

Vol. 18(1), 2010, 63-80

MODULE STRUCTURES ON ITERATED DUALS OF BANACH ALGEBRAS

A. Bodaghi, M. Ettefagh, M. Eshaghi Gordji, A. R. Medghalchi

Abstract

Let \mathcal{A} be a Banach algebra and (\mathcal{A}'', \Box) be its second dual with first Arens product. We consider three (\mathcal{A}'', \Box) -bimodule structures on forth dual and four (\mathcal{A}'', \Box) -bimodule structures on fifth dual of a Banach algebra. This paper determines the conditions that make these structures equal. Among other results we show that if \mathcal{A}'' is weakly amenable with some conditions, then \mathcal{A} is 3 -weakly amenable.

Introduction 1

Let \mathcal{A} be a Banach algebra and let X be a Banach \mathcal{A} -module, that is X is a Banach space and an A-module such that the module operations $(a, x) \mapsto a \cdot x$ and $(a, x) \mapsto x \cdot a$ from $\mathcal{A} \times X$ into X are jointly continuous. The dual space X' of X is also a Banach A-module by the following module actions:

$$\langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle, \quad \langle f \cdot a, x \rangle = \langle f, a \cdot x \rangle, \quad (a \in \mathcal{A}, x \in X, f \in X').$$

We set X'' = (X')', and so on, and we regard X as a subspace of X'' in the standard way. Also X''' = (X'')',...

Let X be a Banach A-module. Then a continuous linear map $D: \mathcal{A} \longrightarrow X$ is called a *derivation* if

$$D(ab) = a \cdot D(b) + D(a) \cdot b \qquad (a, b \in \mathcal{A}).$$

Key Words: Banach algebra, Derivation, Arens product, Arens regular, strong double limit property, 3-weak amenability.

Mathematics Subject Classification: 46H25 Received: May, 2009 Accepted: January, 2010

For $x \in X$ we define $\delta_x : \mathcal{A} \longrightarrow X$ as follows:

$$a_x(a) = a \cdot x - x \cdot a \qquad (a \in \mathcal{A})$$

it is easy to show that δ_x is a derivation. Such derivations are called *inner* derivations. \mathcal{A} is called *amenable*, if every derivation $D: \mathcal{A} \longrightarrow \mathcal{X}'$ is inner, for each Banach \mathcal{A} -module \mathcal{X} . If every derivation from \mathcal{A} into \mathcal{A}' is inner, \mathcal{A} is called *weakly amenable*. Let $n \in \mathbb{N}$. A Banach algebra \mathcal{A} is called *n*-weakly *amenable* if every derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ is inner [4], where $\mathcal{A}^{(n)}$ is the *n*-th dual of \mathcal{A} that is a Banach \mathcal{A} -module. We regard \mathcal{A} as a subspace of \mathcal{A}'' by canonical embedding $\hat{}: \mathcal{A} \to \mathcal{A}''; a \mapsto \hat{a}$. We write $\widehat{\mathcal{A}}$ as the image of \mathcal{A} under this mapping.

Let X, Y and Z be normed spaces and let $f : X \times Y \longrightarrow Z$ be a continuous bilinear map. Then the adjiont of f is defined by

$$f': Z' \times X \longrightarrow Y', \quad \langle f'(z', x), y \rangle = \langle z', f(x, y) \rangle \quad (z' \in Z', x \in X, y \in Y).$$

Since f' is a continuous bilinear map, this process may be repeated to define $f'' = (f')' : Y'' \times Z' \longrightarrow X'$, and then $f''' = (f'')' : X'' \times Y'' \longrightarrow Z''$. The map f''' is the unique extension of f such that $X'' \longrightarrow Z''; x'' \mapsto f'''(x'', y'')$ is $weak^* - weak^*$ continuous for all $y'' \in Y''$ and $Y'' \longrightarrow Z''; y'' \mapsto f'''(x, y'')$ is $weak^* - weak^*$ continuous for all $x \in X$. Let now $f^t : Y \times X \longrightarrow Z$ be the transpose of f defined by $f^t(y, x) = f(x, y)$ for all $x \in X$ and $y \in Y$. Then f^t is a continuous bilinear map from $Y \times X$ to Z, and so it may be extended as above to $(f^t)''' : Y'' \times X'' \longrightarrow Z''$. The bilinear map f is called Arens regular if $f''' = ((f^t)''')^t$ (see [1, 2, 7, 8] and [13]). Let $x'' \in X''$ and $\hat{y}_\beta \xrightarrow{w^*} y''$. We have

$$f'''(x'', y'') = \lim_{\alpha} \lim_{\beta} f(x_{\alpha}, y_{\beta}),$$
$$((f^{t})''')^{t}(x'', y'') = \lim_{\beta} \lim_{\alpha} \widehat{f(x_{\alpha}, y_{\beta})}$$

Let \mathcal{A} be a Banach algebra, and let $\pi : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ denote the product of \mathcal{A} , so that $\pi(a, b) = ab$ $(a, b \in \mathcal{A})$. for F and G in \mathcal{A}'' , we denote $\pi'''(F, G)$ and $((\pi^t)''')^t(F, G)$ by symbols $F \square G$ and $F \Diamond G$, respectively. These are called first and second Arens products on \mathcal{A}'' . These products are defined in stages as follows. For every $F, G \in \mathcal{A}'', f \in \mathcal{A}'$ and $a, b \in \mathcal{A}$, we define $f \cdot a, a \cdot f, G \cdot f$ and $f \cdot F$ in $\mathcal{A}'; F \square G$ and $F \Diamond G$ in \mathcal{A}'' by

$$\begin{split} \langle f \cdot a, b \rangle &= \langle f, ab \rangle, \qquad \langle a \cdot f, b \rangle &= \langle f, ba \rangle, \\ \langle G \cdot f, a \rangle &= \langle G, f \cdot a \rangle, \qquad \langle f \cdot F, a \rangle &= \langle F, a \cdot f \rangle, \\ \langle F \Box G, f \rangle &= \langle F, G \cdot f \rangle, \qquad \langle F \Diamond G, f \rangle &= \langle G, f \cdot F \rangle. \end{split}$$

 \mathcal{A}'' is a Banach algebra with (above) Arens products. In fact

$$F \Box G = w^* - \lim_{\alpha} w^* - \lim_{\beta} \widehat{a_{\alpha} b_{\beta}}$$
$$F \Diamond G = w^* - \lim_{\beta} w^* - \lim_{\alpha} \widehat{a_{\alpha} b_{\beta}},$$

where $F = w^* - \lim_{\alpha} \hat{a}_{\alpha}$ and $G = w^* - \lim_{\beta} \hat{b}_{\beta}$. The algebra \mathcal{A} is Arens regular whenever the map π is Arens regular that is, whenever the first and second Arens products of \mathcal{A}'' coincide. Recall that a Banach algebra \mathcal{A} is said to be *dual* if there is a closed submodule \mathcal{A}_0 of \mathcal{A}' such that $\mathcal{A} = \mathcal{A}_0'$.

Definition 1.1. The Banach algebra \mathcal{A} has strongly double limit property (SDLP) if for each bounded net (a_{α}) in \mathcal{A} and each bounded net (f_{β}) in \mathcal{A}' , $\lim_{\alpha} \lim_{\beta} \langle f_{\beta}, a_{\alpha} \rangle = \lim_{\beta} \lim_{\alpha} \langle f_{\beta}, a_{\alpha} \rangle$, whenever both iterated limits exist.

This definition has been introduced in [14]. Medghalchi and Yazdanpanah in [14] showed that every reflexive Banach algebra has (SDLP). We know that reflexivity is equivalent with double limit property [3, Theorem A.3.31], so the (SDLP) is equivalent with reflexivity. Now suppose that the Banach algebra \mathcal{A} has (SDLP), then for each $f \in \mathcal{A}'$ and bounded nets $(a_{\alpha}), (b_{\beta})$ in \mathcal{A} , we have

$$\lim_{\beta}\lim_{\alpha}\langle b_{\beta}\cdot f, a_{\alpha}\rangle = \lim_{\alpha}\lim_{\beta}\langle b_{\beta}\cdot f, a_{\alpha}\rangle,$$

which means that for each $f \in \mathcal{A}'$, the map $a \mapsto a.f$, $\mathcal{A} \longrightarrow \mathcal{A}'$ is weakly compact by [3, Theorem 2.6.17], i.e., \mathcal{A} is Arens regular. Hence (SDLP) is stronger than Arens regularity. On the other hand this two are not equivalent in general. We know C([0,1]) is an Arens regular Banach algebra. If we consider the sequence (f_m) in C([0,1]) defined by $f_m(x) = \frac{m}{m+\frac{1}{x}}$ for $0 < x \leq 1$ and $f_m(0) = 0$ for all $m \in \mathbb{N}$, and assume that sequence (μ_n) is in M([0,1]) = $C([0,1])^*$ (the set of all regular Borel measures on [0,1]), where μ_n is the point mass at $\frac{1}{n}$, for all $n \in \mathbb{N}$. Then, we easily see that

$$\lim_{m} \lim_{n} \langle \mu_n, f_m \rangle = 0 \neq 1 = \lim_{n} \lim_{m} \langle \mu_n, f_m \rangle.$$

Therefore C([0, 1]) has not (SDLP). Also there are Arens regular Banach algebras which are not reflexive as Banach spaces. For example, the disc algebra $A(\mathbb{D})$ is Arens regular [16] but not reflexive [15].

One may consider the question of how \mathcal{A} inherits the amenability or weak amenability of \mathcal{A}'' . For amenability the answer is positive (see [12]). So for weak amenability, this problem was considered by few authors and a positive answer has been given in each of the following cases:

- \mathcal{A} is a left ideal in \mathcal{A}'' [12].
- \mathcal{A} is a dual Banach algebra [11].

• \mathcal{A} is Arens regular and every derivation from \mathcal{A} into \mathcal{A}' is weakly compact [5].

- *A* has (SDLP) [14].
- \mathcal{A} is a right ideal in \mathcal{A}'' and $\mathcal{A}''\mathcal{A} = \mathcal{A}''$ [9].

In section two of this paper, we put many module structures on forth dual $\mathcal{A}^{(4)}$ and show that these module structures are not always equal, and we show when these module structures are equal. By using part two, we make four module structures on $\mathcal{A}^{(5)}$. This is done in section three, where these module structures on $\mathcal{A}^{(5)}$ are not always equal. In section four we show that with some module structures on $\mathcal{A}^{(5)}$, weak amenability \mathcal{A}'' implies weak amenability \mathcal{A} . This is a question that if \mathcal{A}'' is 3 -weakly amenable, is \mathcal{A} 3-weakly amenable? We show that the 3 -weak amenability of \mathcal{A}'' implies the 3 -weak amenability of \mathcal{A} if $D''(\mathcal{A}'') \cdot \mathcal{A}^{(4)} \subseteq \widehat{\mathcal{A}'}$, for each derivation $D : \mathcal{A} \longrightarrow \mathcal{A}''$. It is known that every (n+2)-weakly amenable Banach algebra is *n*-weakly amenable for $n \geq 1$ [4]. In particular the 3-weak amenability of \mathcal{A} implies the weak amenability of A. Does weak amenability imply 3 -weak amenability? The answer is negative. Yong Zhang [19] gave an example of a weakly amenable Banach algebra that it is not 3-weakly amenable, but he had showed in [20] that if \mathcal{A} is weakly amenable with a left (right) bounded approximate identity such that it is a left (right) ideal in \mathcal{A}'' , then \mathcal{A} is (2n+1)-weakly amenable for $n \geq 1$. A different proof are provided by Dales, Ghahramani and Grønbæk in [4] in which \mathcal{A} is an ideal in \mathcal{A}'' . Finally we put some conditions on \mathcal{A} and \mathcal{A}'' such that if \mathcal{A} is weakly amenable, then \mathcal{A} is 3-weakly amenable. For the remainder of this paper, \mathcal{A}'' is regarded as a Banach algebra with respect to the first Arens product \Box .

2 \mathcal{A}'' - bimodule structures on forth dual of a Banach algebra

 \mathcal{A}''' has two \mathcal{A}'' -bimodule structures. First we regard \mathcal{A}''' , as the dual space of \mathcal{A}'' , $(\mathcal{A}''' = (\mathcal{A}'')')$ and so \mathcal{A}''' can be made into an \mathcal{A}'' -bimodule by the following actions

$$\langle \lambda \cdot F, G \rangle = \langle \lambda, F \Box G \rangle, \quad \langle F \cdot \lambda, G \rangle = \langle \lambda, G \Box F \rangle, \quad (\lambda \in \mathcal{A}'''; F, G \in \mathcal{A}'').$$

In the second way, \mathcal{A}''' , as the second dual of \mathcal{A}' , $(\mathcal{A}''' = (\mathcal{A}')'')$, can be an \mathcal{A}'' -bimodule by the following formula. For $\lambda \in \mathcal{A}''$ and $F \in \mathcal{A}''$, we have

$$\lambda \circ F = w^* - \lim_i w^* - \lim_\alpha \widehat{f_i \cdot a_\alpha}, \quad F \circ \lambda = w^* - \lim_\alpha w^* - \lim_i \widehat{a_\alpha \cdot f_i},$$

where $F = w^* - \lim_{\alpha} \widehat{a}_{\alpha}$ in \mathcal{A}'' and $\lambda = w^* - \lim_i \widehat{f}_i$ in \mathcal{A}''' , such that (a_{α}) and (f_i) are nets in \mathcal{A} and \mathcal{A}' respectively. In fact $\lambda \circ F$ and $F \circ \lambda$ are extensions of module actions $(f, a) \longrightarrow f \cdot a$ $(\mathcal{A}' \times \mathcal{A} \longrightarrow \mathcal{A}')$ and $(a, f) \longrightarrow a \cdot f$ $(\mathcal{A} \times \mathcal{A}' \longrightarrow \mathcal{A}')$.

These two \mathcal{A}'' -bimodule structures on \mathcal{A}''' are considered in [10] and have been shown that two right \mathcal{A}'' -bimodule actions on \mathcal{A}''' always coincide but left \mathcal{A}'' -bimodule structures on \mathcal{A}''' are not always equal. Now the Banach algebra $\mathcal{A}^{(4)}$ has three \mathcal{A}'' -bimodule structures.

(a) We consider $\mathcal{A}^{(4)} = (\mathcal{A}^{\prime\prime\prime})'$ in which $\mathcal{A}^{\prime\prime\prime} = (\mathcal{A}')''$, so $\mathcal{A}^{(4)}$ can be an $\mathcal{A}^{\prime\prime}$ -bimodule by following actions

$$\langle F \circ \Lambda, \lambda \rangle = \langle \Lambda, \lambda \circ F \rangle, \qquad \langle \Lambda \circ F, \lambda \rangle = \langle \Lambda, F \circ \lambda \rangle$$

where $F \in \mathcal{A}'', \lambda \in \mathcal{A}'''$ and $\Lambda \in \mathcal{A}^{(4)}$.

(b) We consider $\mathcal{A}^{(4)} = (\mathcal{A}^{\prime\prime\prime})'$ in which $\mathcal{A}^{\prime\prime\prime} = (\mathcal{A}^{\prime\prime})'$, so $\mathcal{A}^{(4)}$ can be an $\mathcal{A}^{\prime\prime}$ -bimodule by following right and left module actions

$$\langle F \cdot \Lambda, \lambda \rangle = \langle \Lambda, \lambda \cdot F \rangle, \qquad \langle \Lambda \cdot F, \lambda \rangle = \langle \Lambda, F \cdot \lambda \rangle$$

where $F \in \mathcal{A}'', \lambda \in \mathcal{A}'''$ and $\Lambda \in \mathcal{A}^{(4)}$.

(c) Let $\mathcal{A}^{(4)} = (\mathcal{A}'')''$ be as the second dual of \mathcal{A}'' . Take $\Lambda \in \mathcal{A}^{(4)}$, $F \in \mathcal{A}''$ and bounded nets $(F_{\alpha}) \subset \mathcal{A}'', (a_{\beta}) \subset \mathcal{A}$ with $\widehat{F}_{\alpha} \xrightarrow{w^*} \Lambda$ and $\widehat{a}_{\beta} \xrightarrow{w^*} F$. Two module actions are defined by

$$F \bullet \Lambda = w^* - \lim_{\beta} \lim_{\alpha} \widehat{a_{\beta} \cdot F_{\alpha}} \qquad \Lambda \bullet F = w^* - \lim_{\alpha} \lim_{\beta} \widehat{F_{\alpha} \cdot a_{\beta}}.$$

Hence $F \bullet \Lambda$ and $\Lambda \bullet F$ are extensions of module actions $(a, F) \longrightarrow a \cdot F$ $(\mathcal{A} \times \mathcal{A}'' \longrightarrow \mathcal{A}'')$ and $(F, a) \longrightarrow F \cdot a \quad (\mathcal{A}'' \times \mathcal{A} \longrightarrow \mathcal{A}'').$

We show that these three \mathcal{A}'' -bimodule structures on $\mathcal{A}^{(4)}$ are not always equal. Suppose that $\Lambda \in \mathcal{A}^{(4)}$, $\lambda \in \mathcal{A}'''$, $F \in \mathcal{A}''$ and bounded nets $(G_{\alpha}) \subset \mathcal{A}'', (f_{\gamma}) \subset \mathcal{A}', (a_{\beta}) \subset \mathcal{A}$ by $\widehat{G}_{\alpha} \xrightarrow{w^*} \Lambda, \widehat{f}_{\gamma} \xrightarrow{w^*} \lambda$ and $\widehat{a}_{\beta} \xrightarrow{w^*} F$, then

$$\begin{split} \langle \Lambda \circ F, \lambda \rangle &= \langle \Lambda, F \circ \lambda \rangle \\ &= \lim_{\alpha} \langle \widehat{G}_{\alpha}, F \circ \lambda \rangle \\ &= \lim_{\alpha} \langle F \cdot \lambda, G_{\alpha} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle G_{\alpha}, a_{\beta} \cdot f_{\gamma} \rangle \end{split}$$

and

$$\begin{split} \langle \Lambda \cdot F, \lambda \rangle &= \langle \Lambda, F \cdot \lambda \rangle \\ &= \lim_{\alpha} \langle \widehat{G}_{\alpha}, F \cdot \lambda \rangle \\ &= \lim_{\alpha} \langle \lambda, G_{\alpha} \Box F \rangle \\ &= \lim_{\alpha} \lim_{\gamma} \langle \widehat{f}_{\gamma}, G_{\alpha} \Box F \rangle \\ &= \lim_{\alpha} \lim_{\gamma} \langle G_{\alpha}, F \cdot f_{\gamma} \rangle. \end{split}$$

For structure (c), we have

$$\langle \Lambda \bullet F, \lambda \rangle = \lim_{\alpha} \lim_{\beta} \langle \widehat{G_{\alpha} \cdot a_{\beta}}, \lambda \rangle$$

=
$$\lim_{\alpha} \lim_{\beta} \langle \lambda, G_{\alpha} \cdot a_{\beta} \rangle$$

=
$$\lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle \widehat{f_{\gamma}}, G_{\alpha} \cdot a_{\beta} \rangle$$

=
$$\lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle G_{\alpha}, a_{\beta} \cdot f_{\gamma} \rangle.$$

We see two right actions in parts (a) and (c) are equal and different from the action of (b). For left actions, suppose that $\Lambda \in \mathcal{A}^{(4)}$, $\lambda \in \mathcal{A}^{\prime\prime\prime}$, $F \in \mathcal{A}^{\prime\prime}$ and bounded nets $(G_{\alpha}) \subset \mathcal{A}^{\prime\prime}, (f_{\gamma}) \subset \mathcal{A}^{\prime}, (a_{\beta}) \subset \mathcal{A}$ with $\widehat{G}_{\alpha} \xrightarrow{w^*} \Lambda, \widehat{f}_{\gamma} \xrightarrow{w^*} \lambda$ and $\widehat{a}_{\beta} \xrightarrow{w^*} F$, then

$$\begin{split} \langle F \circ \Lambda, \lambda \rangle &= \langle \Lambda, \lambda \circ F \rangle \\ &= \lim_{\alpha} \langle \widehat{G}_{\alpha}, \lambda \circ F \rangle \\ &= \lim_{\alpha} \langle \lambda \circ F, G_{\alpha} \rangle \\ &= \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle G_{\alpha}, f_{\gamma} \cdot a_{\beta} \rangle, \end{split}$$

and

$$\begin{split} \langle F \cdot \Lambda, \lambda \rangle &= \langle \Lambda, \lambda \cdot F \rangle \\ &= \lim_{\alpha} \langle \widehat{G}_{\alpha}, \lambda \cdot F \rangle \\ &= \lim_{\alpha} \langle \lambda, F \Box G_{\alpha} \rangle \\ &= \lim_{\alpha} \lim_{\gamma} \langle \widehat{f}_{\gamma}, F \Box G_{\alpha} \rangle \\ &= \lim_{\alpha} \lim_{\gamma} \langle F, G_{\alpha} \cdot f_{\gamma} \rangle \\ &= \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle \widehat{a}_{\beta}, G_{\alpha} \cdot f_{\gamma} \rangle \\ &= \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle G_{\alpha}, f_{\gamma} \cdot a_{\beta} \rangle. \end{split}$$

For the structure (c), we have

$$\langle F \bullet \Lambda, \lambda \rangle = \lim_{\beta} \lim_{\alpha} \langle \widehat{a_{\beta} \cdot G_{\alpha}}, b''' \rangle$$

$$= \lim_{\beta} \lim_{\alpha} \langle \lambda, a_{\beta} \cdot G_{\alpha} \rangle$$

$$= \lim_{\beta} \lim_{\alpha} \lim_{\gamma} \langle \widehat{f_{\gamma}}, a_{\beta} \cdot G_{\alpha} \rangle$$

$$= \lim_{\beta} \lim_{\alpha} \lim_{\gamma} \langle G_{\alpha}, f_{\gamma} \cdot a_{\beta} \rangle.$$

We see that left actions in parts (a) and (b) are equal and different from the action of (c). We put some conditions on \mathcal{A} and show that with this conditions all \mathcal{A}'' -bimodule structures on $\mathcal{A}^{(4)}$ are equal. First we bring some simple, but useful lemmas.

Lemma 2.1. If \mathcal{A} is Arens regular, then, for the bounded nets (F_{α}) and (G_{β}) in \mathcal{A}'' ,

 $(w^* - \lim_{\alpha} F_{\alpha}) \Box (w^* - \lim_{\beta} G_{\beta}) = w^* - \lim_{\alpha} w^* - \lim_{\beta} (F_{\alpha} \Box G_{\beta}) = w^* - \lim_{\beta} w^* - \lim_{\alpha} (F_{\alpha} \Box G_{\beta}).$

Lemma 2.2. Let the Banach algebra \mathcal{A} with one of the following conditions

(i) The map $\varphi : \mathcal{A}' \times \mathcal{A} \longrightarrow \mathcal{A}'; ((f, a) \longrightarrow f \cdot a)$ is Arens regular,

(ii) The map $\psi : \mathcal{A}'' \longrightarrow \mathcal{A}''; (G \longrightarrow G \Box F)$ is weak-compact for every $F \in \mathcal{A}'',$

(iii) The map $\phi : \mathcal{A}'' \longrightarrow \mathcal{A}''; (G \longrightarrow G \Box F)$ is w*-w-continuous for every $F \in \mathcal{A}''$.

Then for each bounded net (a_{α}) in \mathcal{A} and $\lambda \in \mathcal{A}^{\prime\prime\prime}$,

$$\langle \lambda, (w^* - \lim_{\alpha} \widehat{a}_{\alpha}) \Box F \rangle = \lim_{\alpha} \langle \lambda, \widehat{a}_{\alpha} \Box F \rangle$$
(1)

Proof. (i) Let $\lambda = w^* - \lim_{\beta} \widehat{f}_{\beta}$, where (f_{β}) is a bounded net in \mathcal{A}' , then we have

$$\begin{split} \langle \lambda, (w^* - \lim_{\alpha} \widehat{a}_{\alpha}) \Box F \rangle &= \lim_{\beta} \langle (w^* - \lim_{\alpha} \widehat{a}_{\alpha}) \Box F, f_{\beta} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \langle \widehat{a}_{\alpha} \Box F, f_{\beta} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \langle F, f_{\beta} \cdot a_{\alpha} \rangle \\ &= \langle w^* - \lim_{\beta} w^* - \lim_{\alpha} \widehat{f_{\beta} \cdot a_{\alpha}}, F \rangle \\ &= \langle w^* - \lim_{\alpha} w^* - \lim_{\beta} \widehat{f_{\beta} \cdot a_{\alpha}}, F \rangle \\ &= \lim_{\alpha} \langle w^* - \lim_{\beta} \widehat{f_{\beta}}, a_{\alpha} \Box F \rangle \\ &= \lim_{\alpha} \langle \lambda, \widehat{a}_{\alpha} \Box F \rangle. \end{split}$$

(ii) From the double limit property of weak compact operator ψ , we see $\lim_{\beta} \lim_{\alpha} \langle \hat{a}_{\alpha} \Box F, f_{\beta} \rangle = \lim_{\alpha} \lim_{\beta} \langle \hat{a}_{\alpha} \Box F, f_{\beta} \rangle$,

hence

$$\langle \lambda, (w^* - \lim_{\alpha} \widehat{a}_{\alpha}) \Box F \rangle = \lim_{\beta} \langle (w^* - \lim_{\alpha} \widehat{a}_{\alpha}) \Box F, f_{\beta} \rangle$$

$$= \lim_{\beta} \lim_{\alpha} \langle \widehat{a}_{\alpha} \Box F, f_{\beta} \rangle$$

$$= \lim_{\alpha} \lim_{\beta} \langle \widehat{a}_{\alpha} \Box F, f_{\beta} \rangle$$

$$= \lim_{\alpha} \langle \lambda, \widehat{a}_{\alpha} \Box F \rangle.$$

(iii) Equation (1) is a consequence of $w^* - w$ -continuity of ϕ .

Lemma 2.3. If for every $G \in \mathcal{A}''$ the map $\rho : \mathcal{A}'' \longrightarrow \mathcal{A}''; (F \longrightarrow G \Box F)$ is w^* -w-continuous, then for every bounded net (F_j) in \mathcal{A}'' $\langle \lambda, G \Box (w^* - \lim_j F_j) \rangle = \lim_j \langle \lambda, G \Box F_j \rangle, \qquad (\lambda \in \mathcal{A}''').$

Proof. It is similar to part (iii) of Lemma 2.2.

Lemma 2.4. Let \mathcal{A} be an Arens regular Banach algebra. If the map φ : $\mathcal{A}'' \longrightarrow \mathcal{A}''; (F \longrightarrow G \Box F)$ is weak-compact or w^* -w-continuous for every $G \in \mathcal{A}''$, then

 $\langle \lambda, w^* - \lim_{\alpha} w^* - \lim_{j} (\widehat{a}_{\alpha} \Box F_j) \rangle = \lim_{\alpha} \lim_{j} \langle \lambda, \widehat{a}_{\alpha} \Box F_j \rangle.$ (2) for all $\lambda \in \mathcal{A}^{\prime\prime\prime}$, bounded nets (a_{α}) and (F_j) in \mathcal{A} and $\mathcal{A}^{\prime\prime}$, respectively. **Proof.** Let (f_{β}) be a bounded net in \mathcal{A}' such that $\widehat{f}_{\beta} \xrightarrow{w^*} \lambda$. Then

$$\begin{split} \langle \lambda, w^* - \lim_{\alpha} w^* - \lim_{j} (\widehat{a}_{\alpha} \Box F_j) \rangle &= \lim_{\beta} \langle (w^* - \lim_{\alpha} w^* - \lim_{j} (\widehat{a}_{\alpha} \Box F_j), f_{\beta} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \lim_{j} \langle \widehat{a}_{\alpha} \Box F_j, f_{\beta} \rangle \\ &= \lim_{\alpha} \lim_{j} \lim_{\beta} \langle \widehat{a}_{\alpha} \Box F_j, f_{\beta} \rangle \\ &= \lim_{\alpha} \lim_{j} \langle \lambda, \widehat{a}_{\alpha} \Box F_j \rangle. \end{split}$$

Since φ is $w^* - w$ -continuous, the equation (2) is obtained immediately.

Proposition 2.5. Let \mathcal{A} be a Banach algebra. If one of the following conditions holds, then the two \mathcal{A}'' -module actions in (a), (c) coincide.

(i) The Banach algebra \mathcal{A} and the map $\varphi : \mathcal{A}' \times \mathcal{A} \longrightarrow \mathcal{A}'; ((f, a) \longrightarrow f \cdot a)$ are Arens regular and the map $\psi : \mathcal{A}'' \longrightarrow \mathcal{A}''; (F \longrightarrow F \Box G)$ is w^* -w-continuous for every $G \in \mathcal{A}''$.

(ii) The Banach algebra \mathcal{A} is Arens regular and the map $\phi : \mathcal{A}'' \longrightarrow \mathcal{A}''; (F \longrightarrow F \Box G)$ is weak-compact for every $G \in \mathcal{A}''$.

(iii) For bounded nets (G_{α}) , (f_{γ}) and (a_{β}) in $\mathcal{A}'', \mathcal{A}'$ and \mathcal{A} , respectively, we have

$$\lim_{\alpha}\lim_{\gamma}\lim_{\beta}\langle G_{\alpha},f_{\gamma}\cdot a_{\beta}\rangle = \lim_{\beta}\lim_{\alpha}\lim_{\gamma}\langle G_{\alpha},f_{\gamma}\cdot a_{\beta}\rangle.$$

Proof. We know that the two right \mathcal{A}'' -module actions on \mathcal{A}'''' in (a) and (c) are equal to

 $\lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle G_{\alpha}, a_{\beta} \cdot f_{\gamma} \rangle,$

in which (G_{α}) , (f_{γ}) and (a_{β}) are bounded nets in $\mathcal{A}'', \mathcal{A}'$ and \mathcal{A} , respectively. For left \mathcal{A}'' -module actions on \mathcal{A}'''' it is enough to show the following equality

$$\lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle G_{\alpha}, f_{\gamma} \cdot a_{\beta} \rangle = \lim_{\beta} \lim_{\alpha} \lim_{\gamma} \langle G_{\alpha}, f_{\gamma} \cdot a_{\beta} \rangle.$$

(i) By Arens regularity of the map φ we have

$$\lim_{\gamma} \lim_{\beta} \langle G_{\alpha}, f_{\gamma}.a_{\beta} \rangle = \lim_{\beta} \lim_{\gamma} \langle G_{\alpha}, f_{\gamma}.a_{\beta} \rangle.$$

Now suppose that $\lambda = w^* - \lim_{\beta} \widehat{f}_{\beta}$, by Lemma 2.1 and Lemma 2.4 we

have

$$\begin{split} \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle G_{\alpha}, f_{\gamma} \cdot a_{\beta} \rangle &= \lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle G_{\alpha}, f_{\gamma} \cdot a_{\beta} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle \widehat{f}_{\gamma}, \widehat{a}_{\beta} \Box G_{\alpha} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \langle \lambda, \widehat{a}_{\beta} \Box G_{\alpha} \rangle \\ &= \langle \lambda, w^{*} - \lim_{\alpha} w^{*} - \lim_{\beta} (\widehat{a}_{\beta} \Box G_{\alpha}) \rangle \\ &= \langle \lambda, w^{*} - \lim_{\beta} w^{*} - \lim_{\alpha} (\widehat{a}_{\beta} \Box G_{\alpha}) \rangle \\ &= \lim_{\beta} \lim_{\alpha} \lim_{\gamma} \langle G_{\alpha}, f_{\gamma} \cdot a_{\beta} \rangle. \end{split}$$

(ii) By weak compactness of ϕ , we have

$$\lim_{\gamma}\lim_{\beta}\langle G_{\alpha}, f_{\gamma}\cdot a_{\beta}\rangle = \lim_{\gamma}\lim_{\beta}\langle \widehat{f}_{\gamma}, \widehat{a}_{\beta}\Box G_{\alpha}\rangle = \lim_{\beta}\lim_{\gamma}\langle \widehat{f}_{\gamma}, \widehat{a}_{\beta}\Box G_{\alpha}\rangle.$$

It is easy to check that the map ϕ is $w^* - w$ -continuous, and so the rest of the proof is the same as the proof of part (i).

(iii) It is clear.

3 \mathcal{A}'' - bimodule structures on fifth dual of a Banach algebra

Let $\mathcal A$ be a Banach algebra. We consider four $\mathcal A''\text{-}$ bimodule structures on $\mathcal A^{(5)}.$

(I) We consider $\mathcal{A}^{(5)} = (\mathcal{A}^{(4)})'$ in which $\mathcal{A}^{(4)}$ has an \mathcal{A}'' -bimodule structure as in part (c) in Section 2. Therefore $\mathcal{A}^{(5)}$ is the dual space of $\mathcal{A}^{(4)}$, by the following actions

$$\langle F \bullet \Psi, \Lambda \rangle = \langle \Psi, \Lambda \bullet F \rangle, \qquad \quad \langle \Psi \bullet F, \Lambda \rangle = \langle \Psi, F \bullet \Lambda \rangle$$

where $F \in \mathcal{A}'', \Lambda \in \mathcal{A}^{(4)}$ and $\Psi \in \mathcal{A}^{(5)}$. In this case we have $\mathcal{A}^{(5)} = ((\mathcal{A}'')'')'$. (II) We consider $\mathcal{A}^{(5)} = (\mathcal{A}^{(4)})'$ in which $\mathcal{A}^{(4)}$ has an \mathcal{A}'' -bimodule struc-

ture as in part (b) in Section 2, so the left action \mathcal{A}'' on $\mathcal{A}^{(5)} = (((\mathcal{A}'')'))'$ is defined by $\langle F \cdot \Psi, \Lambda \rangle = \langle \Psi, \Lambda \cdot F \rangle.$

where $F, G \in \mathcal{A}'', \lambda \in \mathcal{A}''', \Lambda \in \mathcal{A}^{(4)}$ and $\Psi \in \mathcal{A}^{(5)}$. The right action is defined in a similar way. (III) Let $\mathcal{A}^{(5)} = (\mathcal{A}^{\prime\prime\prime})^{\prime\prime}$ be as the second dual of $\mathcal{A}^{\prime\prime\prime}$ in which $\mathcal{A}^{\prime\prime\prime} = ((\mathcal{A}^{\prime})^{\prime})^{\prime}$ is an \mathcal{A} -bimodule. Take $\Psi \in \mathcal{A}^{(5)}$, $F \in \mathcal{A}^{\prime\prime}$ and bounded nets $(\lambda_{\alpha}) \subset \mathcal{A}^{\prime\prime\prime}$, $(a_{\beta}) \subset \mathcal{A}^{\prime}$ with $\widehat{\lambda}_{\alpha} \xrightarrow{w^*} \Psi$ and $\widehat{a}_{\beta} \xrightarrow{w^*} F$. Two module actions is defined by

$$F \circ \Psi = w^* - \lim_{\beta} \lim_{\alpha} \widehat{a_{\beta}} \cdot \widehat{\lambda_{\alpha}} \qquad \Psi \circ F = w^* - \lim_{\alpha} \lim_{\beta} \widehat{\lambda_{\alpha}} \cdot \widehat{a_{\beta}}.$$

In fact $F \circ \Psi$ and $\Psi \circ F$ are extension of module actions $(a, \lambda) \longrightarrow a \cdot \lambda$ $(\mathcal{A} \times \mathcal{A}''' \longrightarrow \mathcal{A}'')$ and $(\lambda, a) \longrightarrow \lambda \cdot a \quad (\mathcal{A}''' \times \mathcal{A} \longrightarrow \mathcal{A}'')$. (IV) We consider $\mathcal{A}^{(5)} = (\mathcal{A}^{(4)})'$ in which $\mathcal{A}^{(4)}$ has an \mathcal{A}'' -bimodule struc-

(1V) We consider $\mathcal{A}^{(5)} = (\mathcal{A}^{(4)})'$ in which $\mathcal{A}^{(4)}$ has an \mathcal{A}'' -bimodule structure as in part (a) in Section 2, hence the \mathcal{A}'' -module actions on $\mathcal{A}^{(5)}$ are defined by

$$\langle F \star \Psi, \Lambda \rangle = \langle \Psi, \Lambda \circ F \rangle, \qquad \langle \Psi \star F, \Lambda \rangle = \langle \Psi, F \circ \Lambda \rangle,$$

where $F \in \mathcal{A}'', \Lambda \in \mathcal{A}^{(4)}$ and $\Psi \in \mathcal{A}^{(5)}$.

Suppose that $\Psi \in \mathcal{A}^{(5)}$, $\Lambda \in \mathcal{A}^{(4)}$, $F \in \mathcal{A}''$ and bounded nets $(\lambda_{\alpha}) \subset \mathcal{A}''', (G_{\gamma}) \subset \mathcal{A}'', (a_{\beta}) \subset \mathcal{A}'$ by $\widehat{\lambda}_{\alpha} \xrightarrow{w^*} \Psi, \widehat{G}_{\gamma} \xrightarrow{w^*} \Lambda$ and $\widehat{a}_{\beta} \xrightarrow{w^*} F$, then

$$\begin{split} \langle F \bullet \Psi, \Lambda \rangle &= \langle \Psi, \Lambda \bullet F \rangle \\ &= \lim_{\alpha} \langle \widehat{\lambda}_{\alpha}, \Lambda \bullet F \rangle \\ &= \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle \lambda_{\alpha}, G_{\gamma} \cdot a_{\beta} \rangle, \end{split}$$

and

$$\begin{split} \langle F \circ \Psi, \Lambda \rangle &= \lim_{\beta} \lim_{\alpha} \langle \widetilde{a_{\beta}} \cdot \widetilde{\lambda_{\alpha}}, \Lambda \rangle \\ &= \lim_{\beta} \lim_{\alpha} \lim_{\gamma} \langle \widehat{G}_{\gamma}, a_{\beta} \cdot \lambda_{\alpha} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \lim_{\gamma} \langle \lambda_{\alpha}, G_{\gamma} \cdot a_{\beta} \rangle, \end{split}$$

so $F\circ\Psi$ and $F\bullet\Psi$ are not always equal. But

$$\begin{split} \langle \Psi \circ F, \Lambda \rangle &= \lim_{\alpha} \lim_{\beta} \langle \widehat{\lambda_{\alpha} \cdot a_{\beta}}, \Lambda \rangle \\ &= \lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle \widehat{G}_{\gamma}, \lambda_{\alpha} \cdot a_{\beta} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle \lambda_{\alpha}, a_{\beta} \cdot G_{\gamma} \rangle \\ &= \lim_{\alpha} \langle F \bullet \Lambda, \lambda_{\alpha} \rangle \\ &= \langle \Psi, F \bullet \Lambda \rangle \\ &= \langle \Psi \bullet F, \Lambda \rangle. \end{split}$$

Hence the two right \mathcal{A}'' -bimodule structure parts (I) and (III) on $\mathcal{A}^{(5)}$ always coincide. Also we can show that left (right) \mathcal{A}'' -module action on $\mathcal{A}^{(5)}$ in part (II) is

$$\langle F \cdot \Psi, \Lambda \rangle = \lim_{\alpha} \lim_{\gamma} \langle \lambda_{\alpha}, G_{\gamma} \Box F \rangle \quad (\langle \Psi \cdot F, \Lambda \rangle = \lim_{\alpha} \lim_{\gamma} \langle \lambda_{\alpha}, F \Box G_{\gamma} \rangle),$$

hence the \mathcal{A}'' -bimodule structure part (II) is different from (I) and (III). For two \mathcal{A}'' -module action on $\mathcal{A}^{(5)}$ in part (IV), we have

$$\langle F \star \Psi, \Lambda \rangle = \lim_{\alpha} \lim_{\gamma} \langle F \circ \lambda_{\alpha}, G_{\gamma} \rangle, \qquad \langle \Psi \star F, \Lambda \rangle = \lim_{\alpha} \lim_{\gamma} \langle \lambda_{\alpha} \circ F, G_{\gamma} \rangle.$$

Lemma 3.1. Let \mathcal{A} be a Banach algebra. Suppose that the map $\varphi : \mathcal{A} \times \mathcal{A}'' \longrightarrow \mathcal{A}''; ((a, F) \longrightarrow a \cdot F)$ is Arens regular and the map $\psi : \mathcal{A}'' \longrightarrow \mathcal{A}''; (G \longrightarrow G \Box F)$ is w^* -w-continuous for every $F \in \mathcal{A}''$. Then the two right \mathcal{A}'' -module actions on $\mathcal{A}^{(5)}$ in (II) and (III) are equal.

Proof. By $w^* - w$ -continuity of ψ we must prove the following equality

$$\lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle \lambda_{\alpha}, a_{\beta} \cdot G_{\gamma} \rangle = \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle \lambda_{\alpha}, a_{\beta} \cdot G_{\gamma} \rangle, \tag{3}$$

for bounded nets $(\lambda_{\alpha}), (G_{\gamma})$ and (a_{β}) in $\mathcal{A}''', \mathcal{A}''$ and \mathcal{A}' , respectively. By Arens regularity of φ , we have

$$\lim_{\beta}\lim_{\gamma}\langle\lambda_{\alpha},a_{\beta}\cdot G_{\gamma}\rangle = \lim_{\beta}\lim_{\gamma}\langle\widehat{a_{\beta}\cdot G_{\gamma}},\lambda_{\alpha}\rangle = \lim_{\gamma}\lim_{\beta}\langle\widehat{a_{\beta}\cdot G_{\gamma}},\lambda_{\alpha}\rangle,$$

and so (3) is true.

Lemma 3.2. Let \mathcal{A} be a Banach algebra. Assume that the Banach algebra \mathcal{A} and the map $\varphi : \mathcal{A}'' \times \mathcal{A}''' \longrightarrow \mathcal{A}'''; ((F, \lambda) \longrightarrow F \cdot \lambda)$ is Arens regular and the map $\psi : \mathcal{A}'' \longrightarrow \mathcal{A}''; (G \longrightarrow F \Box G)$ is w^* -w-continuous for every $F \in \mathcal{A}''$. Then two left \mathcal{A}'' -module actions on $\mathcal{A}^{(5)}$ in (II) and (III) are equal.

Proof. By $w^* - w$ -continuity of ψ , it is enough to prove the following equality for bounded nets $(\lambda_{\alpha}), (G_{\gamma})$ and (a_{β}) in $\mathcal{A}''', \mathcal{A}''$ and \mathcal{A}' , respectively.

$$\lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle \lambda_{\alpha}, G_{\gamma} \Box \widehat{a}_{\beta} \rangle = \lim_{\beta} \lim_{\alpha} \lim_{\gamma} \langle \lambda_{\alpha}, G_{\gamma} \Box \widehat{a}_{\beta} \rangle.$$
(4)

By using Lemma 2.4 we can write

$$\lim_{\gamma} \lim_{\beta} \langle \lambda_{\alpha}, G_{\gamma} \Box \widehat{a}_{\beta} \rangle = \lim_{\beta} \lim_{\gamma} \langle \lambda_{\alpha}, G_{\gamma} \Box \widehat{a}_{\beta} \rangle.$$

Then, by Arens regularity of φ , we see

$$\begin{split} \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle \lambda_{\alpha}, G_{\gamma} \Box \widehat{a}_{\beta} \rangle &= \lim_{\alpha} \lim_{\beta} \lim_{\gamma} \langle \lambda_{\alpha}, G_{\gamma} \Box \widehat{a}_{\beta} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \langle \lambda_{\alpha}, (w^* - \lim_{\alpha} G_{\gamma}) \Box \widehat{a}_{\beta} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \langle \widehat{a}_{\beta} \cdot \lambda_{\alpha}, (w^* - \lim_{\alpha} G_{\gamma}) \widehat{} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \langle \widehat{a}_{\beta} \cdot \lambda_{\alpha}, (w^* - \lim_{\alpha} G_{\gamma}) \widehat{} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \lim_{\gamma} \langle a_{\beta} \cdot \lambda_{\alpha}, G_{\gamma} \Box \widehat{a}_{\beta} \rangle. \end{split}$$

4 3-weak amenability of the second dual

Let $D : \mathcal{A} \longrightarrow \mathcal{A}'''$ be a derivation. Then $D'' : \mathcal{A}'' \longrightarrow \mathcal{A}^{(5)} = (\mathcal{A}''')''$ the second transpose of D is a derivation (see [3] and [11]), that means that for every $F, G \in \mathcal{A}''$

$$D''(F \Box G) = D(F) \circ G + F \circ D(G).$$

But $D'': \mathcal{A}'' \longrightarrow \mathcal{A}^{(5)} = (\mathcal{A}'')'''$ is not always a derivation. In the following we put other conditions on D such that D'' is a derivation (also see Theorem 4.3).

Proposition 4.1. Let \mathcal{A} be a Banach algebra and let $D : \mathcal{A} \longrightarrow \mathcal{A}'''$ be a derivation. Then $D'' : \mathcal{A}'' \longrightarrow \mathcal{A}^{(5)} = (\mathcal{A}'')'''$ is a derivation if and only if $D''(\mathcal{A}'') \cdot \mathcal{A}^{(4)} \subseteq \widehat{\mathcal{A}'}$.

Proof. Let $F, G \in \mathcal{A}''$. Then there are nets (a_{α}) and (b_{β}) in \mathcal{A} which converge to F and G in the w^* - topology of \mathcal{A}'' respectively. Clearly D'' is w^* - continuous. Then

$$D''(F\square G) = w^* - \lim_{\alpha} w^* - \lim_{\beta} D(a_{\alpha}b_{\beta})$$

= $w^* - \lim_{\alpha} w^* - \lim_{\beta} D(a_{\alpha}) \cdot b_{\beta} + w^* - \lim_{\alpha} w^* - \lim_{\beta} a_{\alpha} \cdot D(b_{\beta})$
= $D''(F) \cdot G + \lim_{\alpha} a_{\alpha} \cdot D''(G).$

By (5), it is easy to see that D'' is a derivation if and only if for every $F, G \in \mathcal{A}''$ that $F = w^* - \lim_{\alpha} a_{\alpha}$, the following equality holds

 $F \cdot D''(G) = w^* - \lim_{\alpha} a_{\alpha} \cdot D''(G)$ (6). The relation (6) is true if and only if for every

 $\Lambda \in \mathcal{A}^{(4)}, \langle F \cdot D''(G), \Lambda \rangle = \lim_{\alpha} \langle a_{\alpha} \cdot D''(G), \Lambda \rangle(7).$ Also (7) holds if and only if

 $\langle D''(G).\Lambda, F \rangle = \lim_{\alpha} \langle D''(G) \cdot \Lambda, a_{\alpha} \rangle$ (8).

So (8) holds if and only if $D''(G).\Lambda : \mathcal{A}'' \to \mathbb{C}$ is $w^* - w^*$ -continuous. This means that $D''(G).\Lambda \in \widehat{\mathcal{A}'}$.

Corollary 4.2 Let \mathcal{A} be a Banach algebra such that \mathcal{A}'' is 3-weakly amenable. If $D''(\mathcal{A}'') \cdot \mathcal{A}^{(4)} \subseteq \widehat{\mathcal{A}'}$, for each derivation $D : \mathcal{A} \longrightarrow \mathcal{A}'''$. Then \mathcal{A} is 3-weakly amenable.

Let \mathcal{A} be a Banach algebra and let $\iota : \mathcal{A}'' \longrightarrow \mathcal{A}^{(4)}$ be an injective map $(\langle \iota(F), \lambda \rangle = \langle \lambda, F \rangle)$ for $F \in \mathcal{A}''$ and $\lambda \in \mathcal{A}'''$. Then ι is an \mathcal{A} -bimodule homomorphism . Also ι is an \mathcal{A}'' -bimodule homomorphism with the module structures (a) and (b) on $\mathcal{A}^{(4)}$, but it is not always an \mathcal{A}'' -bimodule homomorphism with the module structures (c). Therefore the adjoint of ι (ι^*) is an \mathcal{A}'' -bimodule homomorphism with the module structures (a) and (b). Let X be a Banach space. For $n \in \mathbb{Z}^+$, we denote X^{\perp} , the subspace of $X^{(2n+1)}$ annihilating \hat{X} , where $X^{(2n+1)}$ is the (2n+1)-th dual of X, i.e. $X^{\perp} = \{\lambda \in X^{(2n+1)}; \langle \lambda, x \rangle = 0, \quad x \in X\}$. For the Banach algebra \mathcal{A} , $(\mathcal{A}'')^{\perp}$ is clearly w^* -closed \mathcal{A}'' -submodule of $\mathcal{A}^{(5)}$. Now we get the main theorem of this paper.

Theorem 4.3. Let \mathcal{A} be a Banach algebra such that \mathcal{A}'' is weakly amenable. Suppose that one the following conditions holds

(1) $D''(\mathcal{A}'') \cdot \mathcal{A}^{(4)} \subseteq \widehat{\mathcal{A}'}$, for each derivation $D : \mathcal{A} \longrightarrow \mathcal{A}'''$.

(2) Conditions (i) of Lemma 3.1 and Lemma 3.2 are true.

(3) $\lim_{\alpha} \lim_{\gamma} \lim_{\beta} \langle \lambda_{\alpha}, F_{\gamma} \cdot a_{\beta} \rangle = \lim_{\beta} \lim_{\alpha} \lim_{\gamma} \langle \lambda_{\alpha}, F_{\gamma} \cdot a_{\beta} \rangle$, for every bounded nets (λ_{α}) in $\mathcal{A}'', (F_{\gamma})$ in \mathcal{A}'' and every net (a_{β}) in \mathcal{A} .

Then \mathcal{A} is 3 -weakly amenable.

Proof. Suppose that one of conditions (1) or (2) holds, so the two \mathcal{A}'' bimodule structures in parts (II) and (III) on $\mathcal{A}^{(5)}$ are equal. We know $(\mathcal{A}'')''' = (\mathcal{A}'')' \oplus (\mathcal{A}'')^{\perp}$. In other words $\mathcal{A}^{(5)} = (\mathcal{A}'')'''$ is a direct summand of \mathcal{A}'' - submodules of $\mathcal{A}^{(5)}$. Let $P : (\mathcal{A}'')''' \longrightarrow (\mathcal{A}'')'$ be the projection defined by the above direct sum. Suppose $D : \mathcal{A} \longrightarrow \mathcal{A}'''$ is a derivation. Then we can show that P is an \mathcal{A}'' -module homomorphism. Thus $P \circ D'' : \mathcal{A}'' \longrightarrow (\mathcal{A}''')'' = (\mathcal{A}'')'' \longrightarrow (\mathcal{A}'')'$ is a derivation. Since \mathcal{A}'' is weakly amenable, there exists $\theta_0 \in (\mathcal{A}'')'$ such that $P \circ D = \delta_{\theta_0}$. On the other hand D is the restriction of $P \circ D''$ to \mathcal{A} . Thus $D = \delta_{\theta_0}$.

Now assume that the condition (3) holds, then the two \mathcal{A}'' -bimodule structures in parts (I) and (III) on $\mathcal{A}^{(5)}$ are equal. Suppose $D : \mathcal{A} \longrightarrow \mathcal{A}'''$ is a derivation. Then $\iota^* \circ D'' : \mathcal{A}'' \longrightarrow (\mathcal{A}''')'' = (\mathcal{A}^{(4)})' \longrightarrow (\mathcal{A}'')'$ is a derivation. Due to the weak amenability of \mathcal{A}'' , there exists $\theta_0 \in (\mathcal{A}'')'$ such that $\iota^* \circ D'' = \delta_{\theta_0}$. For every $a \in \mathcal{A}$ and $F \in \mathcal{A}''$, we have

$$\langle \iota^* \circ D''(a), F \rangle = \langle D''(a), \iota(F) \rangle = \langle \iota(F), D(a) \rangle = \langle D(a), F \rangle.$$

So D is the restriction of $\iota^* \circ D''$ to \mathcal{A} . Thus $D = \delta_{\theta_0}$. Therefore \mathcal{A} is 3 -weakly amenable.

By applying Theorem 4.3 we have the following results.

Corollary 4.4. Let \mathcal{A} be a Banach algebra such that one of the conditions (1) up to (4) of Theorem 4.3 holds. If \mathcal{A}'' is weakly amenable, then \mathcal{A} is weakly amenable.

Proof. It follows immediately from Theorem 4.3 and [4, Proposition 1.2]. **Corollary 4.5.** Let \mathcal{A} be a Banach algebra such that one of the conditions (1) up to (3) of Theorem 4.3 holds. If \mathcal{A}'' is 3 -weakly amenable, then \mathcal{A} is 3 -weakly amenable.

Proof. By Theorem 4.3 and [4, Proposition 1.2], \mathcal{A} is 3 -weakly amenable. The following Theorem has been proved in [10].

Theorem 4.6. Let \mathcal{A} be an Arens regular Banach algebra. Suppose that for every continuous derivation $D: \mathcal{A}'' \longrightarrow \mathcal{A}'''$ and every F in $\mathcal{A}'', D(F)$ and D are w^* -continuous. If \mathcal{A} is weakly amenable, then so is \mathcal{A}'' .

Let one of the conditions of Theorem 4.3 holds. Then we have **Corollary 4.7.** Under assumptions of Theorem 4.6, if \mathcal{A} is weakly amenable, then \mathcal{A} is 3-weakly amenable.

Proof. It is an immediate consequence of Theorem 4.3 and Theorem 4.6.

References

- R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848.
- [2] N. Arikan, Arens regularity and reflexivity, Quart. J. Math. Oxford Ser. 32 (1981), 383–388.
- [3] H. G. Dales, Banach algebra and Automatic continuity, Oxford University Press, 2000.
- [4] H. G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19–54.
- [5] H. G. Dales, A. Rodriguez-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. (2)64 (2001),707–721.

- [6] J. Duncan and S. A. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309–325.
- [7] M. Eshaghi Gordji, Arens regularity of some bilinear maps, Proyectiones 28 (2009), no. 1, 21–26.
- [8] M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia Math. 181 (2007), 237–254.
- [9] M. Eshaghi Gordji and M. Filali, Weak amenability of the second dual of a Banach algebra, Studia Math., 182, no. 3, (2007), 205–213.
- [10] M. Ettefagh, The third dual of a Banach algebra, Studia. Sci. Math. Hung., 45 (1), 1–11 (2008).
- [11] F. Ghahramani and J. Laali, Amenability and topological center of the second duals of Banach algebras, Bull. Austral. Math. Soc., 65 (2002),191– 197.
- [12] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second cojugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), 1489–1497.
- [13] A. T.-M. Lau and A. Ulger, Topological centers of certain dual algebras, Trans. Amer. Math. Soc., 348 (1996), 1191–1212.
- [14] A. R. Medghalchi and T. Yazdanpanah, n-weak amenability and strong double limit property, Bull. Korean. Math. Soc., 42 (2005), no. 2, 359– 367.
- [15] R. E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag, New York Berlin Heidelberg, 1998.
- [16] A. Ulger, Weakly compact bilinear forms and Arens regularity, Proc. Amer. Math. Soc., 101 (1987), 697–704.
- [17] A. Ulger, Arens regularity sometimes implies the RNP, Pacific J. Math., 143 (1990), 377–399.
- [18] N. J. Young, The irregularity of multiplication in group algebras, Quart. J. Math. Oxford, 24 (1973), 59-62.
- [19] Yong Zhang, Weak amenability of module extension of Banach algebras, Trans. Amer. Math. Soc., 354, no. 10 (2002), 4131–4151.
- [20] Yong Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. Vol., 44 (4) (2001), 504–508.

A. Bodaghi, Islamic AZAD University, Garmsar Branch, Garmsar, Iran e-mail: abasalt_bodaghi@yahoo.com

M. Ettefagh, Islamic AZAD University, Tabriz Branch, Tabriz, Iran. e-mail: mm_ettefag@yahoo.com

M. Eshaghi Gordji, Semnan University, Department of Mathematics, Semnan, Iran, e-mail: madjid.eshaghi@gmail.com

A. R. Medghalchi, Tarbiat Moallem University, Department of Mathematical Sciences, Tehran, Iran, e-mail: a_medghalchi@saba.tmu.ac.ir