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DIOPHANTINE QUADRUPLES IN Z[
√
−2 ]

Andrej Dujella, Ivan Soldo

Abstract

In this paper, we study the existence of Diophantine quadruples with
the property D(z) in the ring Z[

√

−2 ]. We find several new polynomial
formulas for Diophantine quadruples with the property D(a + b

√

−2 ),
for integers a and b satisfying certain congruence conditions. These for-
mulas, together with previous results on this subject by Abu Muriefah,
Al-Rashed and Franušić, allow us to almost completely characterize ele-
ments z of Z[

√

−2 ] for which a Diophantine quadruple with the property
D(z) exists.

1. Introduction

Let z be an element of a commutative ring R. A Diophantine quadruple with
the property D(z), or a D(z)-quadruple, is a set D of four non-zero elements
of R with the property that the product of any two distinct elements of this
set increased by z is a square of some element in R. Any set D satisfying this
condition is called a set with the property D(z).

In the third century, the Greek mathematician Diophantus of Alexandria
considered the problem of existence of Diophantine quadruples in the rational
field Q. He discovered the set { 1

16 ,
33
16 ,

17
4 , 105

16 } with the property D(1), i.e.
the set {1, 33, 65, 105} with the property D(256). The same problem was
considered by Fermat. He found a D(1)-quadruple in integers {1, 3, 8, 120}
(see [4, 17]). In 1969, Baker and Davenport [2] proved that Fermat’s set
cannot be extended to a D(1)-quintuple in integers. Recently, it was proved
in [8] that in Z there does not exist a D(1)-sextuple and there are only finitely
many D(1)-quintuples.
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The problem of existence of Diophantine quadruples is almost completely
solved in the ring of integers Z. In [3], [16] and [18], it was shown that if
n ∈ Z, n ≡ 2 (mod 4), then there does not exist a D(n)-quadruple. In [5],
Dujella proved a result in the opposite direction. Namely, if n 6≡ 2 (mod 4)
and n 6∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists a D(n)-quadruple.

In [7], the existence of D(a + b
√
−1 )-quadruples in the ring Z[

√
−1 ] of

Gaussian integers was considered. It was shown that if b is odd or a ≡ b ≡
2 (mod 4), then there does not exist a D(a + b

√
−1 )-quadruple, and if z =

a+b
√
−1 is not of that form and z 6∈ {±2,±1±2i,±4i}, then there exist at least

two distinct Diophantine quadruples with the property D(z) (for additional
results on Diophantine quadruples in Gaussian integers see [14]).

Franušić (see [12]) gave similar results about the existence of Diophantine
quadruples in the ring Z[

√
2 ]. She proved that there exist infinitely many

D(z)-quadruples if and only if z has one of the following forms:

z = 2a+1+2b
√
2, z = 4a+4b

√
2, z = 4a+2+4b

√
2, z = 4a+2+(4b+2)

√
2,

i.e. according to [10], if and only if z can be represented as a difference of
squares of two elements in Z[

√
2 ]. To prove this result, she used the fact that

Pellian equations x2−2y2 = ±1 and x2−2y2 = ±2 are all solvable in integers.
In [13, 15], she proved analogous results for more general real quadratic fields
Z[
√
d ].
Most of the mentioned results obtained by Franušić deal with real quadratic

fields, i.e. with d > 0. One important difference between real and complex
fields is that in the real case there exist infinitely many units. The methods for
the construction of Diophantine quadruples usually use elements with small
norm (see e.g. Section 2), which makes a complex case harder to handle.

Apart from mentioning the result by Dujella for Gaussian integers, the
only case of a complex quadratic field studied until now is the case of the ring
Z[
√
−2 ] of integers in the quadratic field Q(

√
−2 ). This case was studied by

Abu Muriefah and Al-Rashed in [1]. They showed that for any Diophantine
quadruple with the property D(a+ b

√
−2 ), b must be an even integer. In the

remaining cases there are 8 possibilities for a and b modulo 4. Let a′ = a mod
4, b′ = b mod 4. They completely solved the case (a′, b′) = (3, 0). The case
(a′, b′) = (0, 0) was considered modulo 16, and they solved 6 out of 16 possible
subcases, while for (a′, b′) = (2, 0) they solved 8 out of 16 possible subcases.
The cases (a′, b′) = (1, 0) and (a′, b′) = (1, 2) were considered modulo 8, and
in both cases they solved 2 out of 4 possible subcases. The case (a′, b′) = (2, 2)
was considered modulo 24 and they solved 8 out of 36 possible subcases. There
are no results in [1] for the cases (a′, b′) = (0, 2) and (a′, b′) = (3, 2).

In this paper, we will significantly extend the results of Abu Muriefah
and Al-Rashed and obtain several new polynomial formulas for Diophantine
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quadruples with the property D(a + b
√
−2 ), for integers a and b satisfying

certain congruence conditions. In that way, we will solve the problem of exis-
tence of D(z)-quadruples of a large class of elements z of Z[

√
−2 ]. The results

of Abu Muriefah and Al-Rashed [1] are based on polynomial formulas for Dio-
phantine quadruples derived by Dujella in [6]. These formulas were initially
constructed for the analogous problem in Z. One important new ingredient
in this paper is considering the derivation of these formulas in a more general
setting of quadratic fields. In particular, we will take advantage of the fact
that number 3 factorizes in Z[

√
−2 ] as 3 = (1 +

√
−2 )(1−

√
−2 ).

Our main result is:

Theorem 1.1. Let z ∈ Z[
√
−2 ]. If z is of the form z = a+ (2b+ 1)

√
−2 or

z = 4a + (4b + 2)
√
−2, a, b ∈ Z, then there does not exist a D(z)-quadruple.

If z is not of that form, then there exists at least one D(z)-quadruple, except
maybe if z has one of the following forms:

z = 24a+2+(12b+6)
√
−2, z = 24a+5+(12b+6)

√
−2, z = 48a+44+(24b+12)

√
−2,

or if z ∈ {−1, 1± 2
√
−2 }.

The statement of Theorem 1.1 will follow from the mentioned results by
Abu Muriefah, Al-Rashed and Franušić and the propositions which will be
presented and proved in Sections 3 and 4.

2. Preliminaries

Let {u, v} be an arbitrary pair with the property D(z), for z ∈ Z[
√
−2 ]. It

means that
uv + z = r2,

for r ∈ Z[
√
−2 ]. It is easy to check that the set {u, v, u+ v+2r} also has the

property D(z). Indeed,

u(u+ v + 2r) + z = (u+ r)2,

v(u+ v + 2r) + z = (v + r)2.

Applying this construction to the Diophantine pair {v, u+ v+ 2r} we get the
set {v, u+ v + 2r, u+ 4v + 4r}. Therefore, the set

{u, v, u+ v + 2r, u+ 4v + 4r}

has the property D(z) if and only if the product of its first and fourth element
increased by z is a perfect square, i.e.

u(u+ 4v + 4r) + z = y2. (2.1)
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Equation (2.1) is equivalent to

3z = (u+ 2r − y)(u+ 2r + y).

This means that there is an element e ∈ Z[
√
−2 ] such that

u+ 2r − y = e,

u+ 2r + y =
3z

e
,

which gives

2u+ 4r =
3zē

N(e)
+ e, (2.2)

where ē is the conjugate of an element e and N(e) = e · ē is the norm of e.
Suppose that z and e are given. Then, if we look at equation (2.2) modulo 4,
we get a condition for the form of u. We choose a u of small norm satisfying
this condition. Now, it is easy to find the form of r. It remains to satisfy the
condition that v = (r2−z)/u ∈ Z[

√
−2 ], which is equivalent to the divisibility

condition
N(u)|(r2 − z) · ū,

which explains why we choose u to have small norm, preferably (but not always
possible) N(u) = 1.

This method was described for the first time in [6] (but only for quadruples
in Z) and used for systematically finding polynomial formulas for Diophantine
quadruples. We will use it to prove some of our results. In the previous
applications of this construction (e.g. in Lemma 2.2), the authors usually used
e = 1 or e = 3. Since 3 factorizes in Z[

√
−2 ], we can also use e = ±1±

√
−2,

and (for z of a special form) other factors of 3g ·2h for small nonnegative values
of g and h.

Here we also specify some known results, which will be used later on.

Lemma 2.1. Let {z1, z2, z3, z4} ⊂ Z[
√
−2 ] be a set with the property D(z)

and w ∈ Z[
√
−2 ]. Then

(i) the set {z̄1, z̄2, z̄3, z̄4} has the property D(z̄),

(ii) the set {z1w, z2w, z3w, z4w} has the property D(zw2).

Lemma 2.2 (see [6], Theorem 1). The sets

{m,m(3k + 1)2 + 2k,m(3k + 2)2 + 2k + 2, 9m(2k + 1)2 + 8k + 4}(2.3)
{m,mk2 − 2k − 2,m(k + 1)2 − 2k,m(2k + 1)2 − 8k − 4} (2.4)

have the property D(2m(2k + 1) + 1).
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Lemma 2.3 (see [12], Proposition 5). Let d ∈ Z such that d ≡ 2 (mod 4). If
z ∈ Z[

√
d ] is of the form a+ (2b+ 1)

√
d or 4a+ (4b+ 2)

√
d, then there does

not exist a D(z)-quadruple.

Lemma 2.4 (see [1]). Let z = a + b
√
−2 ∈ Z[

√
d ]. If one of the following

conditions

(i) a ≡ 3 (mod 4) and b ≡ 0 (mod 4);

(ii) a ≡ 1 (mod 4) and b ≡ 0 (mod 8);

(iii) a ≡ 1 (mod 8) and b ≡ 2 (mod 4);

(iv) a ≡ 0 (mod 8) and b ≡ 0 (mod 8);

is satisfied, then there exists at least one D(z)-quadruple, except maybe if
z ∈ {−1,−3, 1± 2

√
−2}.

3. Construction of D(z)-quadruples in Z[
√
−2 ]

3.1. The case (a′, b′) = (3, 2)

We begin with the case a ≡ 3 (mod 4), b ≡ 2 (mod 4), which is the only case
modulo 4 for which no results are available until now.

Proposition 3.1. If z ∈ Z[
√
−2 ] is of the form z = 8a + 7 + (8b + 2)

√
−2,

a, b ∈ Z, or z = 8a+ 7 + (8b+ 6)
√
−2, a, b ∈ Z, then there exists at least one

Diophantine quadruple with the property D(z).

Proof: By Lemma 2.1(i), it suffices to prove the statement for z = 8a + 7 +
(8b+2)

√
−2, a, b ∈ Z. Let e = 1−

√
−2. We choose u = 2

√
−2 with N(u) = 8.

Now, from (2.2), it follows that

r = 2a− 4b+ 1 + (2a+ 2b+ 1)
√
−2.

It is obvious that the condition

N(u)|(r2 − z) · ū,

i.e.

32a2 + 32a− 32ab− 64b2 − 48b ≡ 0 (mod 8),

8a2 + 24a+ 64ab− 16b2 + 32b+ 16 ≡ 0 (mod 8),
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is satisfied for all a, b ∈ Z. So, we get the set

{2
√
−2, 4a2 + 4a− 4ab− 8b2 − 6b+ (a2 + 3a+ 8ab− 2b2 + 4b+ 2)

√
−2,

4a2 + 8a− 4ab− 8b2 − 14b+ 2 + (a2 + 7a+ 8ab− 2b2 + 8b+ 6)
√
−2,

16a2 + 24a− 16ab− 32b2 − 40b+ 4 + (4a2 + 20a+ 32ab− 8b2 + 24b+ 14)
√
−2 }

(3.1)

with the property D(8a+ 7 + (8b+ 2)
√
−2 ).

It remains to determine the pairs (a, b) for which the above set has at least
two equal elements or some elements equal to zero. It is easy to check that
the above cases appear if and only if

(a, b) ∈ {(−2,−1), (−1, 0), (0, 0)} .
But, for (a, b) = (−2,−1) the set {−4 + 4

√
−2,−2 +

√
−2,−4

√
−2,−

√
−2 }

has the property D(−9−6
√
−2 ), for (a, b) = (−1, 0) the set {−3−3

√
−2,−1−√

−2, 1 +
√
−2, 3 + 3

√
−2 } has the property D(−1 + 2

√
−2 ) and for (a, b) =

(0, 0) the set {5− 2
√
−2,−4

√
−2,−1, 8} has the property D(7 + 2

√
−2 ).

�

Proposition 3.2. If z ∈ Z[
√
−2 ] is of the form z = 8a + 3 + (4b + 2)

√
−2,

a, b ∈ Z, then there exists at least one Diophantine quadruple with the property
D(z).

Proof: Let z = 8a+3+(4b+2)
√
−2, a, b ∈ Z and e = −1+

√
−2. We choose

u = 2 with N(u) = 4. Now, from (2.2), it follows that

r = −2a+ 2b− 1 + (−2a− b− 1)
√
−2.

The condition N(u)|(r2 − z) · ū is satisfied for all a, b ∈ Z. So, we obtain the
set

{2,−2a2 − 6a− 8ab+ b2 − 4b− 2 + (4a2 + 4a− 2ab− 2b2 − 3b)
√
−2,

−2a2 − 10a− 8ab+ b2 − 2 + (4a2 − 2ab− 2b2 − 5b− 2)
√
−2,

−8a2 − 32a− 32ab+ 4b2 − 8b− 10 + (16a2 + 8a− 8ab− 8b2 − 16b− 4)
√
−2 }

(3.2)

with the property D(8a+ 3 + (4b+ 2)
√
−2 ).

The pairs (a, b) for which the above set has at least two equal elements or
some elements equal to zero are now

(a, b) ∈ {(−1, 0), (0,−2)} .
But, for (a, b) = (−1, 0) the set {−6−4

√
−2,−1−3

√
−2,−1+

√
−2, 2 } has the

property D(−5+2
√
−2 ) and for (a, b) = (0,−2) the set {−14+28

√
−2,−5+

5
√
−2,−1 + 9

√
−2, 2 } has the property D(3− 6

√
−2 ).

�
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3.2. The case (a′, b′) = (1, 0)

Proposition 3.3. If z ∈ Z[
√
−2 ] is of the form z = 4a + 1 + (8b + 4)

√
−2,

a, b ∈ Z, then there exists at least one Diophantine quadruple with the property
D(z).

Proof: Let z = 4a + 1 + (8b + 4)
√
−2, a, b ∈ Z and e = 1 +

√
−2. Here we

may take u = 1 and we get the set

{1,−a2 + 4a+ 16ab+ 8b2 + 8b+ 1− (2a2 + 2a+ 4ab− 16b2 − 8b)
√
−2,

−a2 + 6a+ 16ab+ 8b2 + 16b+ 6− (2a2 + 4a+ 4ab− 16b2 − 12b− 2)
√
−2,

−4a2 + 20a+ 64ab+ 32b2 + 48b+ 13− (8a2 + 12a+ 16ab− 64b2 − 40b− 4)
√
−2 }

(3.3)

with the property D(4a+ 1 + (8b+ 4)
√
−2 ).

Only for (a, b) = (0, 0) the above set has two equal elements. But, the set
{−2 + 2

√
−2,

√
−2, 4

√
−2,−4} has the property D(1 + 4

√
−2 ).

�

3.3. The case (a′, b′) = (2, 0)

Proposition 3.4. If z ∈ Z[
√
−2 ] is of the form z = 16a+ 6 + (8b+ 4)

√
−2,

a, b ∈ Z, then there exists at least one Diophantine quadruple with the property
D(z).

Proof: Multiplying by
√
−2 the elements of set (2.3) in Lemma 2.2 for m =√

−2 and k = −b− 1 + (2a+ 1)
√
−2/2 we obtain the set

{−2, 36a2 + 32a− 18b2 − 24b− 1 + (24a+ 36ab+ 16b+ 10)
√
−2,

36a2 + 32a− 18b2 − 12b+ 5 + (12a+ 36ab+ 16b+ 6)
√
−2,

144a2 + 128a− 72b2 − 72b+ 10 + (72a+ 144ab+ 64b+ 32)
√
−2 }

(3.4)

with the property D(16a+ 6 + (8b+ 4)
√
−2 ).

�

3.4. The case (a′, b′) = (2, 2)

Proposition 3.5. If z ∈ Z[
√
−2 ] is of the form z = 8a + 6 + (4b + 2)

√
−2,

a, b ∈ Z, then there exists at least one Diophantine quadruple with the property
D(z).
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Proof: Multiplying by
√
−2 the elements of set (2.3) in Lemma 2.2 for m =

−
√
−2/2 and k = b− (a+ 1)

√
−2/2 we get the set

{1,−18a2 − 32a+ 9b2 + 6b− 13− (6a+ 18ab+ 16b+ 6)
√
−2,

−18a2 − 32a+ 9b2 + 12b− 10− (12a+ 18ab+ 16b+ 10)
√
−2,

−72a2 − 128a+ 36b2 + 36b− 47− (36a+ 72ab+ 64b+ 32)
√
−2 }

(3.5)

with the property D(8a+ 6 + (4b+ 2)
√
−2 ).

It is easy to check that set (3.5) contains two equal elements only for
(a, b) ∈ {(−1,−1), (−1, 0)}. But, for (a, b) = (−1,−1) the set {2 + 2

√
−2, 3 +

2
√
−2, 9+ 8

√
−2, 1 } has the property D(−2− 2

√
−2 ) and for (a, b) = (−1, 0)

the set {2− 2
√
−2, 3− 2

√
−2, 9− 8

√
−2, 1 } has the property D(−2+2

√
−2 ).

�

3.5. The case (a′, b′) = (0, 0)

Proposition 3.6. If z ∈ Z[
√
−2 ] is of the form z = 16a + (8b + 4)

√
−2,

a, b ∈ Z, then there exists at least one Diophantine quadruple with the property
D(z).

Proof: Let z = 16a+(8b+4)
√
−2, a, b ∈ Z and e = 4+2

√
−2. We may take

u = 1. Now, from (2.2), it follows that

r = 2a+ b+ 1 + (−a+ b+ 1)
√
−2.

Therefore, we obtain the set

{1, 2a2 − 8a+ 8ab− b2 − 2b− 1− (4a2 − 2a− 2ab− 2b2 + 4b+ 2)
√
−2,

2a2 − 4a+ 8ab− b2 + 2− (4a2 − 2ab− 2b2 + 2b)
√
−2,

8a2 − 24a+ 32ab− 4b2 − 4b+ 1− (16a2 − 4a− 8ab− 8b2 + 12b+ 4)
√
−2 }

(3.6)

with the property D(16a+ (8b+ 4)
√
−2 ).

The pairs (a, b) for which the above set has at least two equal elements
or some elements equal to zero are (a, b) ∈ {(0, 1), (1, 2)}. But, for (a, b) =
(0, 1) the set {−7 − 52

√
−2,−2 − 12

√
−2,−1 − 14

√
−2, 1 } has the property

D(12
√
−2 ), and for (a, b) = (1, 2) the set {−63−80

√
−2,−16−20

√
−2,−15−

20
√
−2, 1 } has the property D(16 + 20

√
−2 ).

�

Proposition 3.7. If z ∈ Z[
√
−2 ] is of the form z = 16a+ 8 + (8b+ 4)

√
−2,

a, b ∈ Z, then there exists at least one Diophantine quadruple with the property
D(z).



DIOPHANTINE QUADRUPLES IN Z[
√

−2 ] 89

Proof: Multiplying by
√
−2 the elements of set (2.3) in Lemma 2.2 for m =√

−2/2 and k = −b − 1 + (a + 1)
√
−2/2, we get a set with the property

D(4a + 2 + (2b + 1)
√
−2 ). Then we multiply the elements of the new set by

2 and get the set

{−1, 18a2 + 28a− 9b2 − 12b+ 6 + (12a+ 18ab+ 14b+ 8)
√
−2,

18a2 + 28a− 9b2 − 6b+ 9 + (6a+ 18ab+ 14b+ 6)
√
−2,

72a2 + 112a− 36b2 − 36b+ 31 + (36a+ 72ab+ 56b+ 28)
√
−2 }

(3.7)

with the property D(16a+ 8 + (8b+ 4)
√
−2 ).

Set (3.7) contains two equal elements for (a, b) ∈ {(−1,−1), (−1, 0)}. But,
for (a, b) = (−1,−1) the set {7 + 2

√
−2, 33 + 4

√
−2, 1, 10 } has the property

D(−8− 4
√
−2 ), and for (a, b) = (−1, 0) the set {7− 2

√
−2, 33− 4

√
−2, 1, 10 }

has the property D(−8 + 4
√
−2 ).

�

Remark 3.8. Using formula (2.4) instead of (2.3), we can obtain another
formula for a set with the property D(16a+ 8 + (8b+ 4)

√
−2 ), namely,

{−1, 2a2 + 12a− b2 − 2b+ 9 + (2a+ 2ab+ 6b+ 2)
√
−2,

2a2 + 12a− b2 + 10 + (2ab+ 6b+ 4)
√
−2,

8a2 + 48a− 4b2 − 4b+ 39 + (4a+ 8ab+ 24b+ 12)
√
−2 }.

(3.8)

Therefore, we can prove that there are at least two distinct Diophantine
quadruples with the property D(16a+8+ (8b+4)

√
−2 ). A similar extension

can also be obtained for some other propositions in this section.

4. Some partial results in the remaining cases

We are not able to solve completely the cases where z has one of the following
forms

z = 8a+5+(4b+2)
√
−2, z = 8a+2+(4b+2)

√
−2, z = 16a+12+(8b+4)

√
−2,

and they are also not covered by the results of Abu Muriefah, Al-Rashed and
Franušić. However, we can obtain partial results in these cases by considering
a and b modulo 3.

Proposition 4.1. If z is of the form z = 8a + 5 + (4b + 2)
√
−2, then there

exists at least one complex Diophantine quadruple with the property D(z), for
any a, b ∈ Z, except maybe for a ≡ 0 (mod 3), b ≡ 1 (mod 3).
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Proof: Let z = 8a+ 5+ (4b+ 2)
√
−2, a, b ∈ Z, and e = 1+

√
−2. We choose

u = 1 +
√
−2 and N(u) = 3. Now, from (2.2), it follows that

r = 2a+ 2b+ 2 + (−2a+ b− 1)
√
−2.

From the condition uv + z = r2, it follows that

v = −20

3
a2−32

3
a+

8

3
ab+

10

3
b2+

4

3
b−5−

(

4

3
a2 +

4

3
a+

20

3
ab− 2

3
b2 +

16

3
b+ 1

)√
−2.

Now, it is easy to compute other elements of the quadruple. We get the set

{1 +
√
−2,− 20

3 a2 − 32
3 a+ 8

3ab+
10
3 b2 + 4

3b− 5

−( 43a
2 + 4

3a+ 20
3 ab− 2

3b
2 + 16

3 b+ 1)
√
−2,

− 20
3 a2 − 20

3 a+ 8
3ab+

10
3 b2 + 16

3 b

−( 43a
2 + 16

3 a+ 20
3 ab− 2

3b
2 + 10

3 b+ 2)
√
−2,

− 80
3 a2 − 104

3 a+ 32
3 ab+ 40

3 b2 + 40
3 b− 11

−( 163 a2 + 40
3 a+ 80

3 ab− 8
3b

2 + 52
3 b+ 7)

√
−2 }

(4.1)

with the property D(8a+ 5 + (4b+ 2)
√
−2 ) in Q(

√
−2 ). It remains to check

for which a ∈ {3k, 3k+1, 3k+2} and b ∈ {3l, 3l+1, 3l+2}, k, l ∈ Z, set (4.1)
has the elements in the ring Z[

√
−2 ]. Equivalently, we have to find all pairs

(a, b) which satisfy the condition

N(u)|(r2 − z) · ū,

i.e.

−20a2 − 32a+ 8ab+ 10b2 + 4b− 15 ≡ 0 (mod 3),

−4a2 − 4a− 20ab+ 2b2 − 16b− 3 ≡ 0 (mod 3).

It is easy to check that the above condition is satisfied for all (a, b) ∈ {(3k, 3l), (3k, 3l+
2), (3k+1, 3l+1), (3k+1, 3l+2), (3k+2, 3l), (3k+2, 3l+1)} for any k, l ∈ Z.
For each pair (a, b), the four elements from (4.1) are pairwise distinct.

In a similar way, for e = −1 +
√
−2 we obtain the set

{1−
√
−2,− 20

3 a2 − 28
3 a− 8

3ab+
10
3 b2 + 4

3b− 2

+( 43a
2 − 4

3a− 20
3 ab− 2

3b
2 − 14

3 b− 2)
√
−2,

− 20
3 a2 − 40

3 a− 8
3ab+

10
3 b2 + 16

3 b− 3

+( 43a
2 − 16

3 a− 20
3 ab− 2

3b
2 − 20

3 b− 5)
√
−2,

− 80
3 a2 − 136

3 a− 32
3 ab+ 40

3 b2 + 40
3 b− 11

+( 163 a2 − 40
3 a− 80

3 ab− 8
3b

2 − 68
3 b− 13)

√
−2 }

(4.2)
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with the property D(8a + 5 + (4b + 2)
√
−2 ) in Q(

√
−2 ). Set (4.2) has the

elements in the ring Z[
√
−2 ] for new pairs (a, b) ∈ {(3k+1, 3l), (3k+2, 3l+2)}

for any k, l ∈ Z and contains four distinct elements.
The only remaining unsolved case is for (a, b) = (3k, 3l + 1), i.e. the

property D(24k + 5 + (12l + 6)
√
−2 ), k, l ∈ Z.

�

Proposition 4.2. If z is of the form z = 8a + 2 + (4b + 2)
√
−2, then there

exists at least one complex Diophantine quadruple with the property D(z), for
any a, b ∈ Z, except maybe for a ≡ 0 (mod 3) and b ≡ 1 (mod 3).

Proof: Let z = 8a + 2 + (4b + 2)
√
−2, a, b ∈ Z, and e = −3

√
−2. We can

choose u = 1 +
√
−2 with N(u) = 3. From (2.2), it follows that

r = −b− 1 + (a− 1)
√
−2.

From the condition uv + z = r2, we obtain

v = −2

3
a2− 8

3
a− 4

3
ab+

1

3
b2− 2

3
b−1+

(

2

3
a2 +

2

3
a− 2

3
ab− 1

3
b2 − 4

3
b+ 1

)√
−2.

Now, it is easy to compute other elements of the quadruple. We get the set

{1 +
√
−2,− 2

3a
2 − 8

3a− 4
3ab+

1
3b

2 − 2
3b− 1

+( 23a
2 + 2

3a− 2
3ab− 1

3b
2 − 4

3b+ 1)
√
−2,

− 2
3a

2 − 8
3a− 4

3ab+
1
3b

2 − 8
3b− 2

+( 23a
2 + 8

3a− 2
3ab− 1

3b
2 − 4

3b)
√
−2,

− 8
3a

2 − 32
3 a− 16

3 ab+ 4
3b

2 − 20
3 b− 7

+( 83a
2 + 20

3 a− 8
3ab− 4

3b
2 − 16

3 b+ 1)
√
−2 }

(4.3)

with the property D(8a+ 2 + (4b+ 2)
√
−2 ) in Q(

√
−2 ). It remains to check

for which a ∈ {3k, 3k+1, 3k+2} and b ∈ {3l, 3l+1, 3l+2}, k, l ∈ Z, set (4.3)
has the elements of the ring Z[

√
−2 ]. Equivalently, we have to find all pairs

(a, b) which satisfy the condition

N(u)|(r2 − z) · ū,

i.e.

−2a2 − 8a− 4ab+ b2 − 2b− 3 ≡ 0 (mod 3),

2a2 + 2a− 2ab− b2 − 4b+ 3 ≡ 0 (mod 3).
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It is easy to check that the above condition is satisfied for all (a, b) ∈ {(3k, 3l), (3k, 3l+
2), (3k+1, 3l+1), (3k+1, 3l+2), (3k+2, 3l), (3k+2, 3l+1)} for any k, l ∈ Z.
For each pair (a, b) there exists a set with the corresponding property. Let us
determine the pairs (a, b) for which set (4.3) has at least two equal elements
or some elements equal to zero.

If (a, b) = (3k, 3l), the above cases appear iff (k, l) = (−1, 0). But for that
pair the set {1+

√
−2, 25−7

√
−2, 36−2

√
−2, 121−19

√
−2 } has the property

D(−22 + 2
√
−2 ).

If (a, b) = (3k, 3l + 2), the above cases appear iff (k, l) = (0,−1). But
for that pair the set {−1 +

√
−2, 1 +

√
−2, 7 +

√
−2, 2, } has the property

D(2− 2
√
−2 ).

If (a, b) = (3k + 1, 3l + 1), then all elements of the quadruple are distinct
and nonzero.

If (a, b) = (3k+1, 3l+2), the above cases appear iff (k, l) = (−1,−1). But
for that pair the set {1 +

√
−2, 15 + 5

√
−2, 49 + 9

√
−2, 10 } has the property

D(−14− 2
√
−2 ).

If (a, b) = (3k + 2, 3l), the above cases appear iff (k, l) = (−1, 0). But for
that pair the set {−7 − 7

√
−2,−1 − 3

√
−2, 1 +

√
−2,−2 } has the property

D(−6 + 2
√
−2 ).

If (a, b) = (3k+2, 3l+1), the above cases appear iff (k, l) ∈ {(−2, 0), (−1,−1)}.
But for these pairs, the set {−23−71

√
−2,−9−15

√
−2,−2−20

√
−2, 1+

√
−2 }

has the property D(−30 + 6
√
−2 ) and the set {1 +

√
−2, 7 + 1

√
−2, 25 +

1
√
−2, 6 } has the property D(−6− 6

√
−2 ).

In a similar way for e = 3
√
−2 we obtain the set

{1−
√
−2,− 2

3a
2 − 4

3a+ 4
3ab+

1
3b

2 + 4
3b

−( 23a
2 + 4

3a+ 2
3ab− 1

3b
2 + 2

3b+ 2)
√
−2,

− 2
3a

2 − 4
3a+ 4

3ab+
1
3b

2 + 10
3 b+ 1

−( 23a
2 + 10

3 a+ 2
3ab− 1

3b
2 + 2

3b+ 1)
√
−2,

− 8
3a

2 − 16
3 a+ 16

3 ab+ 4
3b

2 + 28
3 b+ 1

−( 83a
2 + 28

3 a+ 8
3ab− 4

3b
2 + 8

3b+ 5)
√
−2 }

(4.4)

with the property D(8a + 2 + (4b + 2)
√
−2 ) in Q(

√
−2 ). Set (4.4) has the

elements in the ring Z[
√
−2 ] for new pairs (a, b) ∈ {(3k+1, 3l), (3k+2, 3l+2)}

for any k, l ∈ Z. Let us also determine the pairs (a, b) for which set (4.4) has
at least two equal elements or some elements equal to zero.

If (a, b) = (3k + 1, 3l), the above cases appear iff (k, l) = (−1, 0). But
for that pair the set {1−

√
−2, 15− 5

√
−2, 49− 9

√
−2, 10 } has the property

D(−14 + 2
√
−2 ).
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If (a, b) = (3k+2, 3l+2), the above cases appear iff (k, l) = (−1,−1). But
for that pair the set {−7+7

√
−2,−1+3

√
−2, 1+

√
−2,−2 } has the property

D(−6− 2
√
−2 ).

The case (a, b) = (3k, 3l + 1) remains unsolved, i.e. the property D(24k +
2 + (12l + 6)

√
−2 ), k, l ∈ Z.

�

Note that by multiplying elements of a D(z)-quadruple for z = 8a + 2 +
(4b+2)

√
−2 by

√
−2, by Lemma 2.1(ii) we obtain (with obvious substitution)

a D(z)-quadruple for z = 16a + 12 + (8b + 4)
√
−2. Thus, Proposition 4.2

immediately implies

Proposition 4.3. If z is of the form z = 16a+12+ (8b+4)
√
−2, then there

exists at least one complex Diophantine quadruple with the property D(z), for
any a, b ∈ Z, except maybe for a ≡ 2 (mod 3) and b ≡ 1 (mod 3).

5. The proof of Theorem 1.1

If z is of the form z = a + (2b + 1)
√
−2 or z = 4a + (4b + 2)

√
−2, then by

Lemma 2.3 there does not exist a D(z)-quadruple (see also [1, Proposition 1]).
Let z = a+ b

√
−2 and a′ = a mod 4, b′ = b mod 4. It remains to consider

seven possibilities for (a′, b′), for which we claim that there exists at least one
D(z)-quadruple, except maybe for the possible exceptions listed in Theorem
1.1. The proof will follow from Lemma 2.4, i.e. the results of Abu Muriefah
and Al-Rashed [1], and the propositions proved in Sections 3 and 4.

By Lemma 2.4, in the case (a′, b′) = (3, 0) D(z)-quadruples exist, except
maybe for z = −1. From Propositions 3.1 and 3.2 we obtain that for z of the
form z = (4a+3)+(4b+2)

√
−2 there exists at least one Diophantine quadruple

with the property D(z), which solves the case (a′, b′) = (3, 2). Summarizing
results for (a′, b′) = (3, 0) and (3, 2), we conclude that for all z of the form
z = 4a + 3 + 2b

√
−2 (with a possible exception of z = −1), there exists a

D(z)-quadruple.

Consider the case (a′, b′) = (1, 0). The subcase corresponding to b ≡
0 (mod 8) was solved in [1]. By Lemma 2.4(ii), in that case a D(z)-quadruple
exists, except maybe for z = −3. But the set {1−

√
−2, 1 +

√
−2, 2, 266} is a

D(−3)-quadruple. In Proposition 3.3 we solved the other subcase correspond-
ing to b ≡ 4 (mod 8).

Concerning the case (a′, b′) = (1, 2), in the subcase a ≡ 1 (mod 8), by
Lemma 2.4(iii) we know that there exists a D(z)-quadruple, except maybe
for z = 1 ± 2

√
−2. The subcase a ≡ 5 (mod 8) is considered in Proposition
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4.1, where we proved that a D(z)-quadruple exists, except maybe for a ≡
0 (mod 3), b ≡ 1 (mod 3). Therefore, we conclude that in the case (a′, b′) =
(1, 2) there exists at least one D(z)-quadruple, with a possible exception of
z = 1 ± 2

√
−2 and the elements of the form z = 24k + 5 + (12l + 6)

√
−2,

k, l ∈ Z.
Summarizing results for (a′, b′) = (1, 0) and (1, 2), we conclude that for all

z of the form z = 4a+1+2b
√
−2 there exists a D(z)-quadruple, except maybe

for z = 1± 2
√
−2 and z = 24k + 5 + (12l + 6)

√
−2, k, l ∈ Z.

In the case (a′, b′) = (2, 0), we can apply Lemma 2.1(ii) to already proved
results for D(z)-quadruples for z = 4a+ 3+ 2b

√
−2 and z = 4a+ 1+ 2b

√
−2.

Multiplying elements of these quadruples by
√
−2, we obtain (with obvi-

ous substitutions) D(z)-quadruples for z of the form z = 8a + 2 + 4b
√
−2

and z = 8a + 6 + 4b
√
−2. We conclude that in the case (a′, b′) = (2, 0)

there exists at least one D(z)-quadruple, except maybe for z = 2, z =
−2 ± 4

√
−2 and z = 48k + 38 + (24l + 12)

√
−2, k, l ∈ Z. However, since

38 ≡ 6 (mod 16) and 12 ≡ 4 (mod 8), Proposition 3.4 implies that for z of the
form z = 48k + 38 + (24l + 12)

√
−2 there certainly exists at least one D(z)-

quadruple. Furthermore, the set {−2,−1, 1, 2} is a D(2)-quadruple, the set
{−2− 2

√
−2,−1−

√
−2, 1+

√
−2, 2+2

√
−2 } is a D(−2+4

√
−2 )-quadruple,

while the set {−2+2
√
−2,−1+

√
−2, 1−

√
−2, 2−2

√
−2 } is a D(−2−4

√
−2 )-

quadruple.

The case (a′, b′) = (2, 2) is handled in Propositions 3.5 and 4.2. If a ≡
6 (mod 8), then by Proposition 3.5 there exists a D(z)-quadruple. If a ≡
2 (mod 8), then by Proposition 4.2 there exists at least one D(z)-quadruple,
except maybe for a ≡ 0 (mod 3), b ≡ 1 (mod 3), i.e. for z of the form z =
24k + 2 + (12l + 6)

√
−2, k, l ∈ Z.

It remains to consider the case (a′, b′) = (0, 0). Here we will consider 4
subcases modulo 8. The subcase a ≡ 0 (mod 8), b ≡ 0 (mod 8) is exactly the
statement of Lemma 2.4(iv). The subcase a ≡ 0 (mod 8), b ≡ 4 (mod 8) is
handled in Propositions 3.6 and 3.7 and we proved that in this case there
exists at least one D(z)-quadruple. In the remaining cases we will apply
Lemma 2.1(ii). Multiplying elements of a D(z)-quadruple for z = (4a + 2) +
4b
√
−2 by

√
−2, we obtain (with obvious substitution) a D(z)-quadruple for

z = (8a + 4) + 8b
√
−2, so our result already proved for the case (a′, b′) =

(2, 0) implies that if a ≡ 4 (mod 8), b ≡ 0 (mod 8), then there exists a D(z)-
quadruple. Similarly, multiplying elements of a D(z)-quadruple for z = (4a+
2) + (4b + 2)

√
−2 by

√
−2, we obtain (with obvious substitution) a D(z)-

quadruple for z = (8a + 4) + (8b + 4)
√
−2. Therefore, if a ≡ 4 (mod 8),

b ≡ 4 (mod 8), then there exists a D(z)-quadruple, except maybe for z of the
form z = 48k + 44 + (24l + 12)

√
−2, k, l ∈ Z.
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Remark 5.1. Concerning the three unsolved cases

z = 24a+2+(12b+6)
√
−2, z = 24a+5+(12b+6)

√
−2, z = 48a+44+(24b+12)

√
−2,

by [10, Theorem 1], each of these elements can be represented as a difference
of two squares of elements in Z[

√
−2 ]. Thus, in an analogy to what is known

in Z (see [5]) and certain quadratic fields (see [7, 12, 13, 15]), we might ex-
pect that for such z’s there exists at least one D(z)-quadruple (with perhaps
finitely many exceptions). On the other hand, it is possible to check that such
quadruples cannot contain elements with very small norm (as in the formu-
las in Sections 3 and 4). We have found some formulas for quadruples for
these z’s containing e.g. the element 3 +

√
−2 with norm 11. These formulas

then necessarily involve some congruence conditions modulo 11 on a and b.
At present, we have only some partial results, which are too technical to be
presented here.

Remark 5.2. In Theorem 1.1 we also have three sporadic possible exceptions
z = −1, z = 1 + 2

√
−2 and z = 1 − 2

√
−2. Note that 1 ± 2

√
−2 = −1 · (1 ∓√

−2)2, thus the existence of D(−1)-quadruples would imply the existence of
D(1 + 2

√
−2) and D(1− 2

√
−2)-quadruples. The problem of the existence of

a D(−1)-quadruple in the ring Z has been studied by many authors. There
is a conjecture that such a quadruple does not exist. In [11] and [9], it was
proved that there does not exist a D(−1)-quintuple in Z, and there are at
most finitely many such quadruples.

Acknowledgement: The authors are indebted to the referee for his very
careful reading of this text and several useful comments which helped us to
improve the presentation of the paper. The first author was supported by the
Ministry of Science, Education and Sports, Republic of Croatia, grant 037-
0372781-2821. The second author was supported by the Ministry of Science,
Education and Sports, Republic of Croatia, grant 235-2352818-1034.

References

[1] F. S. Abu Muriefah, A. Al-Rashed, Some Diophantine quadruples
in the ring Z[

√
−2], Math. Commun. 9 (2004), 1–8.

[2] A.Baker, H.Davenport, The equations 3x2−2 = y2 and 8x2−7 = z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.



96 Andrej Dujella, Ivan Soldo

[3] E.Brown, Sets in which xy + k is always a square, Math. Comp. 45
(1985), 613–620.

[4] Diophantus of Alexandria, Arithmetics and the Book of Polygonal
Numbers, (I. G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian).

[5] A.Dujella, Generalization of a problem of Diophantus, Acta Arith. 65
(1993), 15–27.

[6] A.Dujella, Some polynomial formulas for Diophantine quadruples,
Grazer Math. Ber. 328 (1996), 25–30.

[7] A.Dujella, The problem of Diophantus and Davenport for Gaussian
integers, Glas. Mat. Ser III 32 (1997), 1–10.

[8] A.Dujella, There are only finitely many Diophantine quintuples, J.
Reine Angew. Math. 566 (2004), 183–214.

[9] A.Dujella, A. Filipin, C. Fuchs, Effective solution of the D(−1)-
quadruple conjecture, Acta Arith. 128 (2007), 319–338.

[10] A.Dujella, Z. Franušić, On differences of two squares in some
quadratic fields, Rocky Mountain J. Math. 37 (2007), 429–453.

[11] A.Dujella, C. Fuchs, Complete solution of a problem of Diophantus
and Euler, J. London Math. Soc. 71 (2005), 33–52.

[12] Z. Franušić, Diophantine quadruples in the ring Z[
√
2 ], Math. Com-

mun. 9 (2004), 141–148.
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