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MODULE STRUCTURES ON ITERATED
DUALS OF BANACH ALGEBRAS

A. Bodaghi, M. Ettefagh, M. Eshaghi Gordji, A. R. Medghalchi

Abstract

Let A be a Banach algebra and (A′′
,�) be its second dual with first

Arens product. We consider three (A′′
,�)-bimodule structures on forth

dual and four (A′′
,�)-bimodule structures on fifth dual of a Banach al-

gebra. This paper determines the conditions that make these structures
equal. Among other results we show that if A′′ is weakly amenable with
some conditions, then A is 3 -weakly amenable.

1 Introduction

Let A be a Banach algebra and let X be a Banach A-module, that is X is a
Banach space and an A-module such that the module operations (a, x) 7−→ a·x
and (a, x) 7−→ x · a from A×X into X are jointly continuous. The dual space
X ′ of X is also a Banach A-module by the following module actions:

〈a · f, x〉 = 〈f, x · a〉, 〈f · a, x〉 = 〈f, a · x〉, (a ∈ A, x ∈ X, f ∈ X ′).

We set X ′′ = (X ′)′, and so on, and we regard X as a subspace of X ′′ in
the standard way. Also X ′′′ = (X ′′)′,...
Let X be a Banach A-module. Then a continuous linear map D : A −→ X is
called a derivation if

D(ab) = a ·D(b) +D(a) · b (a, b ∈ A).
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For x ∈ X we define δx : A −→ X as follows:
δx(a) = a · x− x · a (a ∈ A),

it is easy to show that δx is a derivation. Such derivations are called inner
derivations. A is called amenable, if every derivation D : A −→ X ′ is inner,
for each Banach A-module X. If every derivation from A into A

′ is inner, A
is called weakly amenable. Let n ∈ N. A Banach algebra A is called n-weakly
amenable if every derivation from A into A

(n) is inner [4], where A
(n) is the

n-th dual of A that is a Banach A-module. We regard A as a subspace of A′′

by canonical embedding ˆ : A → A
′′; a 7→ â. We write Â as the image of A

under this mapping.
Let X,Y and Z be normed spaces and let f : X×Y −→ Z be a continuous

bilinear map. Then the adjiont of f is defined by

f ′ : Z ′ ×X −→ Y ′, 〈f ′(z′, x), y〉 = 〈z′, f(x, y)〉 (z′ ∈ Z ′, x ∈ X, y ∈ Y ).

Since f ′ is a continuous bilinear map, this process may be repeated to define
f ′′ = (f ′)′ : Y ′′ × Z ′ −→ X ′, and then f ′′′ = (f ′′)′ : X ′′ × Y ′′ −→ Z ′′. The
map f ′′′ is the unique extension of f such that X ′′ −→ Z ′′;x′′ 7→ f ′′′(x′′, y′′)
is weak∗ − weak∗ continuous for all y′′ ∈ Y ′′ and Y ′′ −→ Z ′′; y′′ 7→ f ′′′(x, y′′)
is weak∗ −weak∗ continuous for all x ∈ X. Let now f t : Y ×X −→ Z be the
transpose of f defined by f t(y, x) = f(x, y) for all x ∈ X and y ∈ Y . Then f t

is a continuous bilinear map from Y ×X to Z, and so it may be extended as
above to (f t)′′′ : Y ′′ ×X ′′ −→ Z ′′. The bilinear map f is called Arens regular
if f ′′′ = ((f t)′′′)t (see [1, 2, 7, 8] and [13]). Let x′′ ∈ X ′′ and y′′ ∈ Y ′′. Then

there exist nets (xα) ⊂ X and (yβ) ⊂ Y with x̂α
w∗

−→ x′′ and ŷβ
w∗

−→ y′′. We
have

f ′′′(x′′, y′′) = lim
α

lim
β

̂f(xα, yβ),

((f t)′′′)t(x′′, y′′) = lim
β

lim
α

̂f(xα, yβ).

Let A be a Banach algebra, and let π : A × A −→ A denote the product
of A, so that π(a, b) = ab (a, b ∈ A). for F and G in A

′′, we denote π′′′(F,G)
and ((πt)′′′)t(F,G) by symbols F�G and F♦G, respectively. These are called
first and second Arens products on A

′′. These products are defined in stages
as follows. For every F, G ∈ A

′′, f ∈ A
′ and a, b ∈ A, we define f ·a, a ·f,G ·f

and f · F in A
′; F�G and F♦G in A

′′ by

〈f · a, b〉 = 〈f, ab〉, 〈a · f, b〉 = 〈f, ba〉,

〈G · f, a〉 = 〈G, f · a〉, 〈f · F, a〉 = 〈F, a · f〉,

〈F�G, f〉 = 〈F,G · f〉, 〈F♦G, f〉 = 〈G, f · F 〉.
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A
′′ is a Banach algebra with (above) Arens products. In fact

F�G = w∗ − lim
α
w∗ − lim

β
âαbβ

F♦G = w∗ − lim
β
w∗ − lim

α
âαbβ ,

where F = w∗ − limα âα and G = w∗ − limβ b̂β . The algebra A is Arens
regular whenever the map π is Arens regular that is, whenever the first and
second Arens products of A′′ coincide. Recall that a Banach algebra A is said
to be dual if there is a closed submodule A0 of A′ such that A = A0

′.

Definition 1.1. The Banach algebra A has strongly double limit property
(SDLP) if for each bounded net (aα) in A and each bounded net (fβ) in A

′,
limα limβ〈fβ , aα〉 = limβ limα〈fβ , aα〉 , whenever both iterated limits exist.

This definition has been introduced in [14]. Medghalchi and Yazdanpanah
in [14] showed that every reflexive Banach algebra has (SDLP). We know that
reflexivity is equivalent with double limit property [3, Theorem A.3.31], so the
(SDLP) is equivalent with reflexivity. Now suppose that the Banach algebra
A has (SDLP), then for each f ∈ A

′ and bounded nets (aα), (bβ) in A, we
have

lim
β

lim
α
〈bβ · f, aα〉 = lim

α
lim
β
〈bβ · f, aα〉,

which means that for each f ∈ A
′, the map a 7→ a.f , A −→ A

′ is weakly
compact by [3, Theorem 2.6.17], i.e., A is Arens regular. Hence (SDLP) is
stronger than Arens regularity. On the other hand this two are not equivalent
in general. We know C([0, 1]) is an Arens regular Banach algebra. If we
consider the sequence (fm) in C([0, 1]) defined by fm(x) = m

m+ 1

x

for 0 < x ≤ 1

and fm(0) = 0 for all m ∈ N, and assume that sequence (µn) is in M([0, 1]) =
C([0, 1])∗ ( the set of all regular Borel measures on [0, 1]), where µn is the
point mass at 1

n
, for all n ∈ N. Then, we easily see that

lim
m

lim
n
〈µn, fm〉 = 0 6= 1 = lim

n
lim
m

〈µn, fm〉.

Therefore C([0, 1]) has not (SDLP). Also there are Arens regular Banach
algebras which are not reflexive as Banach spaces. For example, the disc
algebra A(D) is Arens regular [16] but not reflexive [15].

One may consider the question of how A inherits the amenability or weak
amenability of A′′. For amenability the answer is positive (see [12]). So for
weak amenability, this problem was considered by few authors and a positive
answer has been given in each of the following cases:
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• A is a left ideal in A
′′ [12].

• A is a dual Banach algebra [11].
• A is Arens regular and every derivation from A into A′ is weakly compact

[5].
• A has (SDLP) [14].
• A is a right ideal in A

′′ and A
′′
A = A

′′ [9].
In section two of this paper, we put many module structures on forth dual

A
(4) and show that these module structures are not always equal, and we show

when these module structures are equal. By using part two, we make four
module structures on A

(5). This is done in section three, where these module
structures onA

(5) are not always equal. In section four we show that with some
module structures on A

(5), weak amenability A
′′ implies weak amenability A.

This is a question that if A′′ is 3 -weakly amenable, is A 3-weakly amenable?
We show that the 3 -weak amenability of A′′ implies the 3 -weak amenability

of A if D′′(A′′) · A(4) ⊆ Â′, for each derivation D : A −→ A
′′′. It is known

that every (n + 2)-weakly amenable Banach algebra is n-weakly amenable
for n ≥ 1 [4]. In particular the 3-weak amenability of A implies the weak
amenability of A. Does weak amenability imply 3 -weak amenability? The
answer is negative. Yong Zhang [19] gave an example of a weakly amenable
Banach algebra that it is not 3-weakly amenable, but he had showed in [20]
that if A is weakly amenable with a left (right) bounded approximate identity
such that it is a left (right) ideal in A

′′, then A is (2n+1)-weakly amenable
for n ≥ 1. A different proof are provided by Dales, Ghahramani and Grønbæk
in [4] in which A is an ideal in A

′′. Finally we put some conditions on A and
A

′′ such that if A is weakly amenable, then A is 3-weakly amenable. For the
remainder of this paper, A′′ is regarded as a Banach algebra with respect to
the first Arens product �.

2 A
′′- bimodule structures on forth dual of a Banach al-

gebra

A
′′′ has two A

′′-bimodule structures. First we regard A
′′′, as the dual space

of A′′, (A′′′ = (A′′)′) and so A
′′′ can be made into an A

′′-bimodule by the
following actions

〈λ · F,G〉 = 〈λ, F�G〉, 〈F · λ,G〉 = 〈λ,G�F 〉, (λ ∈ A
′′′;F,G ∈ A

′′).

In the second way, A′′′, as the second dual of A′, (A′′′ = (A′)′′), can be an
A

′′-bimodule by the following formula. For λ ∈ A
′′′ and F ∈ A

′′, we have

λ ◦ F = w∗ − lim
i
w∗ − lim

α
f̂i · aα, F ◦ λ = w∗ − lim

α
w∗ − lim

i
âα · fi,
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where F = w∗ − limα âα in A
′′and λ = w∗ − limi f̂i in A

′′′, such that
(aα) and (fi) are nets in A and A

′ respectively. In fact λ ◦ F and F ◦ λ are
extensions of module actions (f, a) −→ f · a (A′ × A −→ A

′) and (a, f) −→
a · f (A×A

′ −→ A
′).

These two A
′′-bimodule structures on A

′′′ are considered in [10] and have
been shown that two right A

′′-bimodule actions on A
′′′ always coincide but

left A
′′-bimodule structures on A

′′′ are not always equal. Now the Banach
algebra A

(4) has three A
′′-bimodule structures.

(a) We consider A
(4) = (A′′′)′ in which A

′′′ = (A′)′′, so A
(4) can be an

A
′′-bimodule by following actions

〈F ◦ Λ, λ〉 = 〈Λ, λ ◦ F 〉, 〈Λ ◦ F, λ〉 = 〈Λ, F ◦ λ〉

where F ∈ A
′′, λ ∈ A

′′′ and Λ ∈ A
(4).

(b) We consider A
(4) = (A′′′)′ in which A

′′′ = (A′′)′, so A
(4) can be an

A
′′-bimodule by following right and left module actions

〈F · Λ, λ〉 = 〈Λ, λ · F 〉, 〈Λ · F, λ〉 = 〈Λ, F · λ〉

where F ∈ A
′′, λ ∈ A

′′′ and Λ ∈ A
(4).

(c) Let A(4) = (A′′)′′ be as the second dual of A′′. Take Λ ∈ A
(4) , F ∈ A

′′

and bounded nets (Fα) ⊂ A
′′, (aβ) ⊂ A with F̂α

w∗

−→ Λ and âβ
w∗

−→ F . Two
module actions are defined by

F • Λ = w∗ − lim
β

lim
α
âβ · Fα Λ • F = w∗ − lim

α
lim
β
F̂α · aβ .

Hence F • Λ and Λ • F are extensions of module actions (a, F ) −→ a ·
F (A×A

′′ −→ A
′′) and (F, a) −→ F · a (A′′ ×A −→ A

′′).

We show that these three A
′′-bimodule structures on A

(4) are not always
equal. Suppose that Λ ∈ A

(4) , λ ∈ A
′′′, F ∈ A

′′ and bounded nets (Gα) ⊂

A
′′, (fγ) ⊂ A

′, (aβ) ⊂ A by Ĝα
w∗

−→ Λ, f̂γ
w∗

−→ λ and âβ
w∗

−→ F , then

〈Λ ◦ F, λ〉 = 〈Λ, F ◦ λ〉

= lim
α
〈Ĝα, F ◦ λ〉

= lim
α
〈F · λ,Gα〉

= lim
α

lim
β

lim
γ
〈Gα, aβ · fγ〉,
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and

〈Λ · F, λ〉 = 〈Λ, F · λ〉

= lim
α
〈Ĝα, F · λ〉

= lim
α
〈λ,Gα�F 〉

= lim
α

lim
γ
〈f̂γ , Gα�F 〉

= lim
α

lim
γ
〈Gα, F · fγ〉.

For structure (c), we have

〈Λ • F, λ〉 = lim
α

lim
β
〈Ĝα · aβ , λ〉

= lim
α

lim
β
〈λ,Gα · aβ〉

= lim
α

lim
β

lim
γ
〈f̂γ , Gα · aβ〉

= lim
α

lim
β

lim
γ
〈Gα, aβ · fγ〉.

We see two right actions in parts (a) and (c) are equal and different from
the action of (b). For left actions, suppose that Λ ∈ A

(4) , λ ∈ A
′′′, F ∈ A

′′

and bounded nets (Gα) ⊂ A
′′, (fγ) ⊂ A

′, (aβ) ⊂ A with Ĝα
w∗

−→ Λ, f̂γ
w∗

−→ λ

and âβ
w∗

−→ F , then

〈F ◦ Λ, λ〉 = 〈Λ, λ ◦ F 〉

= lim
α
〈Ĝα, λ ◦ F 〉

= lim
α
〈λ ◦ F,Gα〉

= lim
α

lim
γ

lim
β
〈Gα, fγ · aβ〉,
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and

〈F · Λ, λ〉 = 〈Λ, λ · F 〉

= lim
α
〈Ĝα, λ · F 〉

= lim
α
〈λ, F�Gα〉

= lim
α

lim
γ
〈f̂γ , F�Gα〉

= lim
α

lim
γ
〈F,Gα · fγ〉

= lim
α

lim
γ

lim
β
〈âβ , Gα · fγ〉

= lim
α

lim
γ

lim
β
〈Gα, fγ · aβ〉.

For the structure (c), we have

〈F • Λ, λ〉 = lim
β

lim
α
〈âβ ·Gα, b

′′′〉

= lim
β

lim
α
〈λ, aβ ·Gα〉

= lim
β

lim
α

lim
γ
〈f̂γ , aβ ·Gα〉

= lim
β

lim
α

lim
γ
〈Gα, fγ · aβ〉.

We see that left actions in parts (a) and (b) are equal and different from the
action of (c). We put some conditions on A and show that with this conditions
all A′′-bimodule structures on A

(4) are equal. First we bring some simple, but
useful lemmas.

Lemma 2.1. If A is Arens regular, then, for the bounded nets (Fα) and
(Gβ) in A

′′,
(w∗ − limα Fα)�(w∗ − limβ Gβ) = w∗ − limα w

∗ − limβ(Fα�Gβ) = w∗ −
limβ w

∗ − limα(Fα�Gβ). �

Lemma 2.2. Let the Banach algebra A with one of the following condi-
tions

(i) The map ϕ : A′ ×A −→ A
′; ((f, a) −→ f · a) is Arens regular,

(ii) The map ψ : A′′ −→ A
′′; (G −→ G�F ) is weak-compact for every

F ∈ A
′′,

(iii) The map φ : A′′ −→ A
′′; (G −→ G�F ) is w*-w-continuous for every

F ∈ A
′′.

Then for each bounded net (aα) in A and λ ∈ A
′′′,

〈λ, (w∗ − limα âα)�F 〉 = limα〈λ, âα�F 〉 (1)
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Proof. (i) Let λ = w∗ − limβ f̂β , where (fβ) is a bounded net in A
′, then

we have

〈λ, (w∗ − lim
α
âα)�F 〉 = lim

β
〈(w∗ − lim

α
âα)�F, fβ〉

= lim
β

lim
α
〈âα�F, fβ〉

= lim
β

lim
α
〈F, fβ · aα〉

= 〈w∗ − lim
β
w∗ − lim

α
f̂β · aα, F 〉

= 〈w∗ − lim
α
w∗ − lim

β
f̂β · aα, F 〉

= lim
α
〈w∗ − lim

β
f̂β , aα�F 〉

= lim
α
〈λ, âα�F 〉.

(ii) From the double limit property of weak compact operator ψ, we see
limβ limα〈âα�F, fβ〉 = limα limβ〈âα�F, fβ〉,

hence

〈λ, (w∗ − lim
α
âα)�F 〉 = lim

β
〈(w∗ − lim

α
âα)�F, fβ〉

= lim
β

lim
α
〈âα�F, fβ〉

= lim
α

lim
β
〈âα�F, fβ〉

= lim
α
〈λ, âα�F 〉.

(iii) Equation (1) is a consequence of w∗ − w−continuity of φ. �

Lemma 2.3. If for every G ∈ A
′′ the map ρ : A′′ −→ A

′′; (F −→ G�F )
is w*-w-continuous, then for every bounded net (Fj) in A

′′

〈λ,G�(w∗ − limj Fj)〉 = limj〈λ,G�Fj〉, (λ ∈
A

′′′).

Proof. It is similar to part (iii) of Lemma 2.2. �

Lemma 2.4. Let A be an Arens regular Banach algebra. If the map ϕ :
A

′′ −→ A
′′; (F −→ G�F ) is weak-compact or w*-w-continuous for every G ∈

A
′′, then

〈λ,w∗−limα w
∗−limj(âα�Fj)〉 = limα limj〈λ, âα�Fj〉.(2)

for all λ ∈ A
′′′, bounded nets (aα) and (Fj) in A and A

′′, respectively.
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Proof. Let (fβ) be a bounded net in A
′ such that f̂β

w∗

−→ λ. Then

〈λ,w∗ − lim
α
w∗ − lim

j
(âα�Fj)〉 = lim

β
〈(w∗ − lim

α
w∗ − lim

j
(âα�Fj), fβ〉

= lim
β

lim
α

lim
j
〈âα�Fj , fβ〉

= lim
α

lim
j

lim
β
〈âα�Fj , fβ〉

= lim
α

lim
j
〈λ, âα�Fj〉.

Since ϕ is w∗−w−continuous, the equation (2) is obtained immediately.�

Proposition 2.5. Let A be a Banach algebra. If one of the following
conditions holds, then the two A

′′-module actions in (a), (c) coincide.

(i) The Banach algebra A and the map ϕ : A
′ × A −→ A

′; ((f, a) −→
f · a) are Arens regular and the map ψ : A′′ −→ A

′′; (F −→ F�G) is w*-w-
continuous for every G ∈ A

′′.

(ii) The Banach algebra A is Arens regular and the map φ : A
′′ −→

A
′′; (F −→ F�G) is weak-compact for every G ∈ A

′′.

(iii) For bounded nets (Gα), (fγ) and (aβ) in A
′′,A′ and A, respectively,

we have

lim
α

lim
γ

lim
β
〈Gα, fγ · aβ〉 = lim

β
lim
α

lim
γ
〈Gα, fγ · aβ〉.

Proof. We know that the two right A′′-module actions on A
′′′′ in (a) and

(c) are equal to

limα limβ limγ〈Gα, aβ · fγ〉,

in which (Gα), (fγ) and (aβ) are bounded nets in A
′′,A′ and A, respec-

tively. For left A
′′-module actions on A

′′′′ it is enough to show the following
equality

lim
α

lim
γ

lim
β
〈Gα, fγ · aβ〉 = lim

β
lim
α

lim
γ
〈Gα, fγ · aβ〉.

(i) By Arens regularity of the map ϕ we have

lim
γ

lim
β
〈Gα, fγ .aβ〉 = lim

β
lim
γ
〈Gα, fγ .aβ〉.

Now suppose that λ = w∗ − limβ f̂β , by Lemma 2.1 and Lemma 2.4 we
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have

lim
α

lim
γ

lim
β
〈Gα, fγ · aβ〉 = lim

α
lim
β

lim
γ
〈Gα, fγ · aβ〉

= lim
α

lim
β

lim
γ
〈f̂γ , âβ�Gα〉

= lim
α

lim
β
〈λ, âβ�Gα〉

= 〈λ,w∗ − lim
α
w∗ − lim

β
(âβ�Gα)〉

= 〈λ,w∗ − lim
β
w∗ − lim

α
(âβ�Gα)〉

= lim
β

lim
α

lim
γ
〈Gα, fγ · aβ〉.

(ii) By weak compactness of φ, we have

lim
γ

lim
β
〈Gα, fγ · aβ〉 = lim

γ
lim
β
〈f̂γ , âβ�Gα〉 = lim

β
lim
γ
〈f̂γ , âβ�Gα〉.

It is easy to check that the map φ is w∗ − w−continuous, and so the rest
of the proof is the same as the proof of part (i).

(iii) It is clear. �

3 A
′′- bimodule structures on fifth dual of a Banach al-

gebra

Let A be a Banach algebra. We consider four A
′′- bimodule structures on

A
(5).
(I)We consider A(5) = (A(4))′ in which A

(4) has an A
′′-bimodule structure

as in part (c) in Section 2. Therefore A
(5) is the dual space of A(4), by the

following actions

〈F •Ψ,Λ〉 = 〈Ψ,Λ • F 〉, 〈Ψ • F,Λ〉 = 〈Ψ, F • Λ〉

where F ∈ A
′′,Λ ∈ A

(4) and Ψ ∈ A
(5). In this case we have A

(5) = ((A′′)′′)′.
(II) We consider A(5) = (A(4))′ in which A

(4) has an A
′′-bimodule struc-

ture as in part (b) in Section 2, so the left action A
′′ on A

(5) = (((A′′)′)′)′ is
defined by

〈F ·Ψ,Λ〉 = 〈Ψ,Λ · F 〉,

〈Λ · F, λ〉 = 〈Λ, F · λ〉,

〈F · λ,G〉 = 〈λ,G�F 〉.

where F,G ∈ A
′′, λ ∈ A

′′′,Λ ∈ A
(4) and Ψ ∈ A

(5). The right action is defined
in a similar way.



MODULE STRUCTURES ON ITERATED DUALS OF BANACH ALGEBRAS 73

(III) Let A
(5) = (A′′′)′′ be as the second dual of A′′′ in which A

′′′ =
((A′)′)′ is an A-bimodule. Take Ψ ∈ A

(5) , F ∈ A
′′ and bounded nets (λα) ⊂

A
′′′, (aβ) ⊂ A

′ with λ̂α
w∗

−→ Ψ and âβ
w∗

−→ F . Two module actions is defined
by

F ◦Ψ = w∗ − lim
β

lim
α
âβ · λα Ψ ◦ F = w∗ − lim

α
lim
β
λ̂α · aβ .

In fact F ◦ Ψ and Ψ ◦ F are extension of module actions (a, λ) −→ a ·
λ (A×A

′′′ −→ A
′′′) and (λ, a) −→ λ · a (A′′′ ×A −→ A

′′′).
(IV) We consider A(5) = (A(4))′ in which A

(4) has an A
′′-bimodule struc-

ture as in part (a) in Section 2, hence the A
′′-module actions on A

(5) are
defined by

〈F ⋆Ψ,Λ〉 = 〈Ψ,Λ ◦ F 〉, 〈Ψ ⋆ F,Λ〉 = 〈Ψ, F ◦ Λ〉,

where F ∈ A
′′,Λ ∈ A

(4) and Ψ ∈ A
(5).

Suppose that Ψ ∈ A
(5) , Λ ∈ A

(4), F ∈ A
′′ and bounded nets (λα) ⊂

A
′′′, (Gγ) ⊂ A

′′, (aβ) ⊂ A
′ by λ̂α

w∗

−→ Ψ, Ĝγ
w∗

−→ Λ and âβ
w∗

−→ F , then

〈F •Ψ,Λ〉 = 〈Ψ,Λ • F 〉

= lim
α
〈λ̂α,Λ • F 〉

= lim
α

lim
γ

lim
β
〈λα, Gγ · aβ〉,

and

〈F ◦Ψ,Λ〉 = lim
β

lim
α
〈âβ · λα,Λ〉

= lim
β

lim
α

lim
γ
〈Ĝγ , aβ · λα〉

= lim
β

lim
α

lim
γ
〈λα, Gγ · aβ〉,

so F ◦Ψ and F •Ψ are not always equal. But

〈Ψ ◦ F,Λ〉 = lim
α

lim
β
〈λ̂α · aβ ,Λ〉

= lim
α

lim
β

lim
γ
〈Ĝγ , λα · aβ〉

= lim
α

lim
β

lim
γ
〈λα, aβ ·Gγ〉

= lim
α
〈F • Λ, λα〉

= 〈Ψ, F • Λ〉

= 〈Ψ • F,Λ〉.
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Hence the two right A′′-bimodule structure parts (I) and (III) on A
(5) always

coincide. Also we can show that left (right)A′′-module action on A
(5) in part

(II) is

〈F ·Ψ,Λ〉 = lim
α

lim
γ
〈λα, Gγ�F 〉 (〈Ψ · F,Λ〉 = lim

α
lim
γ
〈λα, F�Gγ〉),

hence the A
′′-bimodule structure part (II) is different from (I) and (III).

For two A
′′-module action on A

(5) in part (IV), we have

〈F ⋆Ψ,Λ〉 = lim
α

lim
γ
〈F ◦ λα, Gγ〉, 〈Ψ ⋆ F,Λ〉 = lim

α
lim
γ
〈λα ◦ F,Gγ〉.

Lemma 3.1. Let A be a Banach algebra. Suppose that the map ϕ : A ×
A

′′ −→ A
′′; ((a, F ) −→ a · F ) is Arens regular and the map ψ : A

′′ −→
A

′′; (G −→ G�F ) is w*-w-continuous for every F ∈ A
′′. Then the two right

A
′′-module actions on A

(5)in (II) and (III) are equal.

Proof. By w∗ − w−continuity of ψ we must prove the following equality

lim
α

lim
β

lim
γ
〈λα, aβ ·Gγ〉 = lim

α
lim
γ

lim
β
〈λα, aβ ·Gγ〉, (3)

for bounded nets (λα), (Gγ) and (aβ) in A
′′′,A′′ and A

′, respectively. By
Arens regularity of ϕ, we have

lim
β

lim
γ
〈λα, aβ ·Gγ〉 = lim

β
lim
γ
〈âβ ·Gγ , λα〉 = lim

γ
lim
β
〈âβ ·Gγ , λα〉,

and so (3) is true. �

Lemma 3.2. Let A be a Banach algebra. Assume that the Banach algebra
A and the map ϕ : A′′ × A

′′′ −→ A
′′′; ((F, λ) −→ F · λ) is Arens regular and

the map ψ : A′′ −→ A
′′; (G −→ F�G) is w*-w-continuous for every F ∈ A

′′.
Then two left A′′-module actions on A

(5)in (II) and (III) are equal.

Proof. By w∗ − w−continuity of ψ, it is enough to prove the following
equality for bounded nets (λα), (Gγ) and (aβ) in A

′′′,A′′ and A
′, respectively.

lim
α

lim
γ

lim
β
〈λα, Gγ�âβ〉 = lim

β
lim
α

lim
γ
〈λα, Gγ�âβ〉. (4)

By using Lemma 2.4 we can write
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lim
γ

lim
β
〈λα, Gγ�âβ〉 = lim

β
lim
γ
〈λα, Gγ�âβ〉.

Then, by Arens regularity of ϕ, we see

lim
α

lim
γ

lim
β
〈λα, Gγ�âβ〉 = lim

α
lim
β

lim
γ
〈λα, Gγ�âβ〉

= lim
α

lim
β
〈λα, (w

∗ − lim
α
Gγ)�âβ〉

= lim
α

lim
β
〈̂̂aβ · λα, (w

∗ − lim
α
Gγ )̂ 〉

= lim
β

lim
α
〈̂̂aβ · λα, (w

∗ − lim
α
Gγ )̂ 〉

= lim
β

lim
α

lim
γ
〈aβ · λα, Gγ〉

= lim
β

lim
α

lim
γ
〈λα, Gγ�âβ〉.

4 3-weak amenability of the second dual

Let D : A −→ A
′′′ be a derivation. Then D′′ : A′′ −→ A

(5) = (A′′′)′′ the
second transpose of D is a derivation (see [3] and [11]), that means that for
every F,G ∈ A

′′

D′′(F�G) = D(F ) ◦G+ F ◦D(G).

But D′′ : A′′ −→ A
(5) = (A′′)′′′ is not always a derivation. In the following

we put other conditions on D such that D′′ is a derivation (also see Theorem
4.3).

Proposition 4.1. Let A be a Banach algebra and let D : A −→ A
′′′ be a

derivation. Then D′′ : A′′ −→ A
(5) = (A′′)′′′ is a derivation if and only if

D′′(A′′) ·A(4) ⊆ Â′.

Proof. Let F,G ∈ A
′′. Then there are nets (aα) and (bβ) in A which

converge to F and G in the w∗- topology of A′′ respectively. Clearly D′′ is
w∗- continuous. Then

D′′(F�G) = w∗ − lim
α
w∗ − lim

β
D(aαbβ)

= w∗ − lim
α
w∗ − lim

β
D(aα) · bβ + w∗ − lim

α
w∗ − lim

β
aα ·D(bβ)

= D′′(F ) ·G+ lim
α
aα ·D′′(G).
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By (5), it is easy to see thatD′′ is a derivation if and only if for every F,G ∈ A
′′

that F = w∗ − limα aα, the following equality holds
F ·D′′(G) = w∗ − limα aα ·D′′(G) (6).

The relation (6) is true if and only if for every
Λ ∈ A

(4), 〈F ·D′′(G),Λ〉 = limα〈aα·D
′′(G),Λ〉(7).

Also (7) holds if and only if
〈D′′(G).Λ, F 〉 = limα〈D

′′(G) · Λ, aα〉 (8).
So (8) holds if and only if D′′(G).Λ : A′′ → C is w∗−w∗−continuous. This

means that D′′(G).Λ ∈ Â′. �

Corollary 4.2 Let A be a Banach algebra such that A′′ is 3-weakly amenable.

If D′′(A′′) ·A(4) ⊆ Â′, for each derivation D : A −→ A
′′′. Then A is 3 -weakly

amenable. �

Let A be a Banach algebra and let ι : A′′ −→ A
(4) be an injective map

(〈ι(F ), λ〉 = 〈λ, F 〉) for F ∈ A
′′ and λ ∈ A

′′′. Then ι is an A-bimodule
homomorphism . Also ι is an A

′′-bimodule homomorphism with the mod-
ule structures (a) and (b) on A

(4), but it is not always an A
′′-bimodule

homomorphism with the module structures (c). Therefore the adjoint of ι
(ι∗) is an A

′′-bimodule homomorphism with the module structures (a) and
(b). Let X be a Banach space. For n ∈ Z+, we denote X⊥, the subspace

of X(2n+1) annihilating X̂, where X(2n+1) is the (2n+1)-th dual of X, i.e.
X⊥ = {λ ∈ X(2n+1); 〈λ, x〉 = 0, x ∈ X}. For the Banach algebra A , (A′′)⊥

is clearly w∗-closed A
′′-submodule of A(5). Now we get the main theorem of

this paper.
Theorem 4.3. Let A be a Banach algebra such that A′′ is weakly amenable.
Suppose that one the following conditions holds

(1) D′′(A′′) ·A(4) ⊆ Â′, for each derivation D : A −→ A
′′′.

(2) Conditions (i) of Lemma 3.1 and Lemma 3.2 are true.
(3) limα limγ limβ〈λα, Fγ · aβ〉 = limβ limα limγ〈λα, Fγ · aβ〉, for every

bounded nets (λα) in A
′′′, (Fγ) in A

′′ and every net (aβ) in A.

Then A is 3 -weakly amenable.
Proof. Suppose that one of conditions (1) or (2) holds, so the two A

′′-
bimodule structures in parts (II) and (III) on A

(5) are equal. We know
(A′′)′′′ = (A′′)′ ⊕ (A′′)⊥. In other words A

(5) = (A′′)′′′ is a direct sum-
mand of A′′− submodules of A(5). Let P : (A′′)′′′ −→ (A′′)′ be the projec-
tion defined by the above direct sum. Suppose D : A −→ A

′′′ is a deriva-
tion. Then we can show that P is an A

′′-module homomorphism. Thus
P ◦D′′ : A′′ −→ (A′′′)′′ = (A′′)′′′ −→ (A′′)′ is a derivation. Since A′′ is weakly
amenable, there exists θ0 ∈ (A′′)′ such that P ◦D = δθ0 . On the other hand
D is the restriction of P ◦D′′ to A. Thus D = δθ0 .

Now assume that the condition (3) holds, then the two A
′′-bimodule struc-

tures in parts (I) and (III) on A
(5) are equal. Suppose D : A −→ A

′′′ is a
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derivation. Then ι∗ ◦ D′′ : A′′ −→ (A′′′)′′ = (A(4))′ −→ (A′′)′ is a deriva-
tion. Due to the weak amenability of A′′, there exists θ0 ∈ (A′′)′ such that
ι∗oD′′ = δθ0 . For every a ∈ A and F ∈ A

′′, we have

〈ι∗ ◦D′′(a), F 〉 = 〈D′′(a), ι(F )〉 = 〈ι(F ), D(a)〉 = 〈D(a), F 〉.

So D is the restriction of ι∗ ◦ D′′ to A. Thus D = δθ0 . Therefore A is 3
-weakly amenable. �

By applying Theorem 4.3 we have the following results.
Corollary 4.4. Let A be a Banach algebra such that one of the conditions (1)
up to (4) of Theorem 4.3 holds. If A′′ is weakly amenable, then A is weakly
amenable.
Proof. It follows immediately from Theorem 4.3 and [4, Proposition 1.2]. �

Corollary 4.5. Let A be a Banach algebra such that one of the conditions
(1) up to (3) of Theorem 4.3 holds. If A′′ is 3 -weakly amenable, then A is 3
-weakly amenable.
Proof. By Theorem 4.3 and [4, Proposition 1.2], A is 3 -weakly amenable.�

The following Theorem has been proved in [10].
Theorem 4.6. Let A be an Arens regular Banach algebra. Suppose that for
every continuous derivation D : A′′ −→ A

′′′ and every F in A
′′, D(F ) and D

are w∗-continuous. If A is weakly amenable , then so is A
′′. �

Let one of the conditions of Theorem 4.3 holds. Then we have
Corollary 4.7. Under assumptions of Theorem 4.6, if A is weakly amenable,
then A is 3-weakly amenable.
Proof. It is an immediate consequence of Theorem 4.3 and Theorem 4.6. �
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[17] A. Ülger, Arens regularity sometimes implies the RNP, Pacific J. Math.,
143 (1990), 377–399.

[18] N. J. Young, The irregularity of multiplication in group algebras, Quart.
J. Math. Oxford, 24 (1973), 59-62.

[19] Yong Zhang, Weak amenability of module extension of Banach algebras,
Trans. Amer. Math. Soc., 354, no. 10 (2002), 4131–4151.

[20] Yong Zhang, Weak amenability of a class of Banach algebras, Canad.
Math. Bull. Vol., 44 (4) (2001), 504–508.



MODULE STRUCTURES ON ITERATED DUALS OF BANACH ALGEBRAS 79

A. Bodaghi,

Islamic AZAD University,

Garmsar Branch, Garmsar, Iran

e-mail: abasalt bodaghi@yahoo.com

M. Ettefagh,

Islamic AZAD University,

Tabriz Branch, Tabriz, Iran.

e-mail: mm ettefag@yahoo.com

M. Eshaghi Gordji,

Semnan University,

Department of Mathematics,

Semnan, Iran,

e-mail: madjid.eshaghi@gmail.com

A. R. Medghalchi,

Tarbiat Moallem University,

Department of Mathematical Sciences,

Tehran, Iran,

e-mail: a medghalchi@saba.tmu.ac.ir



80 A. Bodaghi, M. Ettefagh, M. Eshaghi Gordji, A. R. Medghalchi


