=1}^{p} C_{1_{j}},\left\{C_{1_{j}}: C_{1_{j}} \subseteq C_{1} \cup C_{3}, C_{1_{1}}=C_{1}, C_{1_{2}}=\right.\right.$ $\left.\left.C_{3}, C_{1_{j}} \in \mathcal{C}(M)\right\}\right)=\left(\bigcup_{j=1}^{p} C_{2_{j}},\left\{C_{2_{j}}: C_{2_{j}} \subseteq C_{1} \cup C_{2}, C_{2_{1}}=C_{1}, C_{2_{2}}=C_{2}, C_{2_{j}} \in\right.\right.$ $\mathcal{C}(M)\})=M$. This compels $C_{1} \cup C_{2}=C_{1} \cup C_{3}$, and hence $\left\{a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\} \subseteq$ $C_{3}$. Furthermore, $C_{2} \cup C_{3}=C_{1} \cup C_{2}$ follows $\left\{a_{1(t+1)}, \ldots, a_{1 r_{1}}\right\} \subseteq C_{3}$. Namely, $\left\{a_{1(t+1)}, \ldots, a_{1 r_{1}}, a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\} \subseteq C_{3}$.

By Lemma $1, C_{3} \cup C_{1} \backslash a_{1(t+1)} \supseteq C_{i} \in \mathcal{C}(M)$ for some $C_{i}$, and so $a_{1(t+1)} \notin$ $C_{i}$. If $C_{i} \neq C_{2}$, then $C_{i}=C_{4}$, and in addition, $C_{4} \cap C_{2} \neq \emptyset$. Therefore, it follows $C_{4} \cup C_{2} \neq C_{1} \cup C_{2}$, a contradiction with the property of $M$. That is to say, $C_{i}=C_{2}$. Similarly to $C_{3} \cup C_{1} \backslash a_{1 j}(j=t+2, \ldots, r)$ and $C_{3} \cup C_{2} \backslash a_{2 s},(s=$ $\left.t+1, \ldots, r_{2}\right)$.

Additionally, if $j \in C_{3}$ for some $j \in\{1, \ldots, t\}$, it follows $C_{1} \cup C_{3} \backslash j \supseteq$ $C_{\alpha} \in \mathcal{C}(M)$, but $j \in C_{1}, C_{2}, C_{3}$, and so $C_{\alpha} \notin\left\{C_{1}, C_{2}, C_{3}\right\}$. No matter to denote $C_{\alpha}=C_{4}$. By Lemma $1, C_{4} \nsubseteq C_{1}, C_{3}$. Combining the close result above and $C_{4} \subseteq C_{1} \cup C_{3}$, we may indicate $C_{4} \cap C_{1} \neq \emptyset$ and $C_{4} \cap C_{3} \neq \emptyset$. This follows $a_{2 p} \in C_{4}$ for some $p \in\left\{t+1, \ldots, r_{2}\right\}$. So it causes $C_{4} \cap C_{2} \neq \emptyset$. Thus, it presents $C_{2} \cup C_{4}=C_{1} \cup C_{2}$. This compels $\left\{a_{1(t+1)}, \ldots, a_{1 r_{1}}\right\} \subseteq$ $C_{4}$. Since $C_{1} \cup C_{4}=C_{1} \cup C_{2}$ compels $\left\{a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\} \subseteq C_{4}$, one has $\left\{a_{1(t+1)}, \ldots, a_{1 r_{1}}, a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\} \subseteq C_{4}$. No harm to suppose $\{1, \ldots, s\} \subseteq$ $C_{3}(s \leq t)$. In view of $C_{3} \cup C_{4}=C_{1} \cup C_{2}$, we may earn $\{s+1, \ldots, t\} \subseteq C_{4}$. In addition, $\left|C_{3}\right| \leq r+1$ and $C_{1} \cap C_{2} \neq \emptyset$ together assure $s<t$.

Suppose $C_{3} \cap C_{4} \cap\{1, \ldots, t\} \neq \emptyset$, i.e. there is $\beta \in\{1, \ldots, t\}$ satisfying $\beta \in$ $C_{3} \cap C_{4}$. Then $C_{3} \cup C_{4} \backslash \beta \supseteq C_{\gamma} \in \mathcal{C}(M)$. But we know $C_{\gamma} \notin\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$. No harm to denote $C_{\gamma}$ to be $C_{5}$. Obviously, $C_{5} \cap C_{3} \neq \emptyset$ and $C_{5} \cap C_{4} \neq \emptyset$. Let $\{1, \ldots, t\} \supseteq\left\{\beta_{1}, \ldots, \beta_{q}\right\} \subseteq C_{5}$.

If $C_{5} \cap\left\{a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\}=\emptyset$, then $C_{5} \subseteq C_{1}$, a contradiction.
Similarly, $C_{5} \cap\left\{a_{1(t+1)}, \ldots, a_{1 r_{1}}\right\} \neq \emptyset$.
Therefore, by the supposition of $M$, we may obtain $C_{5} \cup C_{2}=C_{5} \cup$ $C_{1}=C_{1} \cup C_{2}$, and so $\left\{a_{1(t+1)}, \ldots, a_{1 r_{1}}, a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\} \subseteq C_{5}$. Moreover,
using this augmentation repeated, we may state that $N=\left(C_{3} \cup C_{4}, \mathcal{C}=\right.$ $\left.\left\{C_{j}: C_{j} \subseteq C_{3} \cup C_{4}, C_{j} \in \mathcal{C}(M)\right\}\right)$ is a paving matroid with $\mathcal{C}(N)=\mathcal{C}$ and $\left\{a_{1(t+1}, \ldots, a_{1 r_{1}}, a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\} \subseteq C_{j} \in \mathcal{C}$, and in addition, $N \neq M$, a contradiction to the supposition of $M$. Namely, $C_{3}=\left\{1, \ldots, s, a_{1(t+1)}, \ldots, a_{1 r_{1}}\right.$, $\left.a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\}$ and $C_{4}=\left\{s+1, \ldots, t, a_{1(t+1)}, \ldots, a_{1 r_{1}}, a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\}$. Thus $\mathcal{C}(M)=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$, and hence $3 \leq|\mathcal{C}(M)| \leq 4$.

Assume $s=0$. Then, one has $|\mathcal{C}(M)|=3$ and $C_{3}=\left\{a_{1(t+1)}, \ldots, a_{1 r_{1}}\right.$, $\left.a_{2(t+1)}, \ldots, a_{2 r_{2}}\right\}$, and in addition, no $C_{4}$ exists. That is to say, if $|\mathcal{C}(M)|=4$, it must have $1 \leq s$ and $1 \leq t-s$.

Based on Lemma 5, we may demonstrate the following Lemma 6 .
Lemma 6 Let $M$ be defined as that in Lemma 5. Then
(I) Assume $|\mathcal{C}(M)|=3$. Then there are the following results.
(1) If $\left|C_{1}\right|=r,\left|C_{2}\right|=r+1, C_{1} \cap C_{2} \neq \emptyset$ and $\left|C_{1} \cap C_{2}\right|=r-1$. Then $\operatorname{Aut}(M) \nsubseteq H$.
(2) If $\left|C_{1}\right|=\left|C_{2}\right|=r, C_{1} \cap C_{2} \neq \emptyset$ and $\left|C_{1} \cap C_{2}\right|=r-1$. Then $\operatorname{Aut}(M) \not \equiv H$.
(3) Suppose $\left|C_{1}\right|=r$ and for $C_{2} \in \mathcal{C}(M), C_{1} \cap C_{2}=\{1, \ldots, t\} \neq \emptyset$. If $t<r-1$, then $\operatorname{Aut}(M) \not \equiv H$.
(4) If $\left|C_{1}\right|=r+1=\left|C_{2}\right|$ and $C_{1} \cap C_{2}=\{1, \ldots, t\} \neq \emptyset$. Then $\operatorname{Aut}(M) \not \equiv H$.
(II) Assume $|\mathcal{C}(M)|=4$. Then, we have $\operatorname{Aut}(M) \nsubseteq H$.

Proof It is only to testify the truth of every case in (I) and (II) respectively. Because all these checks are not difficult, we omit them here.

Assume $M$ is defined as Lemma 5. If $C_{1} \cap C_{2}=\emptyset$. Then it assures $C_{3} \cap C_{1} \neq \emptyset$ and $C_{3} \cap C_{2} \neq \emptyset$, additionally, $C_{1} \cup C_{3}=C_{2} \cup C_{3}$. Hence, it is no harm to suppose that $C_{1} \cap C_{2} \neq \emptyset$ if $M$ is defined as in Lemma 5 . This result together with Lemma 6 proves the following Theorem 1.

Theorem 1 If $M$ is defined as that in Lemma 5. Then $\operatorname{Aut}(M) \not \not H$.
Summing up, we have the following Theorem 2.
Theorem 2 Let $M=\left(\bigcup_{j=1}^{k} C_{j}, \mathcal{C}(M)=\left\{C_{1}, \ldots, C_{k}\right\}\right)$ be a non-uniform paving matroid with $\rho(M) \geq 2$.
(1) If $k=1$. Then $\operatorname{Aut}(M) \nRightarrow H$.
(2) Assume $k \geq 2$. Then there are the following consequences.
(i) If there is $C_{i} \in \mathcal{C}(M)$ satisfying $C_{i} \cap C_{j}=\emptyset,(j \neq i ; j=1,2, \ldots, k)$, then $|A u t(M)| \geq 4$ and $\operatorname{Aut}(M) \nsubseteq H$.
(ii) Suppose for any $C_{i} \in \mathcal{C}(M)$, there is $C_{j_{i}} \in \mathcal{C}(M) \backslash C_{i}$ satisfying $C_{i} \cap$ $C_{j_{i}} \neq \emptyset$. If there is $C_{i_{1}}, C_{i_{2}} \in \mathcal{C}(M) \quad\left(i_{1} \neq i_{2}\right)$ such that $C_{i_{1}} \cap C_{i_{2}} \neq$ $\emptyset, C_{i_{3}}, \ldots, C_{i_{p}} \subseteq C_{i_{1}} \cup C_{i_{2}}$, and $C_{i_{t}} \cap\left(C_{i_{1}} \cup C_{i_{2}}\right)=\emptyset,(t=p+1, \ldots, k)$, where $C_{i_{j}} \in \mathcal{C}(M)(j=1,2, \ldots, p, p+1, \ldots, k)$ and $0 \neq p<k$ and $k-p \geq 1$. Let
$M_{1}=\left(C_{i_{1}} \cup C_{i_{2}},\left\{C_{i_{1}}, \ldots, C_{i_{p}}\right\}\right)$ and $M_{2}=\left(\bigcup_{t=p+1}^{k} C_{i_{t}},\left\{C_{i_{t}}: t=p+1, \ldots, k\right\}\right)$.
We have the following statements.
State 1. If one of $M_{1}$ and $M_{2}$ are uniform, then $|\operatorname{Aut}(M)| \geq 4$ and $\operatorname{Aut}(M) \nsubseteq H$.

State 2. If both of $M_{1}$ and $M_{2}$ are non-uniform, and in addition, for some $h \in\{1,2\}, M_{h}$ satisfies
(a1) there is $C_{t}, C_{s} \in \mathcal{C}(M)$ satisfying $C_{t} \cap C_{s} \neq \emptyset$ and $N_{t s}=\left(C_{t} \cup C_{s},\left\{C_{t s} \in\right.\right.$ $\left.\left.\mathcal{C}\left(M_{1}\right): C_{t s} \subseteq C_{t} \cup C_{s}\right\}\right) \neq M_{h}$, where $1 \leq\left|\mathcal{C}\left(N_{t s}\right)\right|<p$.
(a2) for any $C_{j} \in \mathcal{C}\left(M_{h}\right) \backslash \mathcal{C}\left(N_{t s}\right)$, it has $C_{j} \cap\left(C_{t} \cup C_{s}\right)=\emptyset$.
Then $|\operatorname{Aut}(M)| \geq 4$ and $\operatorname{Aut}(M) \nsubseteq H$.
State 3. If both $M_{1}$ and $M_{2}$ are non-uniform paving and one of $M_{1}$ and $M_{2}$, no matter to assume $M_{1}$, satisfies that for any $C_{t} \in \mathcal{C}\left(M_{1}\right)$, it exists $C_{s} \in \mathcal{C}\left(M_{1}\right)$ satisfying $C_{t} \cap C_{s} \neq \emptyset$, but $N_{t s}=\left(C_{t} \cup C_{s},\left\{C_{t s} \in \mathcal{C}\left(M_{j}\right): C_{t s} \subseteq\right.\right.$ $\left.\left.C_{t} \cup C_{s}\right\}\right)=M_{1}$.

Remark 2 Up till now, for paving matroids, there exists another circumstance left to be dealt with. That is, $M=\left(C_{1} \cup C_{2}, \mathcal{C}(M)=\left\{C_{j}: C_{j} \subseteq\right.\right.$ $\left.C_{1} \cup C_{2}, j=1, \ldots, k\right\}$ ) is a non-uniform paving matroid with $\rho(M)=r \geq 2$ and owns the following properties:
( $\alpha$ ) $C_{1} \cap C_{2} \neq \emptyset$;
$(\beta)$ for any $C_{p} \in \mathcal{C}(M)$, there is $C_{q} \in \mathcal{C}(M) \backslash C_{p}$ satisfying $C_{p} \cap C_{q} \neq \emptyset$;
$(\gamma)$ for any $C_{t}, C_{s} \in \mathcal{C}(M)$ and $C_{t} \cap C_{s} \neq \emptyset,(t \neq s)$, if $N=\left(C_{t} \cup C_{s},\left\{C_{j}\right.\right.$ : $\left.\left.C_{j} \subseteq C_{t} \cup C_{s}, C_{j} \in \mathcal{C}(M)\right\}\right) \neq M$, then there is $C_{p} \in \mathcal{C}(M) \backslash \mathcal{C}(N) \neq \emptyset$ satisfying $C_{p} \cap\left(C_{t} \cup C_{s}\right) \neq \emptyset$.

This circumstance will be considered in what follows.
Theorem 3 Let $M$ be defined as that in Remark 2. Then
(1) Let $\left|C_{1}\right|=\left|C_{2}\right|=\rho(M)=r$. If $\left|C_{1} \cap C_{2}\right|=r-1$, then $\operatorname{Aut}(M) \not \equiv H$.
(2) Let $\left|C_{1}\right|=\rho(M)=r$. If $\left|C_{1} \cap C_{2}\right|=r-1$ and $\left|C_{j}\right|=r+1$ for $C_{j} \in \mathcal{C}(M) \backslash C_{1}, j=2, \ldots, k$. Then $\operatorname{Aut}(M) \nsupseteq H$.
(3) Let $\left|C_{1}\right|=\left|C_{2}\right|=\rho(M)+1=r+1$. If $\left|C_{1} \cap C_{2}\right|=r$, then $\operatorname{Aut}(M) \not \equiv H$.

Proof (1) Let $C_{j}=\left\{a_{1}, a_{2}, \ldots, a_{r-1}, a_{j r}\right\},(j=1,2)$. Then by Lemma 1, it causes $C_{1} \cup C_{2} \backslash a_{1}=\left\{a_{2}, \ldots, a_{r-1}, a_{1 r}, a_{2 r}\right\} \supseteq C_{31}$. Since $r \leq\left|C_{31}\right| \leq r+1$ and $\left|\left\{a_{2}, \ldots, a_{r-1}, a_{1 r}, a_{2 r}\right\}\right|=r$, it follows $C_{31}=\left\{a_{2}, \ldots, a_{r-1}, a_{1 r}, a_{2 r}\right\}$. Similarly, $C_{1} \cup C_{2} \backslash a_{j}=C_{3 j}(j=2, \ldots, r-1)$. We may easily testify $C_{3 i} \cup C_{3 j} \backslash a_{t r} \supseteq C_{t},(t=1,2 ; i=1, \ldots, r-1 ; j \neq i, j=1, \ldots, r-1)$. It assures $C_{1} \cup C_{3 i} \backslash a_{j}=C_{3 j},(i \neq j ; i, j=1, \ldots, r-1)$. That is to say, it should have $\mathcal{C}(M)=\left\{C_{1}, C_{2}, C_{3 j}=\left\{a_{1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{r-1}, a_{1 r}, a_{2 r}\right\}, j=1, \ldots, r-\right.$ $1\}$. We define

$$
\pi_{1}: a_{1} \mapsto a_{i_{1}}, a_{2} \mapsto a_{i_{2}}, \ldots, a_{r-1} \mapsto a_{i_{r-1}}, a_{1 r} \mapsto a_{1 r}, a_{2 r} \mapsto a_{2 r}
$$

$\pi_{2}: a_{1} \mapsto a_{i_{1}}, a_{2} \mapsto a_{i_{2}}, \ldots, a_{r-1} \mapsto a_{i_{r-1}}, a_{1 r} \mapsto a_{2 r}, a_{2 r} \mapsto a_{1 r}$, where $\left\{i_{1}, i_{2}, \ldots, i_{r-1}\right\}=\{1,2, \ldots, r-1\}$.

It obviously follows $\pi_{1}, \pi_{2} \in \operatorname{Aut}(M)$, and further, $|A u t(M)| \geq(r-1)!\times 2$ !.
Assume $r>2$. Then it has $|\operatorname{Aut}(M)| \geq 4$, and hence $\operatorname{Aut}(M) \nsubseteq H$.
Assume $r=2$. Then we obtain $C_{1}=\left\{a_{1}, a_{12}\right\}, C_{2}=\left\{a_{1}, a_{22}\right\}$ and $C_{1} \cup$ $C_{2} \backslash a_{1}=C_{3}=\left\{a_{12}, a_{22}\right\}$. But this does not satisfy that $M$ is defined as that in Remark 2, a contradiction.
(2) Let $C_{1}=\left\{a_{1}, \ldots, a_{r-1}, a_{1 r}\right\}$ and $C_{2}=\left\{a_{1}, \ldots, a_{r-1}, a_{2 r}, a_{2(r+1)}\right\}$. Since $C_{1} \cup C_{2} \backslash a_{j}=\left\{a_{1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{r-1}, a_{1 r}, a_{2 r}, a_{2(r+1)}\right\}=C_{3 j},(j=$ $1,2, \ldots, r-1)$. We testify $C_{1} \cup C_{3 j} \backslash a_{1 r}=C_{2} ; C_{2} \cup C_{3 j} \backslash a_{2 s} \supseteq C_{1}, C_{3 i} \cup$ $C_{3 j} \backslash a_{2 s} \supseteq C_{1},(s=r, r+1 ; j=1, \ldots, r-1) ; C_{3 p} \cup C_{3 q} \backslash a_{j}=C_{3 j},\left(a_{j} \in\right.$ $\left.C_{3 p}, C_{3 q} ; p \neq q ; j=1, \ldots, r-1 ; p, q=1, \ldots, r-1\right)$. Hence, it causes $\mathcal{C}(M)=$ $\left\{C_{1}, C_{2}, C_{3 j}, j=1,2, \ldots, r-1\right\}$. We define
$\pi_{11}: a_{j} \mapsto a_{i_{j}} \quad(j=1,2, \ldots, r-1), a_{1 r} \mapsto a_{1 r}, a_{2 r} \mapsto a_{2 r}, a_{2(r+1)} \mapsto$ $a_{2(r+1)}$;
$\pi_{12}: a_{j} \mapsto a_{i_{j}}(j=1,2, \ldots, r-1), a_{1 r} \mapsto a_{1 r}, a_{2 r} \mapsto a_{2(r+1)}, a_{2(r+1)} \mapsto$ $a_{2 r}$,
where $\left\{i_{j}: j=1,2, \ldots, r-1\right\}=\{1,2, \ldots, r-1\}$.
So $|\operatorname{Aut}(M)| \geq(r-1)!\times 2$.
Assume $r>3$. Then it yields out $|\operatorname{Aut}(M)| \geq 4$, and so $\operatorname{Aut}(M) \nsubseteq H$.
Assume $r=2$. Then it yields out $C_{1}=\left\{a_{1}, a_{12}\right\}, C_{2}=\left\{a_{1}, a_{22}, a_{23}\right\}$ and $C_{3}=C_{1} \cup C_{2} \backslash a_{1}=\left\{a_{12}, a_{22}, a_{23}\right\}, C_{1} \cup C_{3} \backslash a_{12}=\left\{a_{1}, a_{22}, a_{23}\right\}=C_{2}, C_{2} \cup$ $C_{3} \backslash a_{22}=\left\{a_{1}, a_{12}, a_{23}\right\} \supseteq C_{1}, C_{2} \cup C_{3} \backslash a_{23}=\left\{a_{1}, a_{12}, a_{22}\right\} \supseteq C_{1}$. Thus, we may obtain $\mathcal{C}(M)=\left\{C_{1}, C_{2}, C_{3}\right\}$. However, $C_{1} \cup C_{3}=C_{1} \cup C_{2}=C_{2} \cup C_{3}$ follows that $M$ is not defined as that in Remark 2, a contradiction to the given supposition.

Assume $r=3$. Then it causes $C_{1}=\left\{1,2, a_{13}\right\}$ and $C_{2}=\left\{1,2, a_{23}, a_{24}\right\}$. Therefore, it proves $C_{3}=\left\{2, a_{13}, a_{23}, a_{24}\right\}, C_{4}=\left\{1, a_{13}, a_{23}, a_{24}\right\} \in \mathcal{C}(M)$. This is just one of case in Lemma 5 , a contradiction to $M$ defined as that in Remark 2.
(3) Similarly to the discussion in (1), it follows the need consequences.

Recalling back all the discussion from Lemma 3 to the beyond, we may state that for a paving matroid $M$, there are the following cases and only the following cases not be solved for considering $\operatorname{Aut}(M) \cong H$ or $\operatorname{Aut}(M) \nexists H$. Actually, we may indicate that $M$ should be defined as that in Remark 2.

Case 1. $\left|C_{1}\right|=r,\left|C_{1} \cap C_{2}\right|<r-1$ and there exists $C_{j} \in \mathcal{C}(M) \backslash C_{1}$ satisfying $\left|C_{j}\right|=r$.

Case 2. $\left|C_{1}\right|=r+1=\left|C_{2}\right|$ and $\left|C_{1} \cap C_{2}\right|<r$.
We will use some Examples to handle these cases partly.

Suppose $M$ is defined as that in Remark 2 and $\rho(M)=2$.
Let $C_{1}=\{1,2\}$. If $\left|C_{2}\right|=2$. Then, we may understand that $C_{2}=$ $\{1,3\}, C_{3}=\{2,3\}$, and in addition, $\left(C_{1} \cup C_{2},\left\{C_{1}, C_{2}, C_{3}\right\}\right)$ is a paving matroid. In fact, $C_{1} \cup C_{2}=C_{2} \cup C_{3}=C_{1} \cup C_{3}$ are true, a contradiction to the supposition. Thus, it assures $\left|C_{2}\right|=3$. However, since $C_{1} \cap C_{2} \neq \emptyset$ and Lemma 1 together ask $\left|C_{1} \cap C_{2}\right|=1$, and so $C_{2}=\{1,3,4\}$. Additionally, there are $C_{1} \cup C_{2} \backslash 1=$ $\{2,3,4\} \supseteq C_{3}$. Assume $C_{3}=\{2,3\}$ (or $\{2,4\}$ ). Then $C_{1} \cup C_{3} \backslash 2=\{1,3\} \subset C_{2}$ (or $C_{1} \cup C_{3} \backslash 2=\{1,4\} \subset C_{2}$ ). This leads to a contradiction to Lemma 1 . Thus, there is $C_{3}=\{2,3,4\}$. Furthermore, $\left(C_{1} \cup C_{2},\left\{C_{1}, C_{2}, C_{3}\right\}\right)$ is a paving matroid, but this is a contradiction with the supposition.

That is to say, $\left|C_{1}\right|=3$. Similarly, $\left|C_{2}\right|=3$.
Example 1 Let $C_{1}=\{1,2,3\}$ and $C_{2}=\{1,4,5\} . M$ is defined as that in Remark 2 with $\rho(M)=2$. Assume $C_{j} \in \mathcal{C}(M) \backslash\left\{C_{1}, C_{2}\right\},\left|C_{j}\right|=\rho(M)=2$ and $C_{1} \cup C_{2} \backslash 1 \supseteq C_{3}$. Since $M$ is non-uniform, it assures $\rho(M)=2$.

If any $C_{j} \in \mathcal{C}(M)$ satisfies $\left|C_{j}\right|=3$, then we may state that $M$ is uniform. This is a contradiction.

Let $\left|C_{3}\right|=2$. Then $C_{3}=\{2,4\}$, in addition, $C_{1} \cup C_{3} \backslash 2=\{1,3,4\} \supseteq C_{4}$. But $C_{4}=\{3,4\}$ will follow a contradiction to Lemma 1 because $C_{3} \cup C_{4} \backslash 4=$ $\{2,3\} \subseteq C_{1}$. Thus, we may express that $C_{4}=\{1,3,4\}$ and $N=\left(C_{1} \cup\right.$ $\left.C_{3},\left\{C_{1}, C_{3}, C_{4}\right\}\right)$ is a non-uniform matroid.
$C_{2} \cup C_{4} \backslash 4=\{1,2,5\}$. Similarly to the above, if $C_{p} \subseteq\{1,2,5\}$ and $\left|C_{p}\right|=2$, then it follows a contradiction. Thus, it causes $C_{5}=\{1,2,5\}$. Therefore, it provides $C_{1} \cup C_{5} \backslash 1=\{2,3,5\} \supseteq C_{6}$. Divided the following (1)-(3) to discuss.
(1) If $C_{6}=\{2,5\}$, then $C_{3} \cup C_{6} \backslash 2=\{4,5\} \subseteq C_{2}$. This causes a contradiction to Lemma 1 .
(2) If $C_{6}=\{3,5\}$, then $C_{1} \cup C_{6} \backslash=\{1,2,5\}=C_{5}$. We can prove that $\left(C_{1} \cup C_{2},\left\{C_{j}: j=1,2, \ldots, 6\right\}\right)$ is a non-uniform paving matroid defined as that in Remark 2. Define
$\pi_{0}: x \mapsto x, x \in C_{1} \cup C_{2} ; \pi_{1}: 2 \mapsto 4,4 \mapsto 2, x \mapsto x, x \in\{1,3,5\} ;$
$\pi_{2}: 3 \mapsto 5,5 \mapsto 3, x \mapsto x, x \in\{1,2,4\} ; \pi_{3}: 2 \mapsto 4,4 \mapsto 2,3 \mapsto 5,5 \mapsto$ $3,1 \mapsto 1$.

Then, we may easily find out $\pi_{j} \in \operatorname{Aut}(M),(j=0,1,2,3)$. So $|\operatorname{Aut}(M)| \geq$ 4 holds. Hence $\operatorname{Aut}(M) \nsubseteq H$ is followed.
(3) If $C_{6}=\{2,3,5\}$. We prove that $M$, i.e. $\left(C_{1} \cup C_{2},\left\{C_{1}, C_{2}, C_{3}=\right.\right.$ $\left.\left.\{2,4\}, C_{4}=\{1,3,4\}, C_{5}=\{1,2,5\}, C_{6}=\{2,3,5\}, C_{7}=\{1,3,5\}, C_{8}=\{3,4,5\}\right\}\right)$, is one of the non-uniform paving matroid defined as that in Remark 2. As the discussion in Theorem 3, there is $\operatorname{Aut}(M) \nexists H$.

Let $M^{\prime}$ be defined as in Remark 2 with $\rho\left(M^{\prime}\right)=2$. Then it is not difficult to demonstrate that $M^{\prime}$ is isomorphic to one of matroids appeared in Example

1 and Theorem 3. Namely, up to isomorphism, if $M$ is defined as that in Remark 2 and $\rho(M)=2$, then $\operatorname{Aut}(M) \nRightarrow H$.

Next we consider with $\rho(M)=3$.
Example 2 Let $C_{1}=\{1,2,3\}$ and $C_{2}=\{1,4,5,6\} . M=\left(C_{1} \cup C_{2},\left\{C_{j}\right.\right.$ : $j=1, \ldots, 10\}$ ) where $C_{3}=\{2,3,4\}, C_{4}=\{1,3,4\}, C_{5}=\{1,2,4\}, C_{6}=$ $\{3,4,5,6\}, C_{7}=\{1,3,5,6\}, C_{8}=\{2,4,5,6\}, C_{9}=\{1,2,5,6\}, C_{10}=\{2,3,5,6\}$. It obviously demonstrates that $M$ is a non-uniform paving matroid. Additionally, we may easily search out $N=\left(C_{1} \cup C_{3}, \mathcal{C}(N)=\left\{C_{1}, C_{3}, C_{4}, C_{5}\right\}\right)$ and $C_{6} \cap\left(C_{1} \cup C_{3}\right) \neq \emptyset$. Define
$\pi_{0}: x \mapsto x$ for $x \in C_{1} \cup C_{2} ; \pi_{1}: 1 \mapsto 2,2 \mapsto 1, x \mapsto x$ for $x \in\{3,4,5,6\} ;$
$\pi_{2}: 5 \mapsto 6,6 \mapsto 5, x \mapsto x$ for $x \in\{1,2,3,4\} ; \pi_{3}: 1 \mapsto 4,4 \mapsto 1, x \mapsto x$ for $x \in\{2,3,5,6\}$;
Then evidently, there are $\pi_{j} \in \operatorname{Aut}(M),(j=0,1, \ldots, 3)$, and so $\operatorname{Aut}(M) \nexists H$ and $|A u t(M)| \geq 4$.

Let $C_{1}=\{1,2,3\}, C_{2}=\{1,4,5\}$, and $M$ be a paving matroid with $\rho(M)=$ 3 defined on $C_{1} \cup C_{2}$. We prove that if $M$ is presented as that in Remark 2 with $\rho(M)=3$ and $1 \leq\left|C_{1} \cap C_{2}\right|<2$, then $C_{1}$ (or $C_{2}$ ) satisfies $\left|C_{1}\right|=4$ (or $\left|C_{2}\right|=4$ ). Thus, similar to Theorem 3 and Example 2, assuming $M$ to be defined on $C_{1} \cup C_{2}$ with $\rho(M)=3$ and given as Remark 2 and $\left|C_{1}\right|=3,\left|C_{2}\right|=$ 4. We earn $\operatorname{Aut}(M) \nexists H$ up to isomorphism.

Let $M$ be a paving matroid defined on $C_{1} \cup C_{2}, C_{1}=\{1,2,3,4\}, C_{2}=$ $\{1,2,3,5\}$ with $\rho(M)=3$. Then up to isomorphism, $M$ is $\left(C_{1} \cup C_{2}, \mathrm{C}(M)=\right.$ $\left.\left\{C_{1}, C_{2}, C_{3}=\{3,4,5\}, C_{4}=\{1,2,4,5\}\right\}\right)$. We may find out that $M$ is shown as in Remark 2. Thus, if $M$ is defined as that in Remark 2 on $C_{1} \cup C_{2}$ with $\rho(M)=3$, then there is $\left|C_{1} \cap C_{2}\right| \leq 2$. Assume $\left|C_{1} \cap C_{2}\right|=2$. Then we get $C_{1}=\{1,2,3,4\}$ and $C_{2}=\{1,2,5,6\}$.

Example 3 Let $C_{1}=\{1,2,3,4\}, C_{2}=\{1,2,5,6\}, C_{3}=\{2,3,5\}, C_{4}=$ $\{1,3,4,5\}, C_{5}=\{1,2,4,5\}, C_{6}=\{1,3,5,6\}, C_{7}=\{1,2,3,6\}, C_{8}=\{2,3,4,5\}$ and $C_{9}=\{1,2,3,5\}$. Then $N=\left(C_{1} \cup C_{3},\left\{C_{1}, C_{3}, C_{4}, C_{5}\right\}\right)$ is a non-uniform matroid and $M=\left(C_{1} \cup C_{2},\left\{C_{j}: j=1,2, \ldots, 9\right\}\right)$ is defined as that in Remark 2 on $C_{1} \cup C_{2}$ with $\rho(M)=3$ according to $N \neq M$ and $C_{2} \cap\left(C_{1} \cup C_{3}\right) \neq \emptyset$. Define
$\pi_{0}: x \mapsto x, x \in C_{1} \cup C_{2} ; \pi_{1}: 2 \mapsto 3,3 \mapsto 2, x \mapsto x, x \in\{1,4,5,6\} ;$
$\pi_{2}: 2 \mapsto 5,5 \mapsto 2, x \mapsto x, x \in\{1,3,4,6\} ; \pi_{3}: 3 \mapsto 5,5 \mapsto 3, x \mapsto x, x \in$ $\{1,2,4,6\}$.
It is easy to see $\pi_{j} \in \operatorname{Aut}(M)(j=0,1,2,3)$, and so $\operatorname{Aut}(M) \not \equiv H$.
Combining Theorem 3, Example 2 and Example 3 with the above discus-
sion, we may state that if $M=\left(C_{1} \cup C_{2}, \mathcal{C}(M)=\left\{C_{j}: j=1, \ldots, k\right\}\right)$ is defined as that in Remark 2 with $\rho(M)=3$, then up to isomorphism, $\operatorname{Aut}(M) \not \equiv H$ holds.

We partially answer to the Welsh's problem. But based on the discussion in this paper, we conjecture that none of paving matroids $M$ satisfies $\operatorname{Aut}(M) \cong \mathbb{Z}_{3}$.

Acknowledgement. Granted by the National Nature Science Foundation of China (60974082).

## References

[1] T. W. Hungerford, Algebra, Springer-Verlag New York Inc., New York, 1974.
[2] H-J. Lai, Matroid Theory, Higher Education Press, Beijing, 2002.(in Chinese with English abstract)
[3] H. Mao and S-Y. Liu, Axiom systems for the automorphism guoup of an antimatroid and its properties, Chinese J. of Engineering Mathematics, 21(2)2004,153-159.(in Chinese)
[4] J. Oxley, Matroid Theory, Oxford Universtiy Press, New York, 1992.
[5] D. J. A. Welsh, Matroid Theory, Academic Press Inc., London, 1976.

Department of Mathematics,
Hebei University, Baoding 071002, China
e-mail: yushengmao@263.net
Department of Mathematics,
Xidian University, Xi'an 710071, China


[^0]:    Key Words: paving matroid; automorphism group; group; isomorphism; circuit
    2010 Mathematics Subject Classification: 05B35, 05E15
    Received: September, 2009
    Accepted: January, 2010

