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EXPRESSIONS OF SOLUTIONS FOR A

CLASS OF DIFFERENTIAL EQUATIONS

E.M. Elsayed

Abstract

In this paper we study the solutions of the following class of difference

equation

xn+1 =
xn−8

±1± xn−2xn−5xn−8

, n = 0, 1, ...,

where initial values are non zero real numbers.

1 Introduction

Difference equations appear as natural descriptions of observed evolution phe-
nomena because most measurements of time evolving variables are discrete
and as such these equations are in their own right important mathematical
models. More importantly, difference equations also appear in the study of
discretization methods for differential equations. Several results in the theory
of difference equations have been obtained as more or less natural discrete
analogues of corresponding results of differential equations. This is especially
true in the case of Lyapunov theory of stability. Nonetheless, the theory of
difference equations is a lot richer than the corresponding theory of differen-
tial equations. For example, a simple difference equation resulting from a first
order differential equation may have a phenomena often called appearance of
“ghost” solutions or existence of chaotic orbits that can only happen for higher
order differential equations and the theory of difference equations is interesting
in itself.
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The applications of the theory of difference equations is rapidly increasing
to various fields such as numerical analysis, control theory, finite mathematics
and computer science. Thus, there is every reason for studying the theory of
difference equations as a well deserved discipline.

Recently there has been a lot of interest in studying the global attractivity,
boundedness character, periodicity and the solution form of nonlinear differ-
ence equations. For some results in this area, for example: Aloqeili [2] has
obtained the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
.

Cinar [4-6] investigated the solutions of the following difference equations

xn+1 =
xn−1

1 + xnxn−1
, xn+1 =

xn−1

−1 + xnxn−1
, xn+1 =

axn−1

1 + bxnxn−1
.

Elabbasy et al. [9] investigated the global stability, periodicity character and
gave the solution of special case of the following recursive sequence

xn+1 = axn − bxn

cxn − dxn−1
.

Elabbasy et al. [10] investigated the global stability, boundedness, periodicity
character and gave the solution of some special cases of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i

.

Elabbasy et al. [11] investigated the global stability, periodicity character and
gave the solution of some special cases of the difference equation

xn+1 =
dxn−lxn−k

cxn−s − b
+ a.

Simsek et al. [21] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1
.

Other related results on rational difference equations can be found in refs.
[1–28].

Similar to the references above, in this paper we obtain the solutions of
the following rational difference equations

xn+1 =
xn−8

±1± xn−2xn−5xn−8
, n = 0, 1, ..., (1)
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where the initial values x−j , (j = 0, 1, ..., 8) are arbitrary non zero real num-
bers.

Let I be some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial condi-
tions x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (2)

has a unique solution {xn}∞n=−k.
Definition 1. A point x ∈ I is called an equilibrium point of Eq.(2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq.(2), or equivalently, x is a fixed
point of f .
Definition 2. (Periodicity)

A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for
all n ≥ −k.

2 First Equation

In this section we give a specific form of Eq. (1) in the form

xn+1 =
xn−8

1 + xn−2xn−5xn−8
, n = 0, 1, ..., (3)

where the initial values are arbitrary non zero real numbers.

Theorem 2.1. Let {xn}∞n=−8 be a solution of Eq.(3). Then for n = 0, 1, ...

x9n−8 = k
n−1
∏

i=0

(

1 + 3ikfc

1 + (3i+ 1) kfc

)

, x9n−7 = h
n−1
∏

i=0

(

1 + 3iheb

1 + (3i+ 1)heb

)

,

x9n−6 = g

n−1
∏

i=0

(

1 + 3iadg

1 + (3i+ 1) adg

)

, x9n−5 = f

n−1
∏

i=0

(

1 + (3i+ 1)kfc

1 + (3i+ 2) kfc

)

,

x9n−4 = e

n−1
∏

i=0

(

1 + (3i+ 1)heb

1 + (3i+ 2)heb

)

, x9n−3 = d

n−1
∏

i=0

(

1 + (3i+ 1)adg

1 + (3i+ 2) adg

)

,

x9n−2 = c
n−1
∏

i=0

(

1 + (3i+ 2)kfc

1 + (3i+ 3) kfc

)

, x9n−1 = b
n−1
∏

i=0

(

1 + (3i+ 2)heb

1 + (3i+ 3)heb

)

,

x9n = a

n−1
∏

i=0

(

1 + (3i+ 2)adg

1 + (3i+ 3) adg

)

,
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where x−8 = k, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 =
c, x−1 = b, x−0 = a.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n− 1. That is;

x9n−17 = k

n−2
∏

i=0

(

1 + 3ikfc

1 + (3i+ 1) kfc

)

, x9n−16 = h

n−2
∏

i=0

(

1 + 3iheb

1 + (3i+ 1)heb

)

,

x9n−15 = g
n−2
∏

i=0

(

1 + 3iadg

1 + (3i+ 1) adg

)

, x9n−14 = f
n−2
∏

i=0

(

1 + (3i+ 1)kfc

1 + (3i+ 2) kfc

)

,

x9n−13 = e

n−2
∏

i=0

(

1 + (3i+ 1)heb

1 + (3i+ 2)heb

)

, x9n−12 = d

n−2
∏

i=0

(

1 + (3i+ 1)adg

1 + (3i+ 2) adg

)

,

x9n−11 = c

n−2
∏

i=0

(

1 + (3i+ 2)kfc

1 + (3i+ 3) kfc

)

, x9n−10 = b

n−2
∏

i=0

(

1 + (3i+ 2)heb

1 + (3i+ 3)heb

)

,

x9n−9 = a
n−2
∏

i=0

(

1 + (3i+ 2)adg

1 + (3i+ 3) adg

)

.

Now, it follows from Eq.(3) that

x9n−8 =
x9n−17

1 + x9n−11x9n−14x9n−17

=

k
n−2
∏

i=0

(

1 + 3ikfc

1 + (3i+ 1) kfc

)

1 + c
n−2
∏

i=0

(

1+(3i+2)kfc
1+(3i+3)kfc

)

f
n−2
∏

i=0

(

1+(3i+1)kfc
1+(3i+2)kfc

)

k
n−2
∏

i=0

(

1+3ikfc
1+(3i+1)kfc

)

=

k
n−2
∏

i=0

(

1 + 3ikfc

1 + (3i+ 1) kfc

)

1 + kfc
n−2
∏

i=0

(

1 + 3ikfc

1 + (3i+ 3) kfc

) =

k
n−2
∏

i=0

(

1 + 3ikfc

1 + (3i+ 1) kfc

)

1 +
kfc

1 + (3n− 3) kfc

=

k
n−2
∏

i=0

(

1 + 3ikfc

1 + (3i+ 1) kfc

)

1 + (3n− 3) kfc+ kfc

1 + (3n− 3) kfc

=

k
n−2
∏

i=0

(

1 + 3ikfc

1 + (3i+ 1) kfc

)

(1 + (3n− 3) kfc)

1 + (3n− 2) kfc
.

Hence, we have

x9n−8 = k

n−1
∏

i=0

(

1 + 3ikfc

1 + (3i+ 1) kfc

)

.
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Similarly

x9n−4 =
x9n−13

1 + x9n−7x9n−10x9n−13

=

e
n−2
∏

i=0

(

1 + (3i+ 1)heb

1 + (3i+ 2)heb

)

1 + h
n−1
∏

i=0

(

1+3iheb
1+(3i+1)heb

)

b
n−2
∏

i=0

(

1+(3i+2)heb
1+(3i+3)heb

)

e
n−2
∏

i=0

(

1+(3i+1)heb
1+(3i+2)heb

)

=

e
n−2
∏

i=0

(

1 + (3i+ 1)heb

1 + (3i+ 2)heb

)

1 +

(

heb

1 + (3n− 2)heb

) = e
n−2
∏

i=0

(

1 + (3i+ 1)heb

1 + (3i+ 2)heb

)(

1 + (3n− 2)heb

1 + (3n− 1)heb

)

.

Hence, we have

x9n−4 = e
n−1
∏

i=0

(

1 + (3i+ 1)heb

1 + (3i+ 2)heb

)

.

Similarly, one can easily obtain the other relations. Thus, the proof is com-
pleted.

Theorem 2.2. Eq.(3) has one equilibrium point which is the number zero.

Proof: For the equilibrium points of Eq.(3), we can write

x =
x

1 + x3 .

Then we have
x+ x4 = x,

or,
x4 = 0.

Thus the equilibrium point of Eq.(3) is x = 0.

Theorem 2.3. Every positive solution of Eq.(3) is bounded.

Proof: Let {xn}∞n=−8 be a solution of Eq.(3). It follows from Eq.(3) that

xn+1 =
xn−8

1 + xn−2xn−5xn−8
≤ xn−8.

Then
xn+1 ≤ xn−8 for all n ≥ 0.



104 E.M. Elsayed

Then the sequence {xn}∞n=0 is decreasing and so is bounded from above by
M = max{x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0}.
Numerical examples

For confirming the results of this section, we consider numerical examples
which represent different types of solutions to Eq. (3).

Example 1. We assume x−8 = 8, x−7 = 7, x−6 = 5, x−5 = 3, x−4 = 4,
x−3 = 2, x−2 = 3, x−1 = 6, x0 = 6. See Fig. 1.
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plot of x(n+1)= (x(n−8)/(1+x(n−2)*x(n−5)*x(n−8))

Figure 1: Plot for example 1

Example 2. We assume x−8 = 1, x−7 = 1.9, x−6 = −5, x−5 = 3, x−4 =
−4, x−3 = 7, x−2 = 2.1, x−1 = −1.3, x0 = 1.7. See Fig. 2.
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Figure 2: Plot for example 2
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3 Second Equation

In this section we obtain the solution of the second equation in the form

xn+1 =
xn−8

−1 + xn−2xn−5xn−8
, n = 0, 1, ..., (4)

where the initial values are arbitrary non zero real numbers with x−8x−5x−2 6=
1, x−7x−4x−1 6= 1, x−6x−3x0 6= 1.

Theorem 3.1. Let {xn}∞n=−8 be a solution of Eq.(4). Then every solution of
Eq.(4) is periodic with period eighteen and for n = 0, 1, ...

x18n−8 = k, x18n−7 = h, x18n−6 = g, x18n−5 = f, x18n−4 = e,

x18n−3 = d, x18n−2 = c, x18n−1 = b, x18n = a,

x18n+1 =
k

−1 + kfc
, x18n+2 =

h

−1 + heb
, x18n+3 =

g

−1 + adg
, (5)

x18n+4 = f (−1 + kfc) , x18n+5 = e (−1 + heb) , x18n+6 = d (−1 + adg) ,

x18n+7 =
c

−1 + kfc
, x18n+8 =

b

−1 + heb
, x18n+9 =

a

−1 + adg
,

where x−8 = k, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 =
c, x−1 = b, x−0 = a.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n− 1. That is;

x18n−26 = k, x18n−25 = h, x18n−24 = g, x18n−23 = f, x18n−22 = e,

x18n−21 = d, x18n−20 = c, x18n−19 = b, x18n−18 = a,

x18n−17 =
k

−1 + kfc
, x18n−16 =

h

−1 + heb
, x18n−15 =

g

−1 + adg
,

x18n−14 = f (−1 + kfc) , x18n−13 = e (−1 + heb) , x18n−12 = d (−1 + adg) ,

x18n−11 =
c

−1 + kfc
, x18n−10 =

b

−1 + heb
, x18n−9 =

a

−1 + adg
.

Now, it follows from Eq.(4) that

x18n−8 =
x18n−17

−1 + x18n−11x18n−14x18n−17
=

k

−1 + kfc

−1 +
c

−1 + kfc
f (−1 + kfc)

k

−1 + kfc

=

k

−1 + kfc

−1 +
kfc

−1 + kfc

=
k

−1 (−1 + kfc) + kfc
.
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Hence, we have

x18n−8 = k.

Similarly

x18n+2 =
x18n−7

−1 + x18n−1x18n−4x18n−7
=

h

−1 + heb
.

Similarly, one can easily prove the other relations. Thus, the proof is com-
pleted.

Theorem 3.2. Eq.(4) has two equilibrium points which are 0, 3
√
2.

Proof: For the equilibrium points of Eq.(4), we can write

x =
x

−1 + x3 .

Then we have

−x+ x4 = x,

or,

x(x3 − 2) = 0.

Thus the equilibrium points of Eq.(4) are 0, 3
√
2.

Theorem 3.3. Eq.(4) has a periodic solution of period nine iff kfc = heb =
adg = 2 and will be taken the form {k, h, g, f, e, d, c, b, a, k, h, g, f, e, d, c, b, a, ...}.

Proof: First suppose that there exists a prime period nine solution

k, h, g, f, e, d, c, b, a, k, h, g, f, e, d, c, b, a, ...,

of Eq.(4), we see from Eq.(5) that

k =
k

−1 + kfc
, h =

h

−1 + heb
, g =

g

−1 + adg
,

f = f (−1 + kfc) , e = e (−1 + heb) , d = d (−1 + adg) ,

c =
c

−1 + kfc
, b =

b

−1 + heb
, a =

a

−1 + adg
,

or,

(−1 + kfc)
n
= 1, (−1 + heb)

n
= 1, (−1 + adg)

n
= 1.

Then

kfc = heb = adg = 2.
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Second assume that kfc = heb = adg = 2. Then we see from Eq.(5) that

x18n−8 = k, x18n−7 = h, x18n−6 = g, x18n−5 = f,

x18n−4 = e, x18n−3 = d, x18n−2 = c, x18n−1 = b,

x18n = a, x18n+1 = k, x18n+2 = h, x18n+3 = g,

x18n+4 = f, x18n+5 = e, x18n+6 = d, x18n+7 = c,

x18n+8 = b, x18n+9 = a.

Thus we have a periodic solution of period nine and the proof is complete.
Numerical examples

Example 3. We consider x−8 = 1.3, x−7 = 1, x−6 = 2, x−5 = −3, x−4 =
1.2, x−3 = 0.7, x−2 = 1.6, x−1 = 1.8, x0 = 1.7. See Fig. 3.
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Figure 3: Plot for example 3

Example 4. We assume x−8 = 3, x−7 = 5, x−6 = 4, x−5 = 1.4, x−4 =
0.2, x−3 = 0.5, x−2 = 1/(2.1), x−1 = 2, x0 = 1. See Fig. 4.

The following cases can be proved similarly.

4 Third Equation

In this section we get the solution of the third following equation

xn+1 =
xn−8

1− xn−2xn−5xn−8
, n = 0, 1, ..., (6)

where the initial values are arbitrary non zero real numbers.
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Figure 4: Plot for example 4

Theorem 4.1. Let {xn}∞n=−8 be a solution of Eq.(6). Then for n = 0, 1, ...

x9n−8 = k

n−1
∏

i=0

(

1− 3ikfc

1− (3i+ 1) kfc

)

, x9n−7 = h

n−1
∏

i=0

(

1− 3iheb

1− (3i+ 1)heb

)

,

x9n−6 = g

n−1
∏

i=0

(

1− 3iadg

1− (3i+ 1) adg

)

, x9n−5 = f

n−1
∏

i=0

(

1− (3i+ 1)kfc

1− (3i+ 2) kfc

)

,

x9n−4 = e
n−1
∏

i=0

(

1− (3i+ 1)heb

1− (3i+ 2)heb

)

, x9n−3 = d
n−1
∏

i=0

(

1− (3i+ 1)adg

1− (3i+ 2) adg

)

,

x9n−2 = c

n−1
∏

i=0

(

1− (3i+ 2)kfc

1− (3i+ 3) kfc

)

, x9n−1 = b

n−1
∏

i=0

(

1− (3i+ 2)heb

1− (3i+ 3)heb

)

,

x9n = a

n−1
∏

i=0

(

1− (3i+ 2)adg

1− (3i+ 3) adg

)

,

where x−8 = k, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 =
c, x−1 = b, x−0 = a.

Theorem 4.2. Eq.(6) has a unique equilibrium point which is the number
zero.

Example 5. We suppose x−8 = 9, x−7 = 1.5, x−6 = 2.4, x−5 = 1.4, x−4 =
0.3, x−3 = 1.8, x−2 = 2, x−1 = 2.3, x0 = 1.7. See Fig. 5.

Example 6. We assume x−8 = 9, x−7 = 5, x−6 = 4, x−5 = 6, x−4 =
3, x−3 = 8, x−2 = 2, x−1 = −3, x0 = 7. See Fig. 6.
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Figure 5: Plot for example 5
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Figure 6: Plot for example 6

5 Fourth Equation

Here we obtain a form of the solutions of the equation

xn+1 =
xn−8

−1− xn−2xn−5xn−8
, n = 0, 1, ..., (7)

where the initial values are arbitrary non zero real numbers with x−8x−5x−2 6=
−1, x−7x−4x−1 6= −1, x−6x−3x0 6= −1.

Theorem 5.1. Let {xn}∞n=−8 be a solution of Eq.(7). Then every solution of
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Eq.(7) is periodic with period eighteen and for n = 0, 1, ...

x18n−8 = k, x18n−7 = h, x18n−6 = g, x18n−5 = f, x18n−4 = e,

x18n−3 = d, x18n−2 = c, x18n−1 = b, x18n = a,

x18n+1 =
k

−1− kfc
, x18n+2 =

h

−1− heb
, x18n+3 =

g

−1− adg
,

x18n+4 = f (−1− kfc) , x18n+5 = e (−1− heb) , x18n+6 = d (−1− adg) ,

x18n+7 =
c

−1− kfc
, x18n+8 =

b

−1− heb
, x18n+9 =

a

−1− adg
,

where x−8 = k, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 =
c, x−1 = b, x−0 = a.

Theorem 5.2. Eq.(7) has two equilibrium points which are 0, 3
√
−2.

Theorem 5.3. Eq.(7) has a periodic solutions of period nine iff kfc = heb =
adg = −2 and will be taken the form {k, h, g, f, e, d, c, b, a, k, h, g, f, e, d, c, b, a, ...}.

Example 7. We suppose x−8 = 1.9, x−7 = 0.3, x−6 = 1.4, x−5 = 3.1, x−4 =
2.2, x−3 = 0.2, x−2 = −1.7, x−1 = 1.3, x0 = 0.6 . See Fig. 7.
Example 8. We assume x−8 = 11, x−7 = 4, x−6 = 14, x−5 = 1, x−4 =
4, x−3 = 0.2, x−2 = −2/11, x−1 = −1/8, x0 = −5/7. See Fig. 8.
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Figure 7: Plot for example 7
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