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SOME PROPERTIES OF AUTOMORPHISM
GROUPS OF PAVING MATROIDS

Hua Mao, Sanyang Liu

Abstract

This paper deals with the relation between the automorphism groups
of some paving matroids and Z3, where Z3 is the additive group of
modulo 3 over Z. It concludes that for paving matroids under most
cases, Z3 is not isomorphic to the automorphism groups of these paving
matroids. Even in the exceptional cases, we reasonably conjecture that
Z3 is not isomorphic to the automorphism groups of the corresponding
paving matroids. Actually, the result here is relative to the Welsh’s
open problem that for any group G, there is a paving matroid with
automorphism group isomorphic to G.

1 Introduction and Preliminaries

Welsh indicates [5,p.40] that paving matroids are essentially a class of rel-
atively well-behaving matroids. Additionally, J.Oxley points out [4,p.26] that
paving matroids is an important class of matroids. In fact, there are many un-
solved open problems relative with paving matroids such as the open problem
respectively in [5,p.41], [5,p.331] and so on. This paper is relative to the open
problem in [5,p.331]. The problem is that for any group H, whether there
is a paving matroid with automorphism group isomorphic to H. Actually, if
we take H = Z3, i.e. the additive group of modulo 3, then under most cases
except the unsolved completely special cases, we get that the automorphism
group of a paving matroid is not isomorphic to H. Even for the unsolved
special cases, by the discussion in this paper, we conjecture that for any of
paving matroids belonged to these unsolved special cases, its automorphism
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group is not isomorphic to H.

It starts by reviewing some knowledge what we need in the sequel. We
assume that E is a finite set. In this paper, all informations relative to matroids
are referred to [4,5] and that relative to permutations and groups are found in
[1].

Definition 1 [4,p.26&5] Let M be a matroid. Then M is uniform if and
only if it has no circuits of size less than ρ(M) + 1. M is paving if it has no
circuits of size less than ρ(M).

Lemma 1 (1)[5,p.9&4] A collection C of subsets of E is the set of circuits
of a matroid on E if and only if conditions (c1) and (c2) are satisfied
(c1) If X 6= Y ∈ C, then X * Y ;
(c2) If C1, C2 ∈ C, C1 6= C2 and z ∈ C1∩C2, then there exists C3 ∈ C satisfying
C3 ⊆ (C1 ∪ C2) \ z.

(2)[3] Let M be a matroid on E. A permutation π : E → E is an au-
tomorphism of M if πX is a circuit in M if and only if X is a circuit in
M .

(3)[1,p.26] If Sn is denoted the symmetric group on n letters, then |Sn| =
n!.

(4)[2,p.439] Every restriction of a paving matroid is paving.

Remark 1 We denote the automorphism group of a matroid M by Aut(M).
Based on (1) in Lemma 1, a matroid M on E with C(M) as its collection of
circuits can be in notation (E, C(M)). In addition, if a group H1 is isomorphic
to a group H2, then it is denoted as H1

∼= H2. Otherwise, we write H1 � H2.

2 Properties relative to matroids

This section presents some properties of a matroid in preparation for Sec-
tion 3.

Lemma 2 Let M = (E, C(M) = {C1, C2, . . . , Ck}) be a matroid, n =

|
k⋃

j=1

Cj | and E \
k⋃

j=1

Cj = {x1, x2, . . . , xm}. Then the following properties are

true.
(1) |Aut(M)| ≥ m!.

(2) M ′ = (
k⋃

j=1

Cj , C(M)) is a matroid and |Aut(M)| ≥ |Aut(M ′)| ×m!.

(3) If k = 1, then |Aut(M)| = |C1|!×m!.
(4) If there is Ci ∈ C(M) satisfying Ci ∩ Cj = ∅, (j 6= i; j = 1, 2, . . . , k).
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Then |Aut(M)| ≥ |Ci|!×m!. Besides, MCi
= ((

k⋃
j=1

Cj) \Ci,C(M) \Ci) is still

a matroid, and further, if M is paving and m = 0, then MCi is paving.
(5) If ρ(M) = 0, then Aut(M) ∼= Sn+m.
(6) Let Ci1, Ci2 ∈ C(M) and m = 0. Then N = (Ci1∪Ci2, {Cj : Cj ∈ C(M)

and Cj ⊆ Ci1 ∪ Ci2}) is a matroid. If M is paving, and so is N .
(7) If m = 0 and k ≥ 2. Then M satisfies C1 ∩ C2 ∩ . . . ∩ Ck = ∅.
Proof Routine verification from the related definitions and Lemma 1.

3 Main results

Let H = Z3, i.e the additive group of Z modulo 3. Evidently, |H| = 3.

Let M = (E, C(M) = {C1, . . . , Ck}) be a paving matroid, n = |
k⋃

j=1

Cj | and

m = |E \
k⋃

j=1

Cj |. In this section, we consider that under what conditions, M

will satisfy Aut(M) ∼= H.
First, we may state that Aut(M) � H holds if one of the following (α1), (β1),

(γ1) happens.
(α1) If M is uniform. Definition 1 informs |Aut(M)| = C

ρ(M)+1
n+m ×(ρ(M)+1)! 6=

3.
(β1) If ρ(M) = 0. (5) in Lemma 2 shows Aut(M) ∼= Sn+m. Lemma 1 proves
|Sn+m| = (n + m)!. No matter the values of n and m, it has |Aut(M)| 6= 3.

(γ1) If |E\
k⋃

j=1

Cj | = m ≥ 2. Let M ′ = (
k⋃

j=1

Cj , C(M)). (2) in Lemma 2 demon-

strates |Aut(M)| ≥ 2!×|Aut(M ′)|. In addition, in view of C(M ′) = C(M) and
(2) in Lemma 1, we may describe that
if |Aut(M ′)| = 1 holds, it leads to |Aut(M)| = |Aut(M ′)| = 1 ×m!, further,
|Aut(M)| 6= 3;
if |Aut(M ′)| ≥ 2 holds, it causes |Aut(M)| ≥ 2!× 2 = 4, and so |Aut(M)| 6= 3.

Second, (2) in Lemma 1 expresses that if E \
k⋃

j=1

Cj = {x} and ρ(M) ≥ 1,

then both Aut(M) ∼= Aut(M ′) and π(x) = x for any π ∈ Aut(M) are correct,

where M ′ = (
k⋃

j=1

Cj , C(M)).

According to the above two points, in what follows, we only consider
the non-uniform paving matroid M = (E, C(M)) with ρ(M) ≥ 1, where

C(M) = {Cj : j = 1, 2, . . . , k} and E satisfies |E \
k⋃

j=1

Cj | = m = 0. We

will divide different cases into discussion.
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The following Lemma 3 is to consider the case of ρ(M) = 1.

Lemma 3 Let M = (
k⋃

j=1

Cj , C(M) = {C1, C2, . . . , Ck}) be a non-uniform

paving matorid and ρ(M) = 1. Then Aut(M) � H and
if k ≥ 2, then |Aut(M)| ≥ 2; if k ≥ 3, then |Aut(M)| ≥ 4.
Proof Assume k = 1. Lemma 2 shows |Aut(M)| = |C1|!, and so Aut(M) �

H.
Since M is paving, one has 1 = ρ(M) ≤ |Cj | ≤ ρ(M)+1 = 2, (j = 1, . . . , k).
Let k ≥ 2.
If |Ci| = ρ(M) = 1. This causes Ci = {ai}, (i = 1, . . . , k). Then π : ai 7→

aj (i = 1, . . . , k; j = 1, . . . , k) satisfies π(Ci) ∈ C(M) (i = 1, . . . , k), and so

π ∈ Aut(M). Thus |Aut(M)| = |
k⋃

i=1

Ci|! = k!. So if k = 2, then |Aut(M)| = 2;

if k ≥ 3, then |Aut(M)| ≥ 6 ≥ 4. These follow Aut(M) � H.
Suppose that there is Ci satisfying |Ci| = ρ(M) + 1 = 2. No matter to

suppose |Ck| = 2. Distinguishing four steps to fulfil the proof.
Step 1. Assume k = 2.
It is no harm to suppose C1 = {a1, . . . , at} and C2 = {as−1, as} where

1 ≤ t ≤ 2. In virtue of Lemma 1, Ci * Cj is correct (i 6= j; i, j = 1, 2).
We assert C1 ∩ C2 = ∅. Otherwise, as ∈ C1 ∩ C2 and Lemma 1 lead to
C3 ⊆ C1 ∪ C2 \ as and C3 ∈ C(M) \ {C1, C2}, this is a contradiction to
k = |C(M)| = 2. Thus, we have |Aut(M)| ≥ |C1|!× |C2|! ≥ t!× 2! ≥ 2.

Obviously, t = 1 follows |Aut(M)| = 2; t = 2 follows |Aut(M)| ≥ 4. So
Aut(M) � H.

Step 2. Assume k = 3.
The following (2.1) and (2.2) will carry out the proof of this step.
(2.1) Let C1 = {a1} and C3 = {a2, a3}. Divided two cases (α) and (β) for

discussion.
(α) If |C2| = 1, i.e. C2 = {a4}. Then by Lemma 1, ai 6= aj , (i 6= j; i, j =
1, 2, 3, 4). Define

π01 : ai 7→ ai (i = 1, 2, 3, 4); π11 : a1 7→ a4, a4 7→ a1, ai 7→ ai (i = 2, 3);
π21 : ai 7→ ai (i = 1, 4), a2 7→ a3, a3 7→ a2; π31 : a1 7→ a4, a4 7→

a1, a2 7→ a3, a3 7→ a2.
Then Aut(M) ⊇ {π01, π11, π21, π31}, so Aut(M) � H and |Aut(M)| ≥ 4.

(β) If |C2| = 2.
By Lemma 1, C2 ∩ C3 6= ∅ yields out C2 = {a2, a5}. However, C2 ∪

C3 \ a2 = {a3, a5} + Cj , (j ∈ {1, 2, 3}) will bring about a contradiction to
Lemma 1. Moreover, C2 ∩ C3 = ∅, i.e. C2 = {a4, a5}, and in addition,
ai 6= aj , (i 6= j; i, j = 1, 2, 3, 4, 5). Define

π02 : ai 7→ ai (i = 1, 2, 3, 4, 5); π12 : a2 7→ a3, a3 7→ a2, ai 7→ ai (i = 1, 4, 5);
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π22 : ai 7→ ai(i = 1, 2, 3), a4 7→ a5, a5 7→ a4;
π32 : a1 7→ a1, a2 7→ a3, a3 7→ a2, a4 7→ a5, a5 7→ a4.
Then πj2 ∈ Aut(M) (j = 0, 1, 2, 3). So Aut(M) � H and |Aut(M)| ≥ 4.
(2.2) Let |Cj | = ρ(M) + 1 = 2 (j = 1, . . . , k). Then M satisfies one of the

following statuses
(i) C1 = {a1, a2}, C2 = {a1, a3}, C3 = {a2, a3} (ai 6= aj , i 6= j; i, j = 1, 2, 3).
(ii) C1 = {a1, a2}, C2 = {a3, a4}, C3 = {a5, a6} (ai 6= aj , i 6= j; i, j =
1, 2, 3, 4, 5, 6).

We may easily obtain that if (i) happens, then |Aut(M)| ≥ 6 ≥ 4; if (ii)
happens, then |Aut(M)| ≥ 8 ≥ 4. Hence, no matter which happens between
(i) and (ii), it follows Aut(M) � H.

Step 3. Let |Cj | = 2 (j = 1, . . . , k) and 3 < k.
(3.1) Assume C1 ∩ Cj = ∅ (j = 2, . . . , k). We will carry out the proof

using the induction method. In light of Lemma 2, it has |Aut(M)| ≥ |C1|! ×
|Aut(N)| = 2|Aut(N)|, where N = (

k⋃
j=1

Cj \C1, C(M) \C1). Recalling Step 2,

k−1 ≥ 3 and the supposition of the inductive, we may indicate |Aut(N)| ≥ 4,
and so |Aut(M)| ≥ |Aut(N)| ≥ 4, and hence Aut(M) � H.

(3.2) Assume for any Ci ∈ C(M), there is Cj ∈ C(M) \ Ci satisfying
Ci ∩ Cj 6= ∅.

Using (6) in Lemma 2, Nij = (Ci∪Cj , {Cp : Cp ⊆ Ci∪Cj , Cp ∈ C(M)}) =
(Ci ∪ Cj , Ci = {ai1, ai2}, Cj = {ai1, aj2}, {ai2, aj2}) is a paving matroid. In
addition Nij 6= M is effective because of k > 3. Additionally, |C(Nij)| = 3
and Step 2 together produce |Aut(Nij)| ≥ 4.

First of all, we prove that if for any paving matroid N = (
t⋃

p=1
Cip , {Cip :

Cip ∈ C(M), p = 1, . . . , t}) 6= M , there is Ch ∈ C(M) \ C(N) satisfying Ch ∩
t⋃

p=1
Cip 6= ∅, then we assert that M is uniform.

Combining ρ(M) = 1 and |Cj | = 2 (j = 1, . . . , k) with the property of M

as a non-uniform together, it brings about the existence of C = {1, 2} ⊆
k⋃

j=1

Cj

and C /∈ C(M). Herein, there is C1, C2 ∈ C(M) satisfying 1 ∈ C1 = {1, q},
2 ∈ C2 and C1 ∩ C2 6= ∅. In view of |C2| = 2, it follows C2 = {2, 3}. If

k⋃
j=1

Cj = {1, 2, 3}, then it follows |C(M)| ≤ 3. This is a contradiction to k > 3.

That is to say, there is at least 4 ∈
k⋃

j=1

Cj \{1, 2, 3}. Let {2, 3, 4} ⊆
k⋃

j=1

Cj and

{2, 3} ∈ C(M).
We notice that {2, 3} ∈ C(M) and the supposition above for N taken to-
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gether leads to {3, 4} ∈ C(M), and further {2, 4} ∈ C(M). Hence, N23 =
({2, 3, 4}, {{2, 3}, {2, 4}, {3, 4}}) is a paving matroid and N23 6= M . This
causes C5 = {4, 5} ∈ C(M) \ C(N) and C5 = {4, 5} ∩ {2, 3, 4} 6= ∅. Thus,
N2345 = {{2, 3, 4, 5}, {{i, j} : i 6= j, i, j = 2, 3, 4, 5}) 6= M is a uniform matroid
with ρ(N2345) = 1 and 1 /∈ {2, 3, 4, 5}. By the supposition, induction and
k < ∞, we may express that there is a uniform matroid N 6= M satisfying
C(N2345) ⊆ C(N) ⊆ C(M), and C(M) 3 C1 = {1, q} and C1∩(

⋃
Cp∈C(N)

Cp) 6= ∅.

If C1 ∩ (
⋃

Cp∈C(N)

Cp) = 1. That is {1, t} ∈ C(N). In light of 2 ∈ ⋃
Cp∈C(N)

Cp

and the uniform property of n, it follows {2, t} ∈ C(N). According to Lemma
1, it assures {1, t} ∪ {2, t} \ t = {1, 2} ∈ C(M), a contradiction.

If C1 ∩
⋃

Cp∈C(N)

Cp = {q}. Therefore, {s, q} ∈ C(N) and {1, q} ∈ C(M)

follows {1, s} ∈ C(M). Since {2, s} ∈ C(N), it gets {1, s}∪{2, s}\s = {1, 2} ∈
C(M), a contradiction.

But the uniform of the assertion is a contradiction to the non-uniform
property of M .

Second, if for any Ch ∈ C(M) \ (Ci ∪ Cj), Ch ∩ (Ci ∪ Cj) = ∅ holds. Let
πij ∈ Aut(Nij). We define π : x 7→ πij(x) for x ∈ Ci ∪ Cj , x 7→ x

for
k⋃

t=1
Ct \ (Ci ∪ Cj). We may easily have π ∈ Aut(M). Further, it follows

|Aut(M)| ≥ |Aut(Nij)| ≥ 4.

If there exists a paving matroid N = (
t⋃

p=1
Cip , {Cip ∈ C(M), p = 1, . . . , t}) 6=

M , (t > 2). Then for any Ch ∈ C(M) \ C(N), Ch ∩
t⋃

p=1
Cip = ∅ holds. Herein,

there is C(M) \ C(N) 6= ∅. Additionally, it evidently obtains |Aut(M)| ≥
|Aut(N)|. By induction and t > 2, it has |Aut(N)| ≥ 4. So it follows
|Aut(M)| ≥ |Aut(N)| ≥ 4 and Aut(M) � H.

Step 4. Suppose there are Ci, Cj ∈ C(M) satisfying |Cj | = 1, (j = 1, . . . , t, 1 ≤
t < k) and |Ci| = 2, (i = t + 1, . . . , k). Recalling Lemma 2, we bring about

|Aut(M) ≥ t! × |Aut(Mt)| where Mt = (
k⋃

i=t+1

Ci, {Ct+1, . . . , Ck}) is a paving

matroid by Lemma 2.
If t = 1. Then by k−1 ≥ 3, Step 2 and Step 3, we may indicate |Aut(Mt)| ≥

4. Furthermore, |Aut(M)| ≥ 4 is right. So Aut(M) � H holds.
If t ≥ 2. Then k − 2 ≥ 2 and Step 1 together ensure |Aut(Mt)| ≥ 2.

Therefore, it leads to |Aut(M)| ≥ 2× 2 = 4, and so Aut(M) � H.

In the following, we will handle with ρ(M) ≥ 2.
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Lemma 4 Let M = (
k⋃

j=1

Cj , C(M) = {C1, . . . , Ck}) be a non-uniform

paving matroid with r = ρ(M) ≥ 2.
(1) Assume k = 1. Then Aut(M) � H is right.
(2) Assume k ≥ 2. Then there are the following expressions.

(i) If there is Ci ∈ C(M) satisfying Ci ∩ Cj = ∅, (j 6= i; j = 1, 2, . . . , k), then
|Aut(M)| ≥ 4 and Aut(M) � H.
(ii) Suppose for any Ci ∈ C(M), there is Cji ∈ C(M) \ Ci satisfying Ci ∩
Cji

6= ∅. If there is Ci1 , Ci2 ∈ C(M) (i1 6= i2) such that Ci1 ∩ Ci2 6=
∅, Ci3 , . . . , Cip ⊆ Ci1 ∪Ci2 , and Cit ∩ (Ci1 ∪Ci2) = ∅, (t = p + 1, . . . , k), where
Cij

∈ C(M) (j = 1, 2, . . . , p, p + 1, . . . , k) and 0 6= p < k and k − p ≥ 1. Let

M1 = (Ci1∪Ci2 , {Ci1 , . . . , Cip}) and M2 = (
k⋃

t=p+1
Cit , {Cit : t = p+1, . . . , k}).

Then, we have the following statements.
State 1. If one of M1 and M2 are uniform, then |Aut(M)| ≥ 4 and

Aut(M) � H.
State 2. If both of M1 and M2 are non-uniform paving, and in addition,

for some h ∈ {1, 2}, Mh satisfies
(a1) there exist Ct, Cs ∈ C(M) satisfying Ct ∩ Cs 6= ∅ and Nts = (Ct ∪
Cs, {Cts ∈ C(Mh) : Cts ⊆ Ct ∪ Cs}) 6= Mh;
(a2) for any Cj ∈ C(Mh) \ C(Nts), it has Cj ∩ (Ct ∪ Cs) = ∅,
where 1 ≤ |C(Nts)| < p.

Then |Aut(M)| ≥ 4 and Aut(M) � H.
Proof (1) Assume k = 1. By Lemma 2, it follows |Aut(M)| = |C1|!, and

so Aut(M) � H.

(2) (i) According to Lemma 2, M ′ = (
k⋃

j 6=i,j=1

Cj , {Cj : j 6= i, j = 1, 2, . . . , k})
is a paving matroid. Evidently, |Aut(M)| ≥ |Ci|! × |Aut(M ′)| is correct. In
light of r = ρ(M) ≤ |Ct| ≤ ρ(M) + 1, (t = 1, . . . , k), we may carry out
|Aut(M)| ≥ r! × |Aut(M ′)|. Hence, if r ≥ 3, then |Aut(M)| ≥ r! ≥ 4. So
Aut(M) � H is true.

Next we prove that if r = 2, then |Aut(M)| ≥ 4 and Aut(M) � H.
Assume k = 2. C1 ∩ C2 = ∅ holds, and in addition, M ′ = (C2, C2)

holds. Furthermore, it yields out |Aut(M)| ≥ |C1|! × |C2|! ≥ r2 ≥ 4, and so
Aut(M) � H.

Assume k > 2.
If M ′ is uniform. (α1) informs us |Aut(M ′)| ≥ 2, and so |Aut(M)| ≥ 4.

Thus Aut(M) � H.

If M ′ is non-uniform and there is Ci0 ∩ (
k⋃

j 6=i,j 6=i0,j=1

Cj) = ∅. By the
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induction supposition, we obtain |Aut(M ′)| ≥ 4, and so |Aut(M)| ≥ 2×4 = 8.
Therefore, it causes Aut(M) � H.

If M ′ is non-uniform paving, and in addition, for any Cs ∈ C(M ′), there is
Ct ∈ C(M ′) fitting Cs∩Ct 6= ∅. Then we may easily indicate that by induction
on |C(M ′)|, it assures that M ′ is the following status:

Status: Posit Nj = (
mj⋃
q=1

Cjq , {Cjq ∈ C(M ′) : q = 1, . . . ,mj}), (j = 1, 2).

We may carry out C(M ′) = C(N1) ∪ C(N2); Nj is a uniform with |C(Nj)| >
1, (j = 1, 2); C1x

∩ C2y
= ∅ for any C1x

∈ C(N1) and C2y
∈ C(N2).

Evidently, for this status, |Aut(M ′)| ≥ 4 is true. Moreover, |Aut(M)| ≥ 4
is real, and so Aut(M) � H.

(ii) By Lemma 2, both of M1 = (Ci1 ∪ Ci2 , {Ci1 , Ci2 , . . . , Cip
}) and M2 =

(
k⋃

t=p+1
Cit , {Cit : t = p + 1, . . . , k}) are paving matroids. In view of the given,

we may easily receive that |Aut(M)| ≥ |Aut(M1)| × |Aut(M2)| and ρ(M) ≤
|Cj | ≤ ρ(M) + 1, (j = 1, . . . , k).

If k = 2, C(M1) 6= ∅ and C(M2) 6= ∅. Then, the need result is followed
from (i).

If k = 2, C(M1) 6= ∅ and C(M2) = ∅. Then, it follows k − p � 1, a
contradiction.

In one word, if k = 2, it will have |Aut(M)| ≥ 4 and Aut(M) � H.
By induction on k, we will prove |Aut(M)| ≥ 4 and Aut(M) � H.
According to the given, we know C(Mj) 6= ∅ (j = 1, 2) and |C(M1)| = p ≥ 1,

C(M2) = k − p ≥ 1.
State 1. Assume both of M1 and M2 are uniform. By Lemma 2, one gets

|Aut(M1)| ≥ |(Ci1 ∪Ci2)|! ≥ 3! and |Aut(M2)| ≥ |(
k⋃

t=p+1
Cit)|! ≥ 1. Hence, we

get the need result.
Assume M1 is uniform and M2 is non-uniform. This assumption and

Lemma 2 together cause |Aut(M1)| ≥ 6. Additionally, it causes |Aut(M2)| ≥
1. Thus the need consequent is followed.

Assume M2 is uniform and M1 is non-uniform. If k − p = 1. Then (i)
brings about |Aut(M)| ≥ 4 and Aut(M) � H. If k − p > 1. Then Lemma
2 yields out |Aut(M2)| ≥ 4. Hence, it easily produces |Aut(M)| ≥ 4, and so,
Aut(M) � H is provided.

State 2. Assume both M1 and M2 are non-uniform paving. According to (i)
or the inductive supposition and the property of Mh, we have |Aut(Mh)| ≥ 4,
and so |Aut(M)| ≥ 4× 1 = 4, further, Aut(M) � H.

Lemma 5 Let M = (
k⋃

j=1

Cj ,C(M) = {Cj : j = 1, . . . , k}) and k ≥ 2 be a
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non-uniform paving matroid with ρ(M) = r ≥ 2. If M satisfies the following
(1) and (2)
(1) for any Ci ∈ C(M), there is Cj ∈ C(M) \ Ci satisfying Ci ∩ Cj 6= ∅;
(2) for any Ci1 , Ci2 ∈ C(M), if Ci1 ∩ Ci2 6= ∅, then N = (

q⋃
t=1

Cit
= Ci1 ∪

Ci2 , C(N) = {Cit
: Cit

⊆ Ci1 ∪ Ci2 , Cit
∈ C(M), t = 1, 2, . . . , q}) = M .

Then 3 ≤ |C(M)| ≤ 4.
Proof Since M is non-uniform and C1∩C2 = {1, . . . , t} 6= ∅. We will sup-

pose C1 = {1, . . . , t, a1(t+1), . . . , a1r1} and C2 = {1, . . . , t, a2(t+1), . . . , a2r2},
where r1, r2 ∈ {r, r + 1}.

By the given condition and Cj ∩ C3 6= ∅ (j = 1, 2), we present C1 ∪ C2 \
1 ⊇ C3 ∈ C(M) and N = (

p⋃
j=1

C1j
, {C1j

: C1j
⊆ C1 ∪ C3, C11 = C1, C12 =

C3, C1j
∈ C(M)}) = (

p⋃
j=1

C2j , {C2j : C2j ⊆ C1∪C2, C21 = C1, C22 = C2, C2j ∈
C(M)}) = M . This compels C1∪C2 = C1∪C3, and hence {a2(t+1), . . . , a2r2} ⊆
C3. Furthermore, C2∪C3 = C1∪C2 follows {a1(t+1), . . . , a1r1} ⊆ C3. Namely,
{a1(t+1), . . . , a1r1 , a2(t+1), . . . , a2r2} ⊆ C3.

By Lemma 1, C3 ∪C1 \ a1(t+1) ⊇ Ci ∈ C(M) for some Ci, and so a1(t+1) /∈
Ci. If Ci 6= C2, then Ci = C4, and in addition, C4 ∩ C2 6= ∅. Therefore, it
follows C4∪C2 6= C1∪C2, a contradiction with the property of M . That is to
say, Ci = C2. Similarly to C3∪C1\a1j (j = t+2, . . . , r) and C3∪C2\a2s, (s =
t + 1, . . . , r2).

Additionally, if j ∈ C3 for some j ∈ {1, . . . , t}, it follows C1 ∪ C3 \ j ⊇
Cα ∈ C(M), but j ∈ C1, C2, C3, and so Cα /∈ {C1, C2, C3}. No matter to
denote Cα = C4. By Lemma 1, C4 * C1, C3. Combining the close result
above and C4 ⊆ C1 ∪ C3, we may indicate C4 ∩ C1 6= ∅ and C4 ∩ C3 6= ∅.
This follows a2p ∈ C4 for some p ∈ {t + 1, . . . , r2}. So it causes C4 ∩ C2 6= ∅.
Thus, it presents C2 ∪ C4 = C1 ∪ C2. This compels {a1(t+1), . . . , a1r1} ⊆
C4. Since C1 ∪ C4 = C1 ∪ C2 compels {a2(t+1), . . . , a2r2} ⊆ C4, one has
{a1(t+1), . . . , a1r1 , a2(t+1), . . . , a2r2} ⊆ C4. No harm to suppose {1, . . . , s} ⊆
C3 (s ≤ t). In view of C3 ∪ C4 = C1 ∪ C2, we may earn {s + 1, . . . , t} ⊆ C4.
In addition, |C3| ≤ r + 1 and C1 ∩ C2 6= ∅ together assure s < t.

Suppose C3 ∩C4 ∩ {1, . . . , t} 6= ∅, i.e. there is β ∈ {1, . . . , t} satisfying β ∈
C3∩C4. Then C3∪C4 \β ⊇ Cγ ∈ C(M). But we know Cγ /∈ {C1, C2, C3, C4}.
No harm to denote Cγ to be C5. Obviously, C5 ∩ C3 6= ∅ and C5 ∩ C4 6= ∅.
Let {1, . . . , t} ⊇ {β1, . . . , βq} ⊆ C5.

If C5 ∩ {a2(t+1), . . . , a2r2} = ∅, then C5 ⊆ C1, a contradiction.
Similarly, C5 ∩ {a1(t+1), . . . , a1r1} 6= ∅.
Therefore, by the supposition of M , we may obtain C5 ∪ C2 = C5 ∪

C1 = C1 ∪ C2, and so {a1(t+1), . . . , a1r1 , a2(t+1), . . . , a2r2} ⊆ C5. Moreover,
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using this augmentation repeated, we may state that N = (C3 ∪ C4,C =
{Cj : Cj ⊆ C3 ∪ C4, Cj ∈ C(M)}) is a paving matroid with C(N) = C and
{a1(t+1, . . . , a1r1 , a2(t+1), . . . , a2r2} ⊆ Cj ∈ C, and in addition, N 6= M , a con-
tradiction to the supposition of M . Namely, C3 = {1, . . . , s, a1(t+1), . . . , a1r1 ,
a2(t+1), . . . , a2r2} and C4 = {s + 1, . . . , t, a1(t+1), . . . , a1r1 , a2(t+1), . . . , a2r2}.
Thus C(M) = {C1, C2, C3, C4}, and hence 3 ≤ |C(M)| ≤ 4.

Assume s = 0. Then, one has |C(M)| = 3 and C3 = {a1(t+1), . . . , a1r1 ,
a2(t+1), . . . , a2r2}, and in addition, no C4 exists. That is to say, if |C(M)| = 4,
it must have 1 ≤ s and 1 ≤ t− s.

Based on Lemma 5, we may demonstrate the following Lemma 6.
Lemma 6 Let M be defined as that in Lemma 5. Then
(I) Assume |C(M)| = 3. Then there are the following results.

(1) If |C1| = r, |C2| = r + 1, C1 ∩ C2 6= ∅ and |C1 ∩ C2| = r − 1. Then
Aut(M) � H.
(2) If |C1| = |C2| = r, C1 ∩C2 6= ∅ and |C1 ∩C2| = r− 1. Then Aut(M) � H.
(3) Suppose |C1| = r and for C2 ∈ C(M), C1∩C2 = {1, . . . , t} 6= ∅. If t < r−1,
then Aut(M) � H.
(4) If |C1| = r + 1 = |C2| and C1 ∩ C2 = {1, . . . , t} 6= ∅. Then Aut(M) � H.

(II) Assume |C(M)| = 4. Then, we have Aut(M) � H.
Proof It is only to testify the truth of every case in (I) and (II) respec-

tively. Because all these checks are not difficult, we omit them here.

Assume M is defined as Lemma 5. If C1 ∩ C2 = ∅. Then it assures
C3 ∩C1 6= ∅ and C3 ∩C2 6= ∅, additionally, C1 ∪C3 = C2 ∪C3. Hence, it is no
harm to suppose that C1 ∩C2 6= ∅ if M is defined as in Lemma 5. This result
together with Lemma 6 proves the following Theorem 1.

Theorem 1 If M is defined as that in Lemma 5. Then Aut(M) � H.

Summing up, we have the following Theorem 2.

Theorem 2 Let M = (
k⋃

j=1

Cj ,C(M) = {C1, . . . , Ck}) be a non-uniform

paving matroid with ρ(M) ≥ 2.
(1) If k = 1. Then Aut(M) � H.
(2) Assume k ≥ 2. Then there are the following consequences.

(i) If there is Ci ∈ C(M) satisfying Ci ∩ Cj = ∅, (j 6= i; j = 1, 2, . . . , k), then
|Aut(M)| ≥ 4 and Aut(M) � H.
(ii) Suppose for any Ci ∈ C(M), there is Cji ∈ C(M) \ Ci satisfying Ci ∩
Cji 6= ∅. If there is Ci1 , Ci2 ∈ C(M) (i1 6= i2) such that Ci1 ∩ Ci2 6=
∅, Ci3 , . . . , Cip ⊆ Ci1 ∪Ci2 , and Cit ∩ (Ci1 ∪Ci2) = ∅, (t = p + 1, . . . , k), where
Cij ∈ C(M) (j = 1, 2, . . . , p, p + 1, . . . , k) and 0 6= p < k and k − p ≥ 1. Let
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M1 = (Ci1∪Ci2 , {Ci1 , . . . , Cip
}) and M2 = (

k⋃
t=p+1

Cit
, {Cit

: t = p+1, . . . , k}).
We have the following statements.

State 1. If one of M1 and M2 are uniform, then |Aut(M)| ≥ 4 and
Aut(M) � H.

State 2. If both of M1 and M2 are non-uniform, and in addition, for some
h ∈ {1, 2}, Mh satisfies
(a1) there is Ct, Cs ∈ C(M) satisfying Ct ∩Cs 6= ∅ and Nts = (Ct ∪Cs, {Cts ∈
C(M1) : Cts ⊆ Ct ∪ Cs}) 6= Mh, where 1 ≤ |C(Nts)| < p.
(a2) for any Cj ∈ C(Mh) \ C(Nts), it has Cj ∩ (Ct ∪ Cs) = ∅.

Then |Aut(M)| ≥ 4 and Aut(M) � H.
State 3. If both M1 and M2 are non-uniform paving and one of M1 and

M2, no matter to assume M1, satisfies that for any Ct ∈ C(M1), it exists
Cs ∈ C(M1) satisfying Ct ∩Cs 6= ∅, but Nts = (Ct ∪Cs, {Cts ∈ C(Mj) : Cts ⊆
Ct ∪ Cs}) = M1.

Remark 2 Up till now, for paving matroids, there exists another circum-
stance left to be dealt with. That is, M = (C1 ∪ C2, C(M) = {Cj : Cj ⊆
C1 ∪ C2, j = 1, . . . , k}) is a non-uniform paving matroid with ρ(M) = r ≥ 2
and owns the following properties:

(α) C1 ∩ C2 6= ∅;
(β) for any Cp ∈ C(M), there is Cq ∈ C(M) \ Cp satisfying Cp ∩ Cq 6= ∅;
(γ) for any Ct, Cs ∈ C(M) and Ct ∩Cs 6= ∅, (t 6= s), if N = (Ct ∪Cs, {Cj :

Cj ⊆ Ct ∪ Cs, Cj ∈ C(M)}) 6= M , then there is Cp ∈ C(M) \ C(N) 6= ∅
satisfying Cp ∩ (Ct ∪ Cs) 6= ∅.

This circumstance will be considered in what follows.

Theorem 3 Let M be defined as that in Remark 2. Then
(1) Let |C1| = |C2| = ρ(M) = r. If |C1 ∩ C2| = r − 1, then Aut(M) � H.
(2) Let |C1| = ρ(M) = r. If |C1 ∩ C2| = r − 1 and |Cj | = r + 1 for

Cj ∈ C(M) \ C1, j = 2, . . . , k. Then Aut(M) � H.
(3) Let |C1| = |C2| = ρ(M)+1 = r+1. If |C1∩C2| = r, then Aut(M) � H.
Proof (1) Let Cj = {a1, a2, . . . , ar−1, ajr}, (j = 1, 2). Then by Lemma 1,

it causes C1 ∪C2 \ a1 = {a2, . . . , ar−1, a1r, a2r} ⊇ C31. Since r ≤ |C31| ≤ r +1
and |{a2, . . . , ar−1, a1r, a2r}| = r, it follows C31 = {a2, . . . , ar−1, a1r, a2r}.
Similarly, C1 ∪ C2 \ aj = C3j (j = 2, . . . , r − 1). We may easily testify
C3i∪C3j \atr ⊇ Ct, (t = 1, 2; i = 1, . . . , r−1; j 6= i, j = 1, . . . , r−1). It assures
C1 ∪ C3i \ aj = C3j , (i 6= j; i, j = 1, . . . , r − 1). That is to say, it should have
C(M) = {C1, C2, C3j = {a1, . . . , aj−1, aj+1, . . . , ar−1, a1r, a2r}, j = 1, . . . , r −
1}. We define

π1 : a1 7→ ai1 , a2 7→ ai2 , . . . , ar−1 7→ air−1 , a1r 7→ a1r, a2r 7→ a2r;
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π2 : a1 7→ ai1 , a2 7→ ai2 , . . . , ar−1 7→ air−1 , a1r 7→ a2r, a2r 7→ a1r,
where {i1, i2, . . . , ir−1} = {1, 2, . . . , r − 1}.

It obviously follows π1, π2 ∈ Aut(M), and further, |Aut(M)| ≥ (r−1)!×2!.
Assume r > 2. Then it has |Aut(M)| ≥ 4, and hence Aut(M) � H.
Assume r = 2. Then we obtain C1 = {a1, a12}, C2 = {a1, a22} and C1 ∪

C2 \ a1 = C3 = {a12, a22}. But this does not satisfy that M is defined as that
in Remark 2, a contradiction.

(2) Let C1 = {a1, . . . , ar−1, a1r} and C2 = {a1, . . . , ar−1, a2r, a2(r+1)}.
Since C1∪C2\aj = {a1, . . . , aj−1, aj+1, . . . , ar−1, a1r, a2r, a2(r+1)} = C3j , (j =
1, 2, . . . , r − 1). We testify C1 ∪ C3j \ a1r = C2; C2 ∪ C3j \ a2s ⊇ C1, C3i ∪
C3j \ a2s ⊇ C1, (s = r, r + 1; j = 1, . . . , r − 1); C3p ∪ C3q \ aj = C3j , (aj ∈
C3p, C3q; p 6= q; j = 1, . . . , r − 1; p, q = 1, . . . , r − 1). Hence, it causes C(M) =
{C1, C2, C3j , j = 1, 2, . . . , r − 1}. We define

π11 : aj 7→ aij
(j = 1, 2, . . . , r − 1), a1r 7→ a1r, a2r 7→ a2r, a2(r+1) 7→

a2(r+1);
π12 : aj 7→ aij (j = 1, 2, . . . , r − 1), a1r 7→ a1r, a2r 7→ a2(r+1), a2(r+1) 7→

a2r,
where {ij : j = 1, 2, . . . , r − 1} = {1, 2, . . . , r − 1}.

So |Aut(M)| ≥ (r − 1)!× 2.
Assume r > 3. Then it yields out |Aut(M)| ≥ 4, and so Aut(M) � H.
Assume r = 2. Then it yields out C1 = {a1, a12}, C2 = {a1, a22, a23} and

C3 = C1 ∪ C2 \ a1 = {a12, a22, a23}, C1 ∪ C3 \ a12 = {a1, a22, a23} = C2, C2 ∪
C3 \ a22 = {a1, a12, a23} ⊇ C1, C2 ∪ C3 \ a23 = {a1, a12, a22} ⊇ C1. Thus, we
may obtain C(M) = {C1, C2, C3}. However, C1 ∪ C3 = C1 ∪ C2 = C2 ∪ C3

follows that M is not defined as that in Remark 2, a contradiction to the given
supposition.

Assume r = 3. Then it causes C1 = {1, 2, a13} and C2 = {1, 2, a23, a24}.
Therefore, it proves C3 = {2, a13, a23, a24}, C4 = {1, a13, a23, a24} ∈ C(M).
This is just one of case in Lemma 5, a contradiction to M defined as that in
Remark 2.

(3) Similarly to the discussion in (1), it follows the need consequences.

Recalling back all the discussion from Lemma 3 to the beyond, we may
state that for a paving matroid M , there are the following cases and only the
following cases not be solved for considering Aut(M) ∼= H or Aut(M) � H.
Actually, we may indicate that M should be defined as that in Remark 2.

Case 1. |C1| = r, |C1 ∩ C2| < r − 1 and there exists Cj ∈ C(M) \ C1

satisfying |Cj | = r.
Case 2. |C1| = r + 1 = |C2| and |C1 ∩ C2| < r.
We will use some Examples to handle these cases partly.
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Suppose M is defined as that in Remark 2 and ρ(M) = 2.
Let C1 = {1, 2}. If |C2| = 2. Then, we may understand that C2 =

{1, 3}, C3 = {2, 3}, and in addition, (C1∪C2, {C1, C2, C3}) is a paving matroid.
In fact, C1∪C2 = C2∪C3 = C1∪C3 are true, a contradiction to the supposition.
Thus, it assures |C2| = 3. However, since C1 ∩ C2 6= ∅ and Lemma 1 together
ask |C1 ∩C2| = 1, and so C2 = {1, 3, 4}. Additionally, there are C1 ∪C2 \ 1 =
{2, 3, 4} ⊇ C3. Assume C3 = {2, 3} (or {2, 4}). Then C1∪C3 \2 = {1, 3} ⊂ C2

(or C1 ∪ C3 \ 2 = {1, 4} ⊂ C2). This leads to a contradiction to Lemma 1.
Thus, there is C3 = {2, 3, 4}. Furthermore, (C1 ∪C2, {C1, C2, C3}) is a paving
matroid, but this is a contradiction with the supposition.

That is to say, |C1| = 3. Similarly, |C2| = 3.

Example 1 Let C1 = {1, 2, 3} and C2 = {1, 4, 5}. M is defined as that
in Remark 2 with ρ(M) = 2. Assume Cj ∈ C(M) \ {C1, C2}, |Cj | = ρ(M) = 2
and C1 ∪ C2 \ 1 ⊇ C3. Since M is non-uniform, it assures ρ(M) = 2.

If any Cj ∈ C(M) satisfies |Cj | = 3, then we may state that M is uniform.
This is a contradiction.

Let |C3| = 2. Then C3 = {2, 4}, in addition, C1 ∪ C3 \ 2 = {1, 3, 4} ⊇ C4.
But C4 = {3, 4} will follow a contradiction to Lemma 1 because C3 ∪C4 \ 4 =
{2, 3} ⊆ C1. Thus, we may express that C4 = {1, 3, 4} and N = (C1 ∪
C3, {C1, C3, C4}) is a non-uniform matroid.

C2∪C4\4 = {1, 2, 5}. Similarly to the above, if Cp ⊆ {1, 2, 5} and |Cp| = 2,
then it follows a contradiction. Thus, it causes C5 = {1, 2, 5}. Therefore, it
provides C1 ∪C5 \ 1 = {2, 3, 5} ⊇ C6. Divided the following (1)-(3) to discuss.

(1) If C6 = {2, 5}, then C3 ∪ C6 \ 2 = {4, 5} ⊆ C2. This causes a contra-
diction to Lemma 1.

(2) If C6 = {3, 5}, then C1 ∪ C6\ = {1, 2, 5} = C5. We can prove that
(C1 ∪ C2, {Cj : j = 1, 2, . . . , 6}) is a non-uniform paving matroid defined as
that in Remark 2. Define

π0 : x 7→ x, x ∈ C1 ∪ C2; π1 : 2 7→ 4, 4 7→ 2, x 7→ x, x ∈ {1, 3, 5};
π2 : 3 7→ 5, 5 7→ 3, x 7→ x, x ∈ {1, 2, 4}; π3 : 2 7→ 4, 4 7→ 2, 3 7→ 5, 5 7→

3, 1 7→ 1.
Then, we may easily find out πj ∈ Aut(M), (j = 0, 1, 2, 3). So |Aut(M)| ≥

4 holds. Hence Aut(M) � H is followed.
(3) If C6 = {2, 3, 5}. We prove that M , i.e. (C1 ∪ C2, {C1, C2, C3 =

{2, 4}, C4 = {1, 3, 4}, C5 = {1, 2, 5}, C6 = {2, 3, 5}, C7 = {1, 3, 5}, C8 = {3, 4, 5}}),
is one of the non-uniform paving matroid defined as that in Remark 2. As the
discussion in Theorem 3, there is Aut(M) � H.

Let M ′ be defined as in Remark 2 with ρ(M ′) = 2. Then it is not difficult to
demonstrate that M ′ is isomorphic to one of matroids appeared in Example
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1 and Theorem 3. Namely, up to isomorphism, if M is defined as that in
Remark 2 and ρ(M) = 2, then Aut(M) � H.

Next we consider with ρ(M) = 3.

Example 2 Let C1 = {1, 2, 3} and C2 = {1, 4, 5, 6}. M = (C1 ∪ C2, {Cj :
j = 1, . . . , 10}) where C3 = {2, 3, 4}, C4 = {1, 3, 4}, C5 = {1, 2, 4}, C6 =
{3, 4, 5, 6}, C7 = {1, 3, 5, 6}, C8 = {2, 4, 5, 6}, C9 = {1, 2, 5, 6}, C10 = {2, 3, 5, 6}.
It obviously demonstrates that M is a non-uniform paving matroid. Addition-
ally, we may easily search out N = (C1 ∪ C3, C(N) = {C1, C3, C4, C5}) and
C6 ∩ (C1 ∪ C3) 6= ∅. Define

π0 : x 7→ x for x ∈ C1 ∪ C2; π1 : 1 7→ 2, 2 7→ 1, x 7→ x for x ∈ {3, 4, 5, 6};
π2 : 5 7→ 6, 6 7→ 5, x 7→ x for x ∈ {1, 2, 3, 4}; π3 : 1 7→ 4, 4 7→ 1, x 7→ x for

x ∈ {2, 3, 5, 6};
Then evidently, there are πj ∈ Aut(M), (j = 0, 1, . . . , 3), and so Aut(M) � H
and |Aut(M)| ≥ 4.

Let C1 = {1, 2, 3}, C2 = {1, 4, 5}, and M be a paving matroid with ρ(M) =
3 defined on C1 ∪ C2. We prove that if M is presented as that in Remark 2
with ρ(M) = 3 and 1 ≤ |C1 ∩ C2| < 2, then C1 (or C2) satisfies |C1| = 4 (or
|C2| = 4). Thus, similar to Theorem 3 and Example 2, assuming M to be
defined on C1∪C2 with ρ(M) = 3 and given as Remark 2 and |C1| = 3, |C2| =
4. We earn Aut(M) � H up to isomorphism.

Let M be a paving matroid defined on C1 ∪ C2, C1 = {1, 2, 3, 4}, C2 =
{1, 2, 3, 5} with ρ(M) = 3. Then up to isomorphism, M is (C1 ∪ C2,C(M) =
{C1, C2, C3 = {3, 4, 5}, C4 = {1, 2, 4, 5}}). We may find out that M is shown
as in Remark 2. Thus, if M is defined as that in Remark 2 on C1 ∪ C2 with
ρ(M) = 3, then there is |C1 ∩ C2| ≤ 2. Assume |C1 ∩ C2| = 2. Then we get
C1 = {1, 2, 3, 4} and C2 = {1, 2, 5, 6}.

Example 3 Let C1 = {1, 2, 3, 4}, C2 = {1, 2, 5, 6}, C3 = {2, 3, 5}, C4 =
{1, 3, 4, 5}, C5 = {1, 2, 4, 5}, C6 = {1, 3, 5, 6}, C7 = {1, 2, 3, 6}, C8 = {2, 3, 4, 5}
and C9 = {1, 2, 3, 5}. Then N = (C1 ∪ C3, {C1, C3, C4, C5}) is a non-uniform
matroid and M = (C1∪C2, {Cj : j = 1, 2, . . . , 9}) is defined as that in Remark
2 on C1 ∪ C2 with ρ(M) = 3 according to N 6= M and C2 ∩ (C1 ∪ C3) 6= ∅.
Define

π0 : x 7→ x, x ∈ C1 ∪ C2; π1 : 2 7→ 3, 3 7→ 2, x 7→ x, x ∈ {1, 4, 5, 6};
π2 : 2 7→ 5, 5 7→ 2, x 7→ x, x ∈ {1, 3, 4, 6}; π3 : 3 7→ 5, 5 7→ 3, x 7→ x, x ∈

{1, 2, 4, 6}.
It is easy to see πj ∈ Aut(M) (j = 0, 1, 2, 3), and so Aut(M) � H.

Combining Theorem 3, Example 2 and Example 3 with the above discus-
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sion, we may state that if M = (C1∪C2,C(M) = {Cj : j = 1, . . . , k}) is defined
as that in Remark 2 with ρ(M) = 3, then up to isomorphism, Aut(M) � H
holds.

We partially answer to the Welsh’s problem. But based on the discus-
sion in this paper, we conjecture that none of paving matroids M satisfies
Aut(M) ∼= Z3.

Acknowledgement. Granted by the National Nature Science Foundation
of China (60974082).

References

[1] T. W. Hungerford, Algebra, Springer-Verlag New York Inc., New York,
1974.

[2] H-J. Lai, Matroid Theory, Higher Education Press, Beijing, 2002.(in Chi-
nese with English abstract)

[3] H. Mao and S-Y. Liu, Axiom systems for the automorphism guoup of an
antimatroid and its properties, Chinese J. of Engineering Mathematics,
21(2)2004,153-159.(in Chinese)

[4] J. Oxley, Matroid Theory, Oxford Universtiy Press, New York, 1992.

[5] D. J. A. Welsh, Matroid Theory, Academic Press Inc., London, 1976.

Department of Mathematics,
Hebei University, Baoding 071002, China
e-mail: yushengmao@263.net

Department of Mathematics,
Xidian University, Xi’an 710071, China



188 Hua Mao, Sanyang Liu


