A NOTE ON Θ -CLOSED SETS AND INVERSE LIMITS

Ivan Lončar

Abstract

For every Hausdorff space X the space X_{Θ} is introduced. If X is H-closed, then X_{Θ} is a quasy-compact T_1 -space.

If $f: X \to Y$ is a mapping, then there exists the mapping $f_{\Theta}: X_{\Theta} \to Y_{\Theta}$. We say that a mapping $f: X \to Y$ is Θ -closed if f_{Θ} is a closed mapping. If X and Y are H-closed and if $f: X \to Y$ is a HJ-mapping, then f_{Θ} is Θ -closed.

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of H-closed spaces X_a and Θ -closed bonding mappings f_{ab} . If X_a are non-empty spaces, then $X = \lim \mathbf{X}$ is non-empty. If the bonding mappings p_{ab} are HJ, then $X = \lim \mathbf{X}$ is non-empty and H-closed

1 Introduction

Troughout this paper a space X always denotes a topological space. A mapping $f: X \to Y$ means a continuous map (function).

The convention and elementary results on inverse limits of topological spaces are those given in [4].

An open subset $U \subset X$ is said to be *regularly open* if $U = \text{Int } \operatorname{Cl} U$. Similarly, a closed subset $F \subset X$ is said to be regularly closed if $F = \operatorname{Cl} \operatorname{Int} F$.

Definition 1.1. [11]. A mapping $f : X \to Y$ is said to be skeletal (HJ) if for each open (regularly open) subset $U \subset X$ we have $\operatorname{Int} f^{-1}(\operatorname{Cl} U) \subset \operatorname{Cl} f^{-1}(U)$.

The composition of (continuous) skeletal maps is skeletal [11, p. 22].

Key Words: H-closed, Inverse limits, Θ -closed.

²⁰¹⁰ Mathematics Subject Classification: 54F15, 54F50, 54B35

Received: September, 2009 Accepted: January, 2010

Proposition 1. [11, p. 22]. A mapping $f: X \to Y$ is HJ if and only if the counterimage of the boundary of each regularly open set is nowhere dense.

An HJ mapping is called in [13, p. 236] a **c**-mapping (see also [3]). Let X be a Hausdorff space. A map $p: Y \xrightarrow{onto} X$ is said to be *irreducible* [11, p. 26] if for each regularly closed subset A of Y

 $A \neq Y$ implies $\operatorname{Cl} p(A) \neq X$.

A mapping $f: X \to Y$ is said to be *semi-open* provided Int $f(U) \neq \emptyset$ for each non-empty open $U \subset X$. From Proposition 1 it follows the following result (see [11, 1.1, p. 27], [13, p. 236]).

Lemma 1.1. Each semi-open, each open and each closed irreducible mapping is HJ.

The spaces X_{Θ} and the mappings f_{Θ} $\mathbf{2}$

The notion of H-closed spaces was introduced by Aleksandrov and Urysohn [1].

A Hausdorff space X is H-closed [1] if it is closed in any Hausdorff space in which it is embedded.

The following two characterizations are given in [1].

Proposition 2. [1, Theorem 1]. A Hausdorff space X is H-closed if and only if every family $\{U_{\mu} : U_{\mu} \text{ is open in } X, \mu \in \Omega\}$ with the finite intersection property has the property \cap {Cl $U_{\mu} : \mu \in \Omega$ } $\neq \emptyset$.

Proposition 3. [1, Theorem 2]. A Hausdorff space X is H-closed if for each open cover $\{U_{\mu} : \mu \in M\}$ of X there exists a finite subfamily $\{U_{\mu_1}, ..., U_{\mu_k}\}$ such that $\{\operatorname{Cl} U_{\mu_1}, ..., \operatorname{Cl} U_{\mu_k}\}$ is a cover of X.

The Θ -closed sets were introduced by Veličko [14].

Definition 2.1. A point $x \in X$ is in the Θ -closure of a set $A \subset X$, $x \in |A|_{\Theta}$. if $\operatorname{Cl} V \cap A \neq \emptyset$ for any open set V containing x. A subset $A \subset X$ is Θ -closed if $A = |A|_{\Theta}$. A subset $B \subset X$ is Θ -open if $X \setminus B$ is Θ -closed.

Lemma 2.1. [10]. A set $A \subset X$ is Θ -closed set if and only if $A = \cap \{\operatorname{Cl} V_{\lambda} : V_{\lambda}\}$ is open in $X, A \subset V_{\lambda}$, where $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ is a maximal family of open subsets containing A.

Theorem 2.2. [6, Theorem 2]. In any topological space:

(a) the empty set and the whole space are Θ -closed,

- (b) arbitrary intersection and finite unions of Θ -closed sets are Θ -closed,
- (c) $\operatorname{Cl} K \subset |K|_{\Theta}$ for each subset K,
- (d) a Θ -closed subset is closed.

From (a) and (b) on gets the following result.

Lemma 2.3. If X is a Hausdorff space, then for each $Y \subset X$ there exists a minimal Θ -closed subset $Z \subset X$ such that $Y \subset Z$.

Proof. The collection Φ of all Θ -closed subsets W of X which contains Y is non-empty since $X \in \Phi$. By (b) of Theorem 2.2 we infer that $Z = \cap \{W : W \in \Phi\}$ is a minimal Θ -closed subset $Z \subset X$ containing Y.

From Theorem 2.2 it follows that the family of all Θ -open subsets of (X, t) is a new topology t_{Θ} on X.

Definition 2.2. Let (X,t) be a topological space. The Θ -space of X is the space (X,t_{Θ}) . In the sequel we shall use denotations X and X_{Θ} .

Lemma 2.4. If X is a Hausdorff space, then X_{Θ} is T_1 -space.

Proof. Let x be any point of X. For every another point $y \in X$, $y \neq x$, there exists a pair of open disjont set U, V such such that $x \in U$ and $y \in V$. It follows that $U \cap \operatorname{Cl} V = \emptyset$. We conclude that $\{x\}$ is Θ -closed and, consequently, X_{Θ} is T_1 -space.

Lemma 2.5. The identity mapping $id_{\Theta} : X \to X_{\Theta}$ is continuous.

Theorem 2.6. If X is H-closed, then every family $\{A_{\mu} : \mu \in \Omega\}$ of Θ -closed subsets of X with the finite intersection property has a non-empty intersection $\cap \{A_{\mu} : \mu \in \Omega\}$.

Proof. A Hausdorff space X is H-closed [6] iff for every family $\{A_{\mu} : A_{\mu} \subset X, \mu \in \Omega\}$ with the finite intersection property there exists a point $x \in X$ such that Cl V ∩ A ≠ Ø for every open set V containing x and every A_{μ} . The point x is called Θ-accumulation point. From this characterization it follows Lemma. ■

We say that a space X is an Urysohn space ([7], [9]) if for every pair $x, y, x \neq y$, of points of X there exist open sets V and W about x and y such that $\operatorname{Cl} V \cap \operatorname{Cl} W = \emptyset$.

A Hausdorf space is *nearly-compact* [8] if every open cover $\{U_{\mu} : \mu \in M\}$ has a finite subcollection $\{U_{\mu_1}, ..., U_{\mu_n}\}$ such that $\operatorname{Int} \operatorname{Cl} U_{\mu_1} \cup ... \cup \operatorname{Int} \operatorname{Cl} U_{\mu_n} = X$. Every nearly-compact space is H-closed.

Lemma 2.7. [8]. A space X is nearly-compact if and only if it is H-closed and Urysohn.

Lemma 2.8. If X is H-closed and Urysohn, then X_{Θ} is a Hausdorff space.

Theorem 2.9. If X is an H-closed space, then X_{Θ} is a quasi-compact T_1 -space.

Proof. Let $\{F_{\mu} : \mu \in M\}$ be a family of closed sets in X_{Θ} with the finite intersection property. By virtue of Definition 2.2 it follows that $F_{\mu} = \cap \{F_{\mu,a} : a \in A, F_{\mu,a} \text{ is } \Theta\text{-closed in } X\}$. Lemma 2.6 implies that there exists a $x \in X$ with the property $x \in \cap \{F_{\mu,a} : \mu \in M, a \in A\}$. Clearly $x \in \cap \{F_{\mu} : \mu \in M\}$.

Problem 1. Is it true that X is H-closed if X_{Θ} is a quasi-compact T_1 -space?

From Lemma 2.8 and Theorem 2.9 on gets the following result.

Theorem 2.10. If X is nearly-compact, then X_{Θ} is a quasi-compact Hausdorff space.

Definition 2.3. Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping. We define a mapping $f_{\Theta} : X_{\Theta} \to Y_{\Theta}$ by $f_{\Theta}(x) = f(x)$ for every $x \in X$, *i.e.*, the following diagram

$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & Y \\ \downarrow id & & \downarrow id \\ X_{\Theta} & \stackrel{f_{\Theta}}{\longrightarrow} & Y_{\Theta} \end{array}$$
(2.1)

commutes.

Lemma 2.11. The mapping $f_{\Theta} : X_{\Theta} \to Y_{\Theta}$ is continuous.

Proof. Let us prove that $f_{\Theta}^{-1}(F)$ is closed in X_{Θ} if F is closed in Y_{Θ} . It suffices to prove that $f^{-1}(F)$ is Θ -closed in X if F is Θ -closed in Y. If $x \in X \setminus f^{-1}(F)$, then $f(x) \notin F$. There exists an open set U such that $f(x) \in U$ and $\operatorname{Cl} U \cap F = \emptyset$ since F is Θ -closed in Y. The open set $f^{-1}(U)$ contains x and $\operatorname{Cl} f^{-1}(U) \cap f^{-1}(F) = \emptyset$ since $f^{-1}(\operatorname{Cl} U) \cap f^{-1}(F) = \emptyset$. Hence, if $x \in X \setminus f^{-1}(F)$, then $x \in X \setminus |f^{-1}(F)|_{\Theta}$, and, consequently, $f^{-1}(F)$ is Θ -closed in X. ∎

Definition 2.4. A mapping $f : X \to Y$ is said to be Θ -closed if f(F) is Θ -closed for each Θ -closed subset $F \subset X$.

Lemma 2.12. Let $f : X \to Y$ be a continuous mapping. The following conditions are equivalent:

(a) f is Θ -closed,

- (b) for every B ⊂ Y and each Θ-open set U ⊇ f⁻¹(B) there exists a Θ-open set V ⊇ B such that f⁻¹(V) ⊂ U.
- (c) f_{Θ} is a closed mapping.

Proof. The proof is similar to the proof of the corresponding theorem for closed mappings [4, p. 52]. \blacksquare

From 2.10 and 2.12 we obtain the following result.

Theorem 2.13. If X and Y are nearly-compact spaces, then every continuous mapping $f : X \to Y$ is Θ -closed.

Theorems 2.10 and 2.12 imply the following result.

Theorem 2.14. If $f : X \to Y$ is a continuous mapping between H-closed e.d. spaces X and Y, then f is Θ -closed.

Now we prove the following important theorem.

Theorem 2.15. If X and Y are H-closed, then every HJ-mapping $f : X \to Y$ is Θ -closed.

Proof. Let A be a Θ -closed subset of X. By Definition 2.4 it suffices to prove that f(A) is Θ -closed in Y.

Claim 1. By Lemma 2.1 we infer that

$$A = \bigcap \{ \operatorname{Cl} V_{\lambda} : V_{\lambda} \text{ is open in } X, \ A \subset V_{\lambda} \}, \tag{2.2}$$

where $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ is a maximal family of open subsets containing A.

Claim 2. There exists a family $U = \{U_{\mu} : \mu \in M\}$ of all open subsets $U_{\mu} \subset Y$ such that there exists $V_{\lambda} \in \mathcal{V}$ with the property $f(V_{\lambda}) \subset U_{\mu}$. Clearly, $f(A) \subset U_{\mu}$ for each $U_{\mu} \in U$. For each $a \in A$ there is a V_a such that $V_a \subset U_{\mu}$ for fixed $\mu \in M$. Let $V_{\lambda} = \bigcup \{V_a : a \in A\}$. It is clear that $f(V_{\lambda}) \subset U_{\mu}$.

Claim 3. We prove that

$$f(A) = \cap \{\operatorname{Cl} U_{\mu} : U_{\mu} \in \mathcal{U}\}$$

$$(2.3)$$

We prove only $f(A) \supset \cap \{\operatorname{Cl} U_{\mu} : U_{\mu} \in \mathcal{U}\}\$ since $f(A) \subset \cap \{\operatorname{Cl} U_{\mu} : U_{\mu} \in \mathcal{U}\}\$. Suppose that $y \in \cap \{\operatorname{Cl} U_{\mu} : U_{\mu} \in \mathcal{U}\}\$. For every open $W \ni y$ we have $\operatorname{Cl} W \cap f(V_{\lambda}) \neq \emptyset$ since $\operatorname{Cl} W \cap f(V_{\lambda}) = \emptyset$ implies $Y \setminus \operatorname{Cl} W \supset f(V_{\lambda})$, $Y \setminus \operatorname{Cl} W \in \mathcal{U}$ and $y \in \operatorname{Cl}(Y \setminus \operatorname{Cl} W)$. Now, the set $W^* = \operatorname{Int} \operatorname{Cl} W$ is regularly open and, by virtue of Definition 1.1, we have

Int
$$f^{-1}(\operatorname{Cl} W^*) \subset \operatorname{Cl} f^{-1}(W^*).$$
 (2.4)

From (2.4) and $f^{-1}(\operatorname{Cl} W^*) \cap V_{\lambda} \neq \emptyset$ it follows $f^{-1}(W^*) \cap V_{\lambda} \neq \emptyset$ for each $V_{\lambda} \in \mathcal{V}$. The family $\mathcal{V}^* = \{V_{\lambda}^* : V_{\lambda}^* = f^{-1}(W^*) \cap V_{\lambda}\}$ has the finite intersection property. From the H-closedness of X it follows that there exists a point $x \in \cap\{\operatorname{Cl} V_{\lambda}^* : V_{\lambda}^* \in \mathcal{V}^*\}$. It is easily to prove that $x \in A$ and $f(x) \in \cap\{\operatorname{Cl} W : W$ is open set containing y}. This means that y = f(x) since Y is a Hausdorff space. Hence, $f(A) \supset \cap\{\operatorname{Cl} U_{\mu} : U_{\mu} \in \mathcal{U}\}$. The proof of (2.3) is completed.

Corollary 2.16. Let $f: X \to Y$ be a mapping between H-closed spaces. If f is open (semi-open, irreducible), then f is Θ -closed.

Proof. By virtue of Lemma 1.1 these mapping are *HJ*. Apply Theorem 2.15. ■

Example. There exists a Θ -closed mapping which is not an HJ-mapping. Let X = [0, 1] with the following topology. The neighbourhoods of every point $x \neq 0$ are the same as those in the usual topology, but the the neighbourhoods of x = 0 are the sets of the form $[0, \varepsilon) \setminus D$, where $D = \{0, \frac{1}{2}, ..., \frac{1}{n}, ...\}, 0 < \varepsilon < 1$. The space X is H-closed and Urysohn, i.e., X is nearly-compact (see Theorem 2.7). Let us define $f: X \to X = Y$ by

$$f(x) = \begin{cases} x & \text{if } x < 0.6, \\ 0.6 & \text{if } 0.6 \le x < 0.8, \\ 2x - 1 & \text{if } 0.8 \le x \le 1. \end{cases}$$

The mapping $f: X \to X$ is continuous. Moreover, f is Θ -closed since X and Y are nearly-compact. Let us prove that f is not an HJ-mapping. Let V = (0, 0.6] be regularly open subset of Y. Now $\operatorname{Bd} V = \{0.6\}$ and $f^{-1}(\operatorname{Bd} V) = [0.6, 1]$. It is clear that $f^{-1}(\operatorname{Bd} V)$ contains an open set since $(0.6, 1) \subset [0.6, 1]$. By Proposition 1 f is not HJ.

Lemma 2.17. Let $f : X \to Y$ be a surjective mapping. If F is Θ -closed in Y, then $f^{-1}(F)$ is Θ -closed in X.

Proof. Let us prove that $X \setminus f^{-1}(F)$ is Θ -open. If x is a point of $X \setminus f^{-1}(F)$, then $f(x) \in Y \setminus F$. There exists an open set U such that $f(x) \in U$ and $\operatorname{Cl} U \cap F = \emptyset$ since F is Θ -closed. Now $x \in f^{-1}(U)$ and $\operatorname{Cl} f^{-1}(U) \cap F = \emptyset$. We infer that $X \setminus f^{-1}(F)$ is Θ -open. Hence, $f^{-1}(F)$ is Θ -closed.

Let (X, t) be a topological space and $A \subset X$. If for every open t-open cover $\{U_i : i \in I\}$ of A, there exists a finite subset I_0 of I such that $A \subset \bigcup \{\operatorname{Cl} U_i : i \in I_0\}$, then A is said to be an H-set [16].

Theorem 2.18. [16, Theorem 3.3]. Every H-set in (X, t) is compact in (X, t_{Θ}) .

Theorem 2.19. [16, Corollary 3.4]. If (X, t_{Θ}) is Hausdorff, then H-set in (X, t) is Θ -closed.

Theorem 2.20. A Θ -closed subset of an H-closed space is an H-set.

Proof. See [2] and [14]. \blacksquare

(

3 Inverse system X_{Θ}

For every inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ we shall introduce inverse system \mathbf{X}_{Θ} . Namely, for every space X_a there exists the space $(X_a)_{\Theta}$ which is defined in Definition 2.2. Moreover, for every mapping $p_{ab} : X_b \to X_a$ there exists the mapping $(p_{ab})_{\Theta}$ (see Definition 2.3 and Lemma 2.11). Transitivity condition

$$(p_{ab})_{\Theta}(p_{bc})_{\Theta} = (p_{ac})_{\Theta}$$

it follows from the commutativity of the diagram 2.1. This means that we have the following result.

Proposition 4. For every inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ there exists the inverse system $\mathbf{X}_{\Theta} = \{(X_a)_{\Theta}, (p_{ab})_{\Theta}, A\}$ such that commutes the following diagram

where i and each i_a is the identity for every $a \in A$.

Proposition 5. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system. There exists a mapping $p_{\Theta} : (\lim \mathbf{X})_{\Theta} \to \lim \mathbf{X}_{\Theta}$ such that $i = p_{\Theta}i_{\Theta}$, where $i_{\Theta} : \lim \mathbf{X} \to (\lim \mathbf{X})_{\Theta}$ is the identity.

Proof. By Definition 2.1 for each $a \in A$ there is $(p_a)_{\Theta} : (\lim \mathbf{X})_{\Theta} \to (X_a)_{\Theta}$. This mapping is continuous (Lemma 2.11). The collection $\{(p_a)_{\Theta} : a \in A\}$ induces a continuous mapping $p_{\Theta} : (\lim \mathbf{X})_{\Theta} \to \lim \mathbf{X}_{\Theta}$. Hence we have the following diagram.

$$\lim_{i \to \infty} \mathbf{X} \quad \stackrel{id}{\to} \quad \lim_{i \to \infty} \mathbf{X} \\ \downarrow_{i} \quad \downarrow_{i_{\Theta}} \quad \downarrow_{i_{\Theta}} \\ \lim_{i \to \infty} \mathbf{X}_{\Theta} \quad \stackrel{p_{\Theta}}{\leftarrow} \quad (\lim_{i \to \infty} \mathbf{X})_{\Theta}$$

In the sequel we shall use the following results.

Theorem 3.1. [12, Theorem 3, p. 206]. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of quasi-compact non-empty T_0 spaces and closed bonding mapping p_{ab} . Then $\lim \mathbf{X}$ is non-empty.

Theorem 3.2. [12, Theorem 5, p. 208].Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of quasi-compact T_0 spaces and closed bonding mapping p_{ab} . Then $\lim \mathbf{X}$ is quasi-compact.

We shall prove the following result.

Lemma 3.3. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of quasi-compact non-empty T_0 spaces and closed surjective bonding mapping p_{ab} . Then the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are surjective and closed.

Proof. Let us prove that the projections p_a are surjective. For each $x_a \in X_a$ the sets $Y_b = p_{ab}^{-1}(x_a)$ are non-empty closed sets. This means that the system $\mathbf{Y} = \{Y_b, p_{bc} | Y_c, a \leq b \leq c\}$ satisfies Theorem 3.1 and has a non-empty limit. For every $y \in Y$ we have $p_a(y) = x_a$. Hence, p_a is surjective. Let us prove that p_a is closed. It suffices to prove that for every $x_a \in X_a$ and every neighbourhood U of $p_a^{-1}(x_a)$ in lim \mathbf{X} there exists an open set U_a containing x_a such that $p_a^{-1}(U_a) \subset U$. For every $x \in p_a^{-1}(x_a)$ there is a basic open set $p_{a(x)}^{-1}(U_{a(x)})$ such that $x \in p_{a(x)}^{-1}(U_{a(x)}) \subset U$. From the quasi-compactness of $p_a^{-1}(x_a)$ it follows that there exists a finite set $\{x_1, ..., x_n\}$ of the points of $p_a^{-1}(x_a)$. Let $b \geq a(x), a(x_1), ..., a(x_n)$ and let $U_b = \cup\{p_{a(x_1)b}^{-1}(U_{a(x_1)}), ..., p_{a(x_n)b}^{-1}(U_{a(x_n)})\}$. It follows that there is an open set U_a containing x_a such that $p_{ab}^{-1}(U_a) \subset U$. The proof is complete. \blacksquare

Theorem 3.4. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of quasi-compact non-empty T_0 spaces and closed surjective bonding mapping p_{ab} . Then the limit lim \mathbf{X} is connected if and only if each X_a is connected.

Proof. If lim **X** is connected, then each X_a is connected since, by Theorem 3.3, the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a$ are surjective mappings. Let us prove the converse. Suppose that X is not connected. There exists a pair of clopen sets U, V such that $U \cup V = X$. Now, $p_a(U), p_a(V)$ is a pair of closed sets since p_a is closed. Moreover, $X_a = p_a(U) \cup p_a(V)$. Now, $Y_a = p_a(U) \cap p_a(V)$ is non-empty since X_a is connected. Moreover, Y_a is closed and each $p_a^{-1}(Y_a)$ is closed. The collection $\{p_a^{-1}(Y_a) : a \in A\}$ has the finite intersection property. By quasi-compactnes of lim **X** (Theorem 3.3) $Y = \cap\{p_a^{-1}(Y_a) : a \in A\}$ is non-empty. It is clear that $Y \subset U$ and $Y \subset V$. This is imposible since U and V are disjoint closed sets. ■

The following is the main result of this paper.

Theorem 3.5. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty *H*-closed spaces and Θ -closed bonding mapping p_{ab} . Then $\lim \mathbf{X}$ is non-empty. Moreover, if p_{ab} are surjections, then the projections $p_a : \lim \mathbf{X} \to X_a, a \in A$, are surjections.

Proof. Consider the following diagram

from Proposition 4. By Theorem 2.9 each $(X_a)_{\Theta}$ is a compact T_1 space. Furthermore, each maping $(p_{ab})_{\Theta}$ is closed by c) of Lemma 2.12. This means that the inverse system $\mathbf{X}_{\Theta} = \{(X_a)_{\Theta}, (p_{ab})_{\Theta}, A\}$ satisfies the conditions of Theorem 3.1. It follows that $\lim \mathbf{X}_{\Theta}$ is non-empty. This implies that $\lim \mathbf{X}$ is non-empty. Further, if $p_{ab}, b \geq a$, are onto mappings, then for each $x_a \in X_a$ the sets $Y_b = p_{ab}^{-1}(x_a)$ are non-empty Θ -closed sets (Lemma 2.17). This means that the system $\mathbf{Y}_{\Theta} = \{(Y_b)_{\Theta}, (p_{bc})_{\Theta} | (Y_c)_{\Theta}, a \leq b \leq c\}$ satisfies Theorem 3.1 and has a non-empty limit. This means $\mathbf{Y} = \{Y_b, p_{bc} | Y_c, a \leq b \leq c\}$ has a nonempty limit. For every $y \in Y$ we have $p_a(y) = x_a$. The proof is completed.

If X and Y are nearly-compact spaces, then each mapping $f: X \to Y$ is Θ -closed (Theorem 2.13). We have the following consequence of Theorem 3.5.

Corollary 3.6. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty nearly-compact spaces. Then $\lim \mathbf{X}$ is non-empty. Moreover, if p_{ab} are surjections, then the projections $p_a : \lim \mathbf{X} \to X_a, a \in A$, are surjections.

Lemma 3.7. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of H-closed spaces and Θ -closed surjective bonding mapping p_{ab} . The projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a$, $a \in A$, are Θ -closed if and only if the mapping $p_{\Theta} : (\lim \mathbf{X})_{\Theta} \to \lim \mathbf{X}_{\Theta}$ from Proposition 5 is a homeomorphism.

Proof. The if part. Let $F \subset \lim \mathbf{X}$ be Θ -closed. Then $i_{\Theta}(F)$ is closed in $(\lim \mathbf{X})_{\Theta}$. This means that $p_{\Theta}i_{\Theta}(F)$ is closed in $\lim \mathbf{X}_{\Theta}$. Now $q_a(p_{\Theta}i_{\Theta}(F))$ is closed in $(X_a)_{\Theta}$ since each projection $q_a : (\lim \mathbf{X})_{\Theta} \to (X_a)_{\Theta}$ is closed (Lemma 3.3). We infer that $i_a^{-1}(q_a(p_{\Theta}i_{\Theta}(F)))$ is Θ -closed in X_a . This means that $p_a(F)$ is Θ -closed since $p_a(F) = i_a^{-1}(q_a(p_{\Theta}i_{\Theta}(F)))$. Thus, p_a is Θ -closed for every $a \in A$.

The only if part. Suppose that the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are Θ -closed. Let us prove that p_{Θ} is a homeomorphism. It suffice to prove that p_{Θ} is closed. Let $F \subset (\lim \mathbf{X})_{\Theta}$ be closed. This means that F is Θ -closed in lim \mathbf{X} .

For each $a \in A$ the set $p_a(F)$ is Θ -closed since the projections p_a are Θ -closed. Now, $i_a p_a(F)$ is closed in $(X_a)_{\Theta}$. We have the collection $\{q_a^{-1}i_a p_a(F) : a \in A\}$ with finite intersection property. It is clear that $p_{\Theta}(F) = \bigcap\{q_a^{-1}i_a p_a(F) : a \in A\}$ and that $\bigcap\{q_a^{-1}i_a p_a(F) : a \in A\}$ is closed in $\lim \mathbf{X}_{\Theta}$. Hence, p_{Θ} is closed and, consequently, a homeomorphism.

Theorem 3.8. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system with HJ mappings p_{ab} . If the projections $p_a : \lim \mathbf{X} \to X_a, a \in A$, are surjections, then they are HJ mapping and, consequently, Θ -closed.

Proof. By Proposition 1 a mapping $f : X \to Y$ is HJ if and only if the counterimage of the boundary of each regularly open set is nowhere dense. Suppose that p_a is not HJ. Then there exist a regularly open set U_a in X_a such that the boundary of $p_a^{-1}(U_a)$ contains an open set U. From the definition of a base in lim **X** it follows that there is a $b \ge a$ and an open set U_b in X_b such that $p_b^{-1}(U_b) \subset U$. It is clair that $U_b \subset \text{Bd} \ p_{ab}^{-1}(U_a)$. This is impossible since p_{ab} is HJ. Hence, the projections $p_a, a \in A$, are HJ. From Theorem 2.15 it follows that p_a is Θ -closed. ■

Theorem 3.9. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system of H-closed spaces X_a and HJ mappings p_{ab} , then $X = \lim \mathbf{X}$ is H-closed.

Proof. If $X = \emptyset$, then Theorem holds. Let $X \neq \emptyset$. Then $X_a \neq \emptyset$ for every $a \in A$ and the projections $p_a : X \to X_a$ onto HJ mappings. Let us prove that X is H-closed. It suffices to prove that each maximal centred family $\mathcal{U} = \{U_\mu : \mu \in M, U_\mu \text{ is open subset of } X\}$ has the property $\cap \{\operatorname{Cl} U_\mu : \mu \in M\} \neq \emptyset$. For each $a \in A$ we define a centred family $\mathcal{U}_a = \{U_{\mu_a} : U_{\mu_a} \text{ is open in } X_a \text{ and there exists } U_\mu \in \mathfrak{U} \text{ such } p_a(U_\mu) \subset U_{\mu_a}, \mu_a \in M_a\}$. Now we shall prove that \mathcal{U}_a is maximal. Let U_a be ope in X_a with property $U_a \cap U_{\mu_a} \neq \emptyset$ for every $U_{\mu_a} \in \mathfrak{U}_a$. It is readily seen that $\operatorname{Cl} U_a \cap p_a(U_\mu) \neq \emptyset$ for each $U_\mu \in \mathfrak{U}$. Hence, if we denote $\operatorname{Int} \operatorname{Cl} U_a$ by V_a , then we have $\operatorname{Cl} V_a \cap p_a(U_\mu) \neq \emptyset$ for each $U_\mu \in \mathfrak{U}$. From the fact that p_a is HJ we conclude that $\operatorname{Cl}(p_a^{-1}(V_a)) \cap U_\mu \neq \emptyset$ since $\operatorname{Cl}(p_a^{-1}(V_a)) \cap U_\mu \neq \emptyset$ and the maximality of \mathfrak{U} it follows that $p_a^{-1}(V_a) \in \mathfrak{U}$ and, consequently, $V_a \in \mathfrak{U}_a$. This means that \mathfrak{U}_a is maximal. In similar way on can prove that if $U_{\mu_a} \in \mathfrak{U}_a$, then $p_{ab}^{-1}(U_{\mu_a}) \in \mathfrak{U}_b$, where b > a. Since X_a is H-closed and \mathfrak{U}_a maximal, there exists $x_a \in X_a$ such that $x_a = \cap\{\operatorname{Cl} U_{\mu_a} : U_{\mu_a} \in \mathfrak{U}_a\}$. Moreover, $p_{ab}(x_b) = x_a$ if $b \geq a$. It is easely to prove that $x = (x_a : a \in A) \in \cap\{\operatorname{Cl} U_\mu : U_\mu \in \mathfrak{U}\}$. The proof is completed. ∎

Corollary 3.10. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system of H-closed spaces X_a and semi-open (open, closed irreducuble) mappings p_{ab} , then $X = \lim \mathbf{X}$ is H-closed.

REMARK. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system of H-closed spaces X_a open bonding mappings p_{ab} , then see [5] and [15].

We close this section with result concerning the connectedness of the limit space $\lim \mathbf{X}$.

Theorem 3.11. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of H-closed spaces X_a and surjective Θ -closed mappings p_{ab} . If the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are Θ -closed and $X = \lim \mathbf{X}$ is H-closed, then X is connected if and only if each X_a is connected.

Proof. If lim **X** is connected, then each X_a is connected since, by Theorem 3.5, the projections p_a : lim **X** → **X**_a are surjective mappings. Let us prove the converse. Suppose that X is not connected. There exists a pair of clopen sets U, V such that $U \cup V = X$. It is clear that U and V are Θ-closed. Now, $p_a(U), p_a(V)$ is a pair of Θ-closed sets since p_a is Θ-closed. Moreover, $X_a = p_a(U) \cup p_a(V)$. Now, $Y_a = p_a(U) \cap p_a(V)$ is non-empty since X_a is connected. Moreover, Y_a is Θ-closed (see (b) of Theorem 2.2). By Lemma 2.17 each $p_a^{-1}(Y_a)$ is Θ-closed. The collection $\{p_a^{-1}(Y_a) : a \in A\}$ has the finite intersection property. By Theorem 2.6 $Y = \cap\{p_a^{-1}(Y_a) : a \in A\}$ is non-empty. This is imposible since U and V are disjoint. ■

Corollary 3.12. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of H-closed spaces X_a and surjective HJ mappings p_{ab} . Then X is connected if and only if each X_a is connected.

References

- P. S. Aleksandroff et P. S. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Akademie Amsterdam, Deel XIV, Nr. 1 (1929), 1-96.
- [2] R. F. Dickman, Jr. and J. R. Porter, Θ-closed subsets of Hausdorff spaces, Pac. J. Math. 59 (1975), 407-415.
- [3] R. F. Dickman, JR., J. R. Porter, and L. R. Rubin, Completely regular absolutes and projective objects, Pacific J. Math, 94 (1981), 277-295.
- [4] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [5] L. M. Friedler and D. H. Pettey, *Inverse limits and mappings of minimal topological spaces*, Pacific J. Math. 71 (1977), 429-448.
- [6] L. L. Herrington and P. E. Long, Characterizations of H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), 469-475.

- [7] L. L. Herrington, Characterizations of Urysohn-closed spaces, Proc. Amer. Math. Soc. 55 (1976), 435-439.
- [8] L. L. Herrington, Properties of nearly-compact spaces, Proc. Amer. Math. Soc. 45 (1974), 431-436.
- [9] J. E. Joseph, On Urysohn-closed and minimal Urysohn spaces, Proc. Amer. Math. Soc. 68 (1978), 235-242.
- [10] J. E. Joseph, Multifunctions and cluster sets, Proc. Amer. Math. Soc. 74 (1979), 329–337.
- [11] J. Mioduszewski and L. Rudolf, *H-closed and extremally disconnected Hausdorff spaces*, Diss. Math. 51, 1969.
- [12] A. H. Stone, *Inverse limits of compact spaces*, Gen. Topology and Appl. 10 (1979), 203-211.
- [13] V. M. Uljanov, O bikompaktnyh rasširenijah sčetnogo haraktera i absoljutah, Mat. Sbornik 98 (1975), 223-254.
- [14] N. V. Veličko, *H-closed topological spaces*, Mat. Sb., 70 (112) (1966), 98-112.
- [15] T. O. Vinson, Jr. and R. F. Dickman, Jr., Inverse limits and absolutes of H-closed spaces, Proc. Amer. Math. Soc. 66 (1977), 351-358.
- [16] T. H. Yalvaç, Relations between the topologies τ and τ_{Θ} , Hacettepe Bull. Nat. Sci. and Engin. 20 (1991), 29-39.

Faculty of Organizations and Informatics Varaždin, Croatia e-mail: ivan.loncar1@vz.htnet.hr; ivan.loncar@foi.hr