MODULE STRUCTURES ON ITERATED DUALS OF BANACH ALGEBRAS

A. Bodaghi, M. Ettefagh, M. Eshaghi Gordji, A. R. Medghalchi

Abstract

Let \mathcal{A} be a Banach algebra and $\left(\mathcal{A}^{\prime \prime}, \square\right)$ be its second dual with first Arens product. We consider three $\left(\mathcal{A}^{\prime \prime}, \square\right)$-bimodule structures on forth dual and four $\left(\mathcal{A}^{\prime \prime}, \square\right)$-bimodule structures on fifth dual of a Banach algebra. This paper determines the conditions that make these structures equal. Among other results we show that if $\mathcal{A}^{\prime \prime}$ is weakly amenable with some conditions, then \mathcal{A} is 3 -weakly amenable.

1 Introduction

Let \mathcal{A} be a Banach algebra and let X be a Banach \mathcal{A}-module, that is X is a Banach space and an \mathcal{A}-module such that the module operations $(a, x) \longmapsto a \cdot x$ and $(a, x) \longmapsto x \cdot a$ from $\mathcal{A} \times X$ into X are jointly continuous. The dual space X^{\prime} of X is also a Banach \mathcal{A}-module by the following module actions:
$\langle a \cdot f, x\rangle=\langle f, x \cdot a\rangle, \quad\langle f \cdot a, x\rangle=\langle f, a \cdot x\rangle, \quad\left(a \in \mathcal{A}, x \in X, f \in X^{\prime}\right)$.
We set $X^{\prime \prime}=\left(X^{\prime}\right)^{\prime}$, and so on, and we regard X as a subspace of $X^{\prime \prime}$ in the standard way. Also $X^{\prime \prime \prime}=\left(X^{\prime \prime}\right)^{\prime}, \ldots$
Let X be a Banach \mathcal{A}-module. Then a continuous linear map $D: \mathcal{A} \longrightarrow X$ is called a derivation if

$$
D(a b)=a \cdot D(b)+D(a) \cdot b \quad(a, b \in \mathcal{A})
$$

[^0]For $x \in X$ we define $\delta_{x}: \mathcal{A} \longrightarrow X$ as follows:

$$
\delta_{x}(a)=a \cdot x-x \cdot a \quad(a \in \mathcal{A}),
$$

it is easy to show that δ_{x} is a derivation. Such derivations are called inner derivations. \mathcal{A} is called amenable, if every derivation $D: \mathcal{A} \longrightarrow X^{\prime}$ is inner, for each Banach \mathcal{A}-module X. If every derivation from \mathcal{A} into \mathcal{A}^{\prime} is inner, \mathcal{A} is called weakly amenable. Let $n \in \mathbb{N}$. A Banach algebra \mathcal{A} is called n-weakly amenable if every derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ is inner [4], where $\mathcal{A}^{(n)}$ is the n-th dual of \mathcal{A} that is a Banach \mathcal{A}-module. We regard \mathcal{A} as a subspace of $\mathcal{A}^{\prime \prime}$ by canonical embedding ${ }^{\wedge}: \mathcal{A} \rightarrow \mathcal{A}^{\prime \prime} ; a \mapsto \hat{a}$. We write $\widehat{\mathcal{A}}$ as the image of \mathcal{A} under this mapping.

Let X, Y and Z be normed spaces and let $f: X \times Y \longrightarrow Z$ be a continuous bilinear map. Then the adjiont of f is defined by

$$
f^{\prime}: Z^{\prime} \times X \longrightarrow Y^{\prime}, \quad\left\langle f^{\prime}\left(z^{\prime}, x\right), y\right\rangle=\left\langle z^{\prime}, f(x, y)\right\rangle \quad\left(z^{\prime} \in Z^{\prime}, x \in X, y \in Y\right)
$$

Since f^{\prime} is a continuous bilinear map, this process may be repeated to define $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}: Y^{\prime \prime} \times Z^{\prime} \longrightarrow X^{\prime}$, and then $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}: X^{\prime \prime} \times Y^{\prime \prime} \longrightarrow Z^{\prime \prime}$. The map $f^{\prime \prime \prime}$ is the unique extension of f such that $X^{\prime \prime} \longrightarrow Z^{\prime \prime} ; x^{\prime \prime} \mapsto f^{\prime \prime \prime}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is $w e a k^{*}-w e a k^{*}$ continuous for all $y^{\prime \prime} \in Y^{\prime \prime}$ and $Y^{\prime \prime} \longrightarrow Z^{\prime \prime} ; y^{\prime \prime} \mapsto f^{\prime \prime \prime}\left(x, y^{\prime \prime}\right)$ is weak* - weak * continuous for all $x \in X$. Let now $f^{t}: Y \times X \longrightarrow Z$ be the transpose of f defined by $f^{t}(y, x)=f(x, y)$ for all $x \in X$ and $y \in Y$. Then f^{t} is a continuous bilinear map from $Y \times X$ to Z, and so it may be extended as above to $\left(f^{t}\right)^{\prime \prime \prime}: Y^{\prime \prime} \times X^{\prime \prime} \longrightarrow Z^{\prime \prime}$. The bilinear map f is called Arens regular if $f^{\prime \prime \prime}=\left(\left(f^{t}\right)^{\prime \prime \prime}\right)^{t}\left(\right.$ see $[1,2,7,8]$ and [13]). Let $x^{\prime \prime} \in X^{\prime \prime}$ and $y^{\prime \prime} \in Y^{\prime \prime}$. Then there exist nets $\left(x_{\alpha}\right) \subset X$ and $\left(y_{\beta}\right) \subset Y$ with $\widehat{x}_{\alpha} \xrightarrow{w^{*}} x^{\prime \prime}$ and $\widehat{y}_{\beta} \xrightarrow{w^{*}} y^{\prime \prime}$. We have

$$
\begin{gathered}
f^{\prime \prime \prime}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\lim _{\alpha} \lim _{\beta} f\left(\widehat{x_{\alpha}, y_{\beta}}\right) \\
\left(\left(f^{t}\right)^{\prime \prime \prime}\right)^{t}\left(x^{\prime \prime}, y^{\prime \prime}\right)=\lim _{\beta} \lim _{\alpha} f\left(\widehat{\left(x_{\alpha}, y_{\beta}\right.}\right) .
\end{gathered}
$$

Let \mathcal{A} be a Banach algebra, and let $\pi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ denote the product of \mathcal{A}, so that $\pi(a, b)=a b(a, b \in \mathcal{A})$. for F and G in $\mathcal{A}^{\prime \prime}$, we denote $\pi^{\prime \prime \prime}(F, G)$ and $\left(\left(\pi^{t}\right)^{\prime \prime \prime}\right)^{t}(F, G)$ by symbols $F \square G$ and $F \diamond G$, respectively. These are called first and second Arens products on $\mathcal{A}^{\prime \prime}$. These products are defined in stages as follows. For every $F, G \in \mathcal{A}^{\prime \prime}, f \in \mathcal{A}^{\prime}$ and $a, b \in \mathcal{A}$, we define $f \cdot a, a \cdot f, G \cdot f$ and $f \cdot F$ in $\mathcal{A}^{\prime} ; F \square G$ and $F \diamond G$ in $\mathcal{A}^{\prime \prime}$ by

$$
\begin{aligned}
\langle f \cdot a, b\rangle=\langle f, a b\rangle, & \langle a \cdot f, b\rangle=\langle f, b a\rangle, \\
\langle G \cdot f, a\rangle=\langle G, f \cdot a\rangle, & \langle f \cdot F, a\rangle=\langle F, a \cdot f\rangle, \\
\langle F \square G, f\rangle=\langle F, G \cdot f\rangle, & \langle F \diamond G, f\rangle=\langle G, f \cdot F\rangle .
\end{aligned}
$$

$\mathcal{A}^{\prime \prime}$ is a Banach algebra with (above) Arens products. In fact

$$
\begin{aligned}
& F \square G=w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} \widehat{a_{\alpha} b_{\beta}} \\
& F \diamond G=w^{*}-\lim _{\beta} w^{*}-\lim _{\alpha} \widehat{a_{\alpha} b_{\beta}},
\end{aligned}
$$

where $F=w^{*}-\lim _{\alpha} \widehat{a}_{\alpha}$ and $G=w^{*}-\lim _{\beta} \widehat{b}_{\beta}$. The algebra \mathcal{A} is Arens regular whenever the map π is Arens regular that is, whenever the first and second Arens products of $\mathcal{A}^{\prime \prime}$ coincide. Recall that a Banach algebra \mathcal{A} is said to be dual if there is a closed submodule \mathcal{A}_{0} of \mathcal{A}^{\prime} such that $\mathcal{A}=\mathcal{A}_{0}{ }^{\prime}$.

Definition 1.1. The Banach algebra \mathcal{A} has strongly double limit property (SDLP) if for each bounded net $\left(a_{\alpha}\right)$ in \mathcal{A} and each bounded net $\left(f_{\beta}\right)$ in \mathcal{A}^{\prime}, $\lim _{\alpha} \lim _{\beta}\left\langle f_{\beta}, a_{\alpha}\right\rangle=\lim _{\beta} \lim _{\alpha}\left\langle f_{\beta}, a_{\alpha}\right\rangle$, whenever both iterated limits exist.

This definition has been introduced in [14]. Medghalchi and Yazdanpanah in [14] showed that every reflexive Banach algebra has (SDLP). We know that reflexivity is equivalent with double limit property [3, Theorem A.3.31], so the (SDLP) is equivalent with reflexivity. Now suppose that the Banach algebra \mathcal{A} has (SDLP), then for each $f \in \mathcal{A}^{\prime}$ and bounded nets $\left(a_{\alpha}\right),\left(b_{\beta}\right)$ in \mathcal{A}, we have

$$
\lim _{\beta} \lim _{\alpha}\left\langle b_{\beta} \cdot f, a_{\alpha}\right\rangle=\lim _{\alpha} \lim _{\beta}\left\langle b_{\beta} \cdot f, a_{\alpha}\right\rangle,
$$

which means that for each $f \in \mathcal{A}^{\prime}$, the map $a \mapsto a . f, \mathcal{A} \longrightarrow \mathcal{A}^{\prime}$ is weakly compact by [3, Theorem 2.6.17], i.e., \mathcal{A} is Arens regular. Hence (SDLP) is stronger than Arens regularity. On the other hand this two are not equivalent in general. We know $C([0,1])$ is an Arens regular Banach algebra. If we consider the sequence $\left(f_{m}\right)$ in $C([0,1])$ defined by $f_{m}(x)=\frac{m}{m+\frac{1}{x}}$ for $0<x \leq 1$ and $f_{m}(0)=0$ for all $m \in \mathbb{N}$, and assume that sequence $\left(\mu_{n}\right)$ is in $M([0,1])=$ $C([0,1])^{*}$ (the set of all regular Borel measures on $\left.[0,1]\right)$, where μ_{n} is the point mass at $\frac{1}{n}$, for all $n \in \mathbb{N}$. Then, we easily see that

$$
\lim _{m} \lim _{n}\left\langle\mu_{n}, f_{m}\right\rangle=0 \neq 1=\lim _{n} \lim _{m}\left\langle\mu_{n}, f_{m}\right\rangle .
$$

Therefore $C([0,1])$ has not (SDLP). Also there are Arens regular Banach algebras which are not reflexive as Banach spaces. For example, the disc algebra $A(\mathbb{D})$ is Arens regular [16] but not reflexive [15].

One may consider the question of how \mathcal{A} inherits the amenability or weak amenability of $\mathcal{A}^{\prime \prime}$. For amenability the answer is positive (see [12]). So for weak amenability, this problem was considered by few authors and a positive answer has been given in each of the following cases:

- \mathcal{A} is a left ideal in $\mathcal{A}^{\prime \prime}[12]$.
- \mathcal{A} is a dual Banach algebra [11].
- \mathcal{A} is Arens regular and every derivation from \mathcal{A} into \mathcal{A}^{\prime} is weakly compact [5].
- \mathcal{A} has (SDLP) [14].
- \mathcal{A} is a right ideal in $\mathcal{A}^{\prime \prime}$ and $\mathcal{A}^{\prime \prime} \mathcal{A}=\mathcal{A}^{\prime \prime}[9]$.

In section two of this paper, we put many module structures on forth dual $\mathcal{A}^{(4)}$ and show that these module structures are not always equal, and we show when these module structures are equal. By using part two, we make four module structures on $\mathcal{A}^{(5)}$. This is done in section three, where these module structures on $\mathcal{A}^{(5)}$ are not always equal. In section four we show that with some module structures on $\mathcal{A}^{(5)}$, weak amenability $\mathcal{A}^{\prime \prime}$ implies weak amenability \mathcal{A}. This is a question that if $\mathcal{A}^{\prime \prime}$ is 3 -weakly amenable, is $\mathcal{A} 3$-weakly amenable? We show that the 3 -weak amenability of $\mathcal{A}^{\prime \prime}$ implies the 3 -weak amenability of \mathcal{A} if $D^{\prime \prime}\left(\mathcal{A}^{\prime \prime}\right) \cdot \mathcal{A}^{(4)} \subseteq \widehat{\mathcal{A}^{\prime}}$, for each derivation $D: \mathcal{A} \longrightarrow \mathcal{A}^{\prime \prime \prime}$. It is known that every $(n+2)$-weakly amenable Banach algebra is n-weakly amenable for $n \geq 1$ [4]. In particular the 3 -weak amenability of \mathcal{A} implies the weak amenability of \mathcal{A}. Does weak amenability imply 3 -weak amenability? The answer is negative. Yong Zhang [19] gave an example of a weakly amenable Banach algebra that it is not 3-weakly amenable, but he had showed in [20] that if \mathcal{A} is weakly amenable with a left (right) bounded approximate identity such that it is a left (right) ideal in $\mathcal{A}^{\prime \prime}$, then \mathcal{A} is $(2 \mathrm{n}+1)$-weakly amenable for $n \geq 1$. A different proof are provided by Dales, Ghahramani and Grønbæk in [4] in which \mathcal{A} is an ideal in $\mathcal{A}^{\prime \prime}$. Finally we put some conditions on \mathcal{A} and $\mathcal{A}^{\prime \prime}$ such that if \mathcal{A} is weakly amenable, then \mathcal{A} is 3 -weakly amenable. For the remainder of this paper, $\mathcal{A}^{\prime \prime}$ is regarded as a Banach algebra with respect to the first Arens product

$2 \mathcal{A}^{\prime \prime}$ - bimodule structures on forth dual of a Banach algebra

$\mathcal{A}^{\prime \prime \prime}$ has two $\mathcal{A}^{\prime \prime}$-bimodule structures. First we regard $\mathcal{A}^{\prime \prime \prime}$, as the dual space of $\mathcal{A}^{\prime \prime},\left(\mathcal{A}^{\prime \prime \prime}=\left(\mathcal{A}^{\prime \prime}\right)^{\prime}\right)$ and so $\mathcal{A}^{\prime \prime \prime}$ can be made into an $\mathcal{A}^{\prime \prime}$-bimodule by the following actions

$$
\langle\lambda \cdot F, G\rangle=\langle\lambda, F \square G\rangle, \quad\langle F \cdot \lambda, G\rangle=\langle\lambda, G \square F\rangle, \quad\left(\lambda \in \mathcal{A}^{\prime \prime \prime} ; F, G \in \mathcal{A}^{\prime \prime}\right)
$$

In the second way, $\mathcal{A}^{\prime \prime \prime}$, as the second dual of $\mathcal{A}^{\prime},\left(\mathcal{A}^{\prime \prime \prime}=\left(\mathcal{A}^{\prime}\right)^{\prime \prime}\right)$, can be an $\mathcal{A}^{\prime \prime}$-bimodule by the following formula. For $\lambda \in \mathcal{A}^{\prime \prime \prime}$ and $F \in \mathcal{A}^{\prime \prime}$, we have

$$
\lambda \circ F=w^{*}-\lim _{i} w^{*}-\lim _{\alpha} \widehat{f_{i} \cdot a_{\alpha}}, \quad F \circ \lambda=w^{*}-\lim _{\alpha} w^{*}-\lim _{i} \widehat{a_{\alpha} \cdot f_{i}},
$$

where $F=w^{*}-\lim _{\alpha} \widehat{a}_{\alpha}$ in $\mathcal{A}^{\prime \prime}$ and $\lambda=w^{*}-\lim _{i} \widehat{f}_{i}$ in $\mathcal{A}^{\prime \prime \prime}$, such that $\left(a_{\alpha}\right)$ and $\left(f_{i}\right)$ are nets in \mathcal{A} and \mathcal{A}^{\prime} respectively. In fact $\lambda \circ F$ and $F \circ \lambda$ are extensions of module actions $(f, a) \longrightarrow f \cdot a\left(\mathcal{A}^{\prime} \times \mathcal{A} \longrightarrow \mathcal{A}^{\prime}\right)$ and $(a, f) \longrightarrow$ $a \cdot f\left(\mathcal{A} \times \mathcal{A}^{\prime} \longrightarrow \mathcal{A}^{\prime}\right)$.

These two $\mathcal{A}^{\prime \prime}$-bimodule structures on $\mathcal{A}^{\prime \prime \prime}$ are considered in [10] and have been shown that two right $\mathcal{A}^{\prime \prime}$-bimodule actions on $\mathcal{A}^{\prime \prime \prime}$ always coincide but left $\mathcal{A}^{\prime \prime}$-bimodule structures on $\mathcal{A}^{\prime \prime \prime}$ are not always equal. Now the Banach algebra $\mathcal{A}^{(4)}$ has three $\mathcal{A}^{\prime \prime}$-bimodule structures.
(a) We consider $\mathcal{A}^{(4)}=\left(\mathcal{A}^{\prime \prime \prime}\right)^{\prime}$ in which $\mathcal{A}^{\prime \prime \prime}=\left(\mathcal{A}^{\prime}\right)^{\prime \prime}$, so $\mathcal{A}^{(4)}$ can be an $\mathcal{A}^{\prime \prime}$-bimodule by following actions

$$
\langle F \circ \Lambda, \lambda\rangle=\langle\Lambda, \lambda \circ F\rangle, \quad\langle\Lambda \circ F, \lambda\rangle=\langle\Lambda, F \circ \lambda\rangle
$$

where $F \in \mathcal{A}^{\prime \prime}, \lambda \in \mathcal{A}^{\prime \prime \prime}$ and $\Lambda \in \mathcal{A}^{(4)}$.
(b) We consider $\mathcal{A}^{(4)}=\left(\mathcal{A}^{\prime \prime \prime}\right)^{\prime}$ in which $\mathcal{A}^{\prime \prime \prime}=\left(\mathcal{A}^{\prime \prime}\right)^{\prime}$, so $\mathcal{A}^{(4)}$ can be an $\mathcal{A}^{\prime \prime}$-bimodule by following right and left module actions

$$
\langle F \cdot \Lambda, \lambda\rangle=\langle\Lambda, \lambda \cdot F\rangle, \quad\langle\Lambda \cdot F, \lambda\rangle=\langle\Lambda, F \cdot \lambda\rangle
$$

where $F \in \mathcal{A}^{\prime \prime}, \lambda \in \mathcal{A}^{\prime \prime \prime}$ and $\Lambda \in \mathcal{A}^{(4)}$.
(c) Let $\mathcal{A}^{(4)}=\left(\mathcal{A}^{\prime \prime}\right)^{\prime \prime}$ be as the second dual of $\mathcal{A}^{\prime \prime}$. Take $\Lambda \in \mathcal{A}^{(4)}, F \in \mathcal{A}^{\prime \prime}$ and bounded nets $\left(F_{\alpha}\right) \subset \mathcal{A}^{\prime \prime},\left(a_{\beta}\right) \subset \mathcal{A}$ with $\widehat{F}_{\alpha} \xrightarrow{w^{*}} \Lambda$ and $\widehat{a}_{\beta} \xrightarrow{w^{*}} F$. Two module actions are defined by

$$
F \bullet \Lambda=w^{*}-\lim _{\beta} \lim _{\alpha} \widehat{a_{\beta} \cdot F_{\alpha}} \quad \Lambda \bullet F=w^{*}-\lim _{\alpha} \lim _{\beta} \widehat{F_{\alpha} \cdot a_{\beta}}
$$

Hence $F \bullet \Lambda$ and $\Lambda \bullet F$ are extensions of module actions $(a, F) \longrightarrow a$. $F\left(\mathcal{A} \times \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{\prime \prime}\right)$ and $(F, a) \longrightarrow F \cdot a\left(\mathcal{A}^{\prime \prime} \times \mathcal{A} \longrightarrow \mathcal{A}^{\prime \prime}\right)$.

We show that these three $\mathcal{A}^{\prime \prime}$-bimodule structures on $\mathcal{A}^{(4)}$ are not always equal. Suppose that $\Lambda \in \mathcal{A}^{(4)}, \lambda \in \mathcal{A}^{\prime \prime \prime}, F \in \mathcal{A}^{\prime \prime}$ and bounded nets $\left(G_{\alpha}\right) \subset$ $\mathcal{A}^{\prime \prime},\left(f_{\gamma}\right) \subset \mathcal{A}^{\prime},\left(a_{\beta}\right) \subset \mathcal{A}$ by $\widehat{G}_{\alpha} \xrightarrow{w^{*}} \Lambda, \widehat{f}_{\gamma} \xrightarrow{w^{*}} \lambda$ and $\widehat{a}_{\beta} \xrightarrow{w^{*}} F$, then

$$
\begin{aligned}
\langle\Lambda \circ F, \lambda\rangle & =\langle\Lambda, F \circ \lambda\rangle \\
& =\lim _{\alpha}\left\langle\widehat{G}_{\alpha}, F \circ \lambda\right\rangle \\
& =\lim _{\alpha}\left\langle F \cdot \lambda, G_{\alpha}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle G_{\alpha}, a_{\beta} \cdot f_{\gamma}\right\rangle,
\end{aligned}
$$

and

$$
\begin{aligned}
\langle\Lambda \cdot F, \lambda\rangle & =\langle\Lambda, F \cdot \lambda\rangle \\
& =\lim _{\alpha}\left\langle\widehat{G}_{\alpha}, F \cdot \lambda\right\rangle \\
& =\lim _{\alpha}\left\langle\lambda, G_{\alpha} \square F\right\rangle \\
& =\lim _{\alpha} \lim _{\gamma}\left\langle\widehat{\widehat{f}_{\gamma}}, G_{\alpha} \square F\right\rangle \\
& =\lim _{\alpha} \lim _{\gamma}\left\langle G_{\alpha}, F \cdot f_{\gamma}\right\rangle .
\end{aligned}
$$

For structure (c), we have

$$
\begin{aligned}
\langle\Lambda \bullet F, \lambda\rangle & =\lim _{\alpha} \lim _{\beta}\left\langle\widehat{G_{\alpha} \cdot a_{\beta}}, \lambda\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle\lambda, G_{\alpha} \cdot a_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle\widehat{f_{\gamma}}, G_{\alpha} \cdot a_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle G_{\alpha}, a_{\beta} \cdot f_{\gamma}\right\rangle .
\end{aligned}
$$

We see two right actions in parts (a) and (c) are equal and different from the action of (b). For left actions, suppose that $\Lambda \in \mathcal{A}^{(4)}, \lambda \in \mathcal{A}^{\prime \prime \prime}, F \in \mathcal{A}^{\prime \prime}$ and bounded nets $\left(G_{\alpha}\right) \subset \mathcal{A}^{\prime \prime},\left(f_{\gamma}\right) \subset \mathcal{A}^{\prime},\left(a_{\beta}\right) \subset \mathcal{A}$ with $\widehat{G}_{\alpha} \xrightarrow{w^{*}} \Lambda, \widehat{f}_{\gamma} \xrightarrow{w^{*}} \lambda$ and $\widehat{a}_{\beta} \xrightarrow{w^{*}} F$, then

$$
\begin{aligned}
\langle F \circ \Lambda, \lambda\rangle & =\langle\Lambda, \lambda \circ F\rangle \\
& =\lim _{\alpha}\left\langle\widehat{G}_{\alpha}, \lambda \circ F\right\rangle \\
& =\lim _{\alpha}\left\langle\lambda \circ F, G_{\alpha}\right\rangle \\
& =\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle,
\end{aligned}
$$

and

$$
\begin{aligned}
\langle F \cdot \Lambda, \lambda\rangle & =\langle\Lambda, \lambda \cdot F\rangle \\
& =\lim _{\alpha}\left\langle\widehat{G}_{\alpha}, \lambda \cdot F\right\rangle \\
& =\lim _{\alpha}\left\langle\lambda, F \square G_{\alpha}\right\rangle \\
& =\lim _{\alpha} \lim _{\gamma}\left\langle\widehat{f}_{\gamma}, F \square G_{\alpha}\right\rangle \\
& =\lim _{\alpha} \lim _{\gamma}\left\langle F, G_{\alpha} \cdot f_{\gamma}\right\rangle \\
& =\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle\widehat{a}_{\beta}, G_{\alpha} \cdot f_{\gamma}\right\rangle \\
& =\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle .
\end{aligned}
$$

For the structure (c), we have

$$
\begin{aligned}
\langle F \bullet \Lambda, \lambda\rangle & =\lim _{\beta} \lim _{\alpha}\left\langle\widehat{a_{\beta} \cdot G_{\alpha}}, b^{\prime \prime \prime}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha}\left\langle\lambda, a_{\beta} \cdot G_{\alpha}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle\widehat{f}_{\gamma}, a_{\beta} \cdot G_{\alpha}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle .
\end{aligned}
$$

We see that left actions in parts (a) and (b) are equal and different from the action of (c). We put some conditions on \mathcal{A} and show that with this conditions all $\mathcal{A}^{\prime \prime}$-bimodule structures on $\mathcal{A}^{(4)}$ are equal. First we bring some simple, but useful lemmas.

Lemma 2.1. If \mathcal{A} is Arens regular, then, for the bounded nets $\left(F_{\alpha}\right)$ and $\left(G_{\beta}\right)$ in $\mathcal{A}^{\prime \prime}$,
$\left(w^{*}-\lim _{\alpha} F_{\alpha}\right) \square\left(w^{*}-\lim _{\beta} G_{\beta}\right)=w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta}\left(F_{\alpha} \square G_{\beta}\right)=w^{*}-$ $\lim _{\beta} w^{*}-\lim _{\alpha}\left(F_{\alpha} \square G_{\beta}\right)$.

Lemma 2.2. Let the Banach algebra \mathcal{A} with one of the following conditions
(i) The map $\varphi: \mathcal{A}^{\prime} \times \mathcal{A} \longrightarrow \mathcal{A}^{\prime} ;((f, a) \longrightarrow f \cdot a)$ is Arens regular,
(ii) The map $\psi: \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{\prime \prime} ;(G \longrightarrow G \square F)$ is weak-compact for every $F \in \mathcal{A}^{\prime \prime}$,
(iii) The map $\phi: \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{\prime \prime} ;(G \longrightarrow G \square F)$ is w^{*}-w-continuous for every $F \in \mathcal{A}^{\prime \prime}$.

Then for each bounded net $\left(a_{\alpha}\right)$ in \mathcal{A} and $\lambda \in \mathcal{A}^{\prime \prime \prime}$,

$$
\begin{equation*}
\left\langle\lambda,\left(w^{*}-\lim _{\alpha} \widehat{a}_{\alpha}\right) \square F\right\rangle=\lim _{\alpha}\left\langle\lambda, \widehat{a}_{\alpha} \square F\right\rangle \tag{1}
\end{equation*}
$$

Proof. (i) Let $\lambda=w^{*}-\lim _{\beta} \widehat{f_{\beta}}$, where $\left(f_{\beta}\right)$ is a bounded net in \mathcal{A}^{\prime}, then we have

$$
\begin{aligned}
\left\langle\lambda,\left(w^{*}-\lim _{\alpha} \widehat{a}_{\alpha}\right) \square F\right\rangle & =\lim _{\beta}\left\langle\left(w^{*}-\lim _{\alpha} \widehat{a}_{\alpha}\right) \square F, f_{\beta}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha}\left\langle\widehat{a}_{\alpha} \square F, f_{\beta}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha}\left\langle F, f_{\beta} \cdot a_{\alpha}\right\rangle \\
& =\left\langle w^{*}-\lim _{\beta} w^{*}-\lim _{\alpha} \widehat{f_{\beta} \cdot a_{\alpha}}, F\right\rangle \\
& =\left\langle w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} \widehat{f_{\beta} \cdot a_{\alpha}}, F\right\rangle \\
& =\lim _{\alpha}\left\langle w^{*}-\lim _{\beta} \widehat{\hat{f}_{\beta}}, a_{\alpha} \square F\right\rangle \\
& =\lim _{\alpha}\left\langle\lambda, \widehat{a}_{\alpha} \square F\right\rangle .
\end{aligned}
$$

(ii) From the double limit property of weak compact operator ψ, we see

$$
\lim _{\beta} \lim _{\alpha}\left\langle\widehat{a}_{\alpha} \square F, f_{\beta}\right\rangle=\lim _{\alpha} \lim _{\beta}\left\langle\widehat{a}_{\alpha} \square F, f_{\beta}\right\rangle
$$ hence

$$
\begin{aligned}
\left\langle\lambda,\left(w^{*}-\lim _{\alpha} \widehat{a}_{\alpha}\right) \square F\right\rangle & =\lim _{\beta}\left\langle\left(w^{*}-\lim _{\alpha} \widehat{a}_{\alpha}\right) \square F, f_{\beta}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha}\left\langle\widehat{a}_{\alpha} \square F, f_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle\widehat{a}_{\alpha} \square F, f_{\beta}\right\rangle \\
& =\lim _{\alpha}\left\langle\lambda, \widehat{a}_{\alpha} \square F\right\rangle .
\end{aligned}
$$

(iii) Equation (1) is a consequence of $w^{*}-w-$ continuity of ϕ.

Lemma 2.3. If for every $G \in \mathcal{A}^{\prime \prime}$ the map $\rho: \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{\prime \prime} ;(F \longrightarrow G \square F)$ is w^{*}-w-continuous, then for every bounded net $\left(F_{j}\right)$ in $\mathcal{A}^{\prime \prime}$

$$
\left\langle\lambda, G \square\left(w^{*}-\lim _{j} F_{j}\right)\right\rangle=\lim _{j}\left\langle\lambda, G \square F_{j}\right\rangle,
$$ $\left.\mathcal{A}^{\prime \prime \prime}\right)$.

Proof. It is similar to part (iii) of Lemma 2.2.
Lemma 2.4. Let \mathcal{A} be an Arens regular Banach algebra. If the map φ : $\mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{\prime \prime} ;(F \longrightarrow G \square F)$ is weak-compact or w^{*}-w-continuous for every $G \in$ $\mathcal{A}^{\prime \prime}$, then

$$
\begin{equation*}
\left\langle\lambda, w^{*}-\lim _{\alpha} w^{*}-\lim _{j}\left(\widehat{a}_{\alpha} \square F_{j}\right)\right\rangle=\lim _{\alpha} \lim _{j}\left\langle\lambda, \widehat{a}_{\alpha} \square F_{j}\right\rangle .(2 \tag{2}
\end{equation*}
$$

for all $\lambda \in \mathcal{A}^{\prime \prime \prime}$, bounded nets $\left(a_{\alpha}\right)$ and $\left(F_{j}\right)$ in \mathcal{A} and $\mathcal{A}^{\prime \prime}$, respectively.

Proof. Let $\left(f_{\beta}\right)$ be a bounded net in \mathcal{A}^{\prime} such that $\widehat{f}_{\beta} \xrightarrow{w^{*}} \lambda$. Then

$$
\begin{aligned}
\left\langle\lambda, w^{*}-\lim _{\alpha} w^{*}-\lim _{j}\left(\widehat{a}_{\alpha} \square F_{j}\right)\right\rangle & =\lim _{\beta}\left\langle\left(w^{*}-\lim _{\alpha} w^{*}-\lim _{j}\left(\widehat{a}_{\alpha} \square F_{j}\right), f_{\beta}\right\rangle\right. \\
& =\lim _{\beta} \lim _{\alpha} \lim _{j}\left\langle\widehat{a}_{\alpha} \square F_{j}, f_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{j} \lim _{\beta}\left\langle\widehat{a}_{\alpha} \square F_{j}, f_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{j}\left\langle\lambda, \widehat{a}_{\alpha} \square F_{j}\right\rangle .
\end{aligned}
$$

Since φ is $w^{*}-w$-continuous, the equation (2) is obtained immediately.

Proposition 2.5. Let \mathcal{A} be a Banach algebra. If one of the following conditions holds, then the two $\mathcal{A}^{\prime \prime}$-module actions in (a), (c) coincide.
(i) The Banach algebra \mathcal{A} and the $\operatorname{map} \varphi: \mathcal{A}^{\prime} \times \mathcal{A} \longrightarrow \mathcal{A}^{\prime} ;((f, a) \longrightarrow$ $f \cdot a)$ are Arens regular and the map $\psi: \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{\prime \prime} ;(F \longrightarrow F \square G)$ is w^{*}-wcontinuous for every $G \in \mathcal{A}^{\prime \prime}$.
(ii) The Banach algebra \mathcal{A} is Arens regular and the map $\phi: \mathcal{A}^{\prime \prime} \longrightarrow$ $\mathcal{A}^{\prime \prime} ;(F \longrightarrow F \square G)$ is weak-compact for every $G \in \mathcal{A}^{\prime \prime}$.
(iii) For bounded nets $\left(G_{\alpha}\right),\left(f_{\gamma}\right)$ and $\left(a_{\beta}\right)$ in $\mathcal{A}^{\prime \prime}, \mathcal{A}^{\prime}$ and \mathcal{A}, respectively, we have

$$
\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle=\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle .
$$

Proof. We know that the two right $\mathcal{A}^{\prime \prime}$-module actions on $\mathcal{A}^{\prime \prime \prime \prime}$ in (a) and (c) are equal to

$$
\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle G_{\alpha}, a_{\beta} \cdot f_{\gamma}\right\rangle,
$$

in which $\left(G_{\alpha}\right),\left(f_{\gamma}\right)$ and $\left(a_{\beta}\right)$ are bounded nets in $\mathcal{A}^{\prime \prime}, \mathcal{A}^{\prime}$ and \mathcal{A}, respectively. For left $\mathcal{A}^{\prime \prime}$-module actions on $\mathcal{A}^{\prime \prime \prime \prime}$ it is enough to show the following equality

$$
\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle=\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle .
$$

(i) By Arens regularity of the map φ we have

$$
\lim _{\gamma} \lim _{\beta}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle=\lim _{\beta} \lim _{\gamma}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle .
$$

Now suppose that $\lambda=w^{*}-\lim _{\beta} \widehat{f}_{\beta}$, by Lemma 2.1 and Lemma 2.4 we
have

$$
\begin{aligned}
\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle & =\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle\widehat{f}_{\gamma}, \widehat{a}_{\beta} \square G_{\alpha}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle\lambda, \widehat{a}_{\beta} \square G_{\alpha}\right\rangle \\
& =\left\langle\lambda, w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta}\left(\widehat{a}_{\beta} \square G_{\alpha}\right)\right\rangle \\
& =\left\langle\lambda, w^{*}-\lim _{\beta} w^{*}-\lim _{\alpha}\left(\widehat{a}_{\beta} \square G_{\alpha}\right)\right\rangle \\
& =\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle .
\end{aligned}
$$

(ii) By weak compactness of ϕ, we have

$$
\lim _{\gamma} \lim _{\beta}\left\langle G_{\alpha}, f_{\gamma} \cdot a_{\beta}\right\rangle=\lim _{\gamma} \lim _{\beta}\left\langle\widehat{f}_{\gamma}, \widehat{a}_{\beta} \square G_{\alpha}\right\rangle=\lim _{\beta} \lim _{\gamma}\left\langle\widehat{f}_{\gamma}, \widehat{a}_{\beta} \square G_{\alpha}\right\rangle .
$$

It is easy to check that the map ϕ is $w^{*}-w$-continuous, and so the rest of the proof is the same as the proof of part (i).
(iii) It is clear.

$3 \mathcal{A}^{\prime \prime}$ - bimodule structures on fifth dual of a Banach algebra

Let \mathcal{A} be a Banach algebra. We consider four $\mathcal{A}^{\prime \prime}$ - bimodule structures on $\mathcal{A}^{(5)}$.
(I) We consider $\mathcal{A}^{(5)}=\left(\mathcal{A}^{(4)}\right)^{\prime}$ in which $\mathcal{A}^{(4)}$ has an $\mathcal{A}^{\prime \prime}$-bimodule structure as in part (\mathbf{c}) in Section 2. Therefore $\mathcal{A}^{(5)}$ is the dual space of $\mathcal{A}^{(4)}$, by the following actions

$$
\langle F \bullet \Psi, \Lambda\rangle=\langle\Psi, \Lambda \bullet F\rangle, \quad\langle\Psi \bullet F, \Lambda\rangle=\langle\Psi, F \bullet \Lambda\rangle
$$

where $F \in \mathcal{A}^{\prime \prime}, \Lambda \in \mathcal{A}^{(4)}$ and $\Psi \in \mathcal{A}^{(5)}$. In this case we have $\mathcal{A}^{(5)}=\left(\left(\mathcal{A}^{\prime \prime}\right)^{\prime \prime}\right)^{\prime}$.
(II) We consider $\mathcal{A}^{(5)}=\left(\mathcal{A}^{(4)}\right)^{\prime}$ in which $\mathcal{A}^{(4)}$ has an $\mathcal{A}^{\prime \prime}$-bimodule structure as in part (b) in Section 2, so the left action $\mathcal{A}^{\prime \prime}$ on $\mathcal{A}^{(5)}=\left(\left(\left(\mathcal{A}^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$ is defined by

$$
\begin{aligned}
\langle F \cdot \Psi, \Lambda\rangle & =\langle\Psi, \Lambda \cdot F\rangle \\
\langle\Lambda \cdot F, \lambda\rangle & =\langle\Lambda, F \cdot \lambda\rangle \\
\langle F \cdot \lambda, G\rangle & =\langle\lambda, G \square F\rangle .
\end{aligned}
$$

where $F, G \in \mathcal{A}^{\prime \prime}, \lambda \in \mathcal{A}^{\prime \prime \prime}, \Lambda \in \mathcal{A}^{(4)}$ and $\Psi \in \mathcal{A}^{(5)}$. The right action is defined in a similar way.
(III) Let $\mathcal{A}^{(5)}=\left(\mathcal{A}^{\prime \prime \prime}\right)^{\prime \prime}$ be as the second dual of $\mathcal{A}^{\prime \prime \prime}$ in which $\mathcal{A}^{\prime \prime \prime}=$ $\left(\left(\mathcal{A}^{\prime}\right)^{\prime}\right)^{\prime}$ is an \mathcal{A}-bimodule. Take $\Psi \in \mathcal{A}^{(5)}, F \in \mathcal{A}^{\prime \prime}$ and bounded nets $\left(\lambda_{\alpha}\right) \subset$ $\mathcal{A}^{\prime \prime \prime},\left(a_{\beta}\right) \subset \mathcal{A}^{\prime}$ with $\widehat{\lambda}_{\alpha} \xrightarrow{w^{*}} \Psi$ and $\widehat{a}_{\beta} \xrightarrow{w^{*}} F$. Two module actions is defined by

$$
F \circ \Psi=w^{*}-\lim _{\beta} \lim _{\alpha} \widehat{a_{\beta} \cdot \lambda_{\alpha}} \quad \Psi \circ F=w^{*}-\lim _{\alpha} \lim _{\beta} \widehat{\lambda_{\alpha} \cdot a_{\beta}} .
$$

In fact $F \circ \Psi$ and $\Psi \circ F$ are extension of module actions $(a, \lambda) \longrightarrow a$. $\lambda\left(\mathcal{A} \times \mathcal{A}^{\prime \prime \prime} \longrightarrow \mathcal{A}^{\prime \prime \prime}\right)$ and $(\lambda, a) \longrightarrow \lambda \cdot a\left(\mathcal{A}^{\prime \prime \prime} \times \mathcal{A} \longrightarrow \mathcal{A}^{\prime \prime \prime}\right)$.
(IV) We consider $\mathcal{A}^{(5)}=\left(\mathcal{A}^{(4)}\right)^{\prime}$ in which $\mathcal{A}^{(4)}$ has an $\mathcal{A}^{\prime \prime}$-bimodule structure as in part (a) in Section 2, hence the $\mathcal{A}^{\prime \prime}$-module actions on $\mathcal{A}^{(5)}$ are defined by

$$
\langle F \star \Psi, \Lambda\rangle=\langle\Psi, \Lambda \circ F\rangle, \quad\langle\Psi \star F, \Lambda\rangle=\langle\Psi, F \circ \Lambda\rangle,
$$

where $F \in \mathcal{A}^{\prime \prime}, \Lambda \in \mathcal{A}^{(4)}$ and $\Psi \in \mathcal{A}^{(5)}$.
Suppose that $\Psi \in \mathcal{A}^{(5)}, \Lambda \in \mathcal{A}^{(4)}, F \in \mathcal{A}^{\prime \prime}$ and bounded nets $\left(\lambda_{\alpha}\right) \subset$ $\mathcal{A}^{\prime \prime \prime},\left(G_{\gamma}\right) \subset \mathcal{A}^{\prime \prime},\left(a_{\beta}\right) \subset \mathcal{A}^{\prime}$ by $\hat{\lambda}_{\alpha} \xrightarrow{w^{*}} \Psi, \widehat{G}_{\gamma} \xrightarrow{w^{*}} \Lambda$ and $\widehat{a}_{\beta} \xrightarrow{w^{*}} F$, then

$$
\begin{aligned}
\langle F \bullet \Psi, \Lambda\rangle & =\langle\Psi, \Lambda \bullet F\rangle \\
& =\lim _{\alpha}\left\langle\widehat{\lambda}_{\alpha}, \Lambda \bullet F\right\rangle \\
& =\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle\lambda_{\alpha}, G_{\gamma} \cdot a_{\beta}\right\rangle,
\end{aligned}
$$

and

$$
\begin{aligned}
\langle F \circ \Psi, \Lambda\rangle & =\lim _{\beta} \lim _{\alpha}\left\langle\widehat{a_{\beta} \cdot \lambda_{\alpha}}, \Lambda\right\rangle \\
& =\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle\widehat{G}_{\gamma}, a_{\beta} \cdot \lambda_{\alpha}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle\lambda_{\alpha}, G_{\gamma} \cdot a_{\beta}\right\rangle,
\end{aligned}
$$

so $F \circ \Psi$ and $F \bullet \Psi$ are not always equal. But

$$
\begin{aligned}
\langle\Psi \circ F, \Lambda\rangle & =\lim _{\alpha} \lim _{\beta}\left\langle\widehat{\lambda_{\alpha} \cdot a_{\beta}}, \Lambda\right\rangle \\
& =\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle\widehat{G}_{\gamma}, \lambda_{\alpha} \cdot a_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle\lambda_{\alpha}, a_{\beta} \cdot G_{\gamma}\right\rangle \\
& =\lim _{\alpha}\left\langle F \bullet \Lambda, \lambda_{\alpha}\right\rangle \\
& =\langle\Psi, F \bullet \Lambda\rangle \\
& =\langle\Psi \bullet F, \Lambda\rangle .
\end{aligned}
$$

Hence the two right $\mathcal{A}^{\prime \prime}$-bimodule structure parts (I) and (III) on $\mathcal{A}^{(5)}$ always coincide. Also we can show that left (right) $\mathcal{A}^{\prime \prime}$-module action on $\mathcal{A}^{(5)}$ in part (II) is

$$
\langle F \cdot \Psi, \Lambda\rangle=\lim _{\alpha} \lim _{\gamma}\left\langle\lambda_{\alpha}, G_{\gamma} \square F\right\rangle \quad\left(\langle\Psi \cdot F, \Lambda\rangle=\lim _{\alpha} \lim _{\gamma}\left\langle\lambda_{\alpha}, F \square G_{\gamma}\right\rangle\right)
$$

hence the $\mathcal{A}^{\prime \prime}$-bimodule structure part (II) is different from (I) and (III). For two $\mathcal{A}^{\prime \prime}$-module action on $\mathcal{A}^{(5)}$ in part (IV), we have

$$
\langle F \star \Psi, \Lambda\rangle=\lim _{\alpha} \lim _{\gamma}\left\langle F \circ \lambda_{\alpha}, G_{\gamma}\right\rangle, \quad\langle\Psi \star F, \Lambda\rangle=\lim _{\alpha} \lim _{\gamma}\left\langle\lambda_{\alpha} \circ F, G_{\gamma}\right\rangle .
$$

Lemma 3.1. Let \mathcal{A} be a Banach algebra. Suppose that the map $\varphi: \mathcal{A} \times$ $\mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{\prime \prime} ;((a, F) \longrightarrow a \cdot F)$ is Arens regular and the map $\psi: \mathcal{A}^{\prime \prime} \longrightarrow$ $\mathcal{A}^{\prime \prime} ;(G \longrightarrow G \square F)$ is w^{*}-w-continuous for every $F \in \mathcal{A}^{\prime \prime}$. Then the two right $\mathcal{A}^{\prime \prime}$-module actions on $\mathcal{A}^{(5)}$ in (II) and (III) are equal.

Proof. By $w^{*}-w$-continuity of ψ we must prove the following equality

$$
\begin{equation*}
\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle\lambda_{\alpha}, a_{\beta} \cdot G_{\gamma}\right\rangle=\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle\lambda_{\alpha}, a_{\beta} \cdot G_{\gamma}\right\rangle, \tag{3}
\end{equation*}
$$

for bounded nets $\left(\lambda_{\alpha}\right),\left(G_{\gamma}\right)$ and $\left(a_{\beta}\right)$ in $\mathcal{A}^{\prime \prime \prime}, \mathcal{A}^{\prime \prime}$ and \mathcal{A}^{\prime}, respectively. By Arens regularity of φ, we have

$$
\lim _{\beta} \lim _{\gamma}\left\langle\lambda_{\alpha}, a_{\beta} \cdot G_{\gamma}\right\rangle=\lim _{\beta} \lim _{\gamma}\left\langle\widehat{a_{\beta} \cdot G_{\gamma}}, \lambda_{\alpha}\right\rangle=\lim _{\gamma} \lim _{\beta}\left\langle\widehat{a_{\beta} \cdot G_{\gamma}}, \lambda_{\alpha}\right\rangle
$$

and so (3) is true.
Lemma 3.2. Let \mathcal{A} be a Banach algebra. Assume that the Banach algebra \mathcal{A} and the map $\varphi: \mathcal{A}^{\prime \prime} \times \mathcal{A}^{\prime \prime \prime} \longrightarrow \mathcal{A}^{\prime \prime \prime} ;((F, \lambda) \longrightarrow F \cdot \lambda)$ is Arens regular and the map $\psi: \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{\prime \prime} ;(G \longrightarrow F \square G)$ is w^{*}-w-continuous for every $F \in \mathcal{A}^{\prime \prime}$. Then two left $\mathcal{A}^{\prime \prime}$-module actions on $\mathcal{A}^{(5)}$ in (II) and (III) are equal.

Proof. By $w^{*}-w$-continuity of ψ, it is enough to prove the following equality for bounded nets $\left(\lambda_{\alpha}\right),\left(G_{\gamma}\right)$ and $\left(a_{\beta}\right)$ in $\mathcal{A}^{\prime \prime \prime}, \mathcal{A}^{\prime \prime}$ and \mathcal{A}^{\prime}, respectively.

$$
\begin{equation*}
\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle\lambda_{\alpha}, G_{\gamma} \square \widehat{a}_{\beta}\right\rangle=\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle\lambda_{\alpha}, G_{\gamma} \square \widehat{a}_{\beta}\right\rangle . \tag{4}
\end{equation*}
$$

By using Lemma 2.4 we can write

$$
\lim _{\gamma} \lim _{\beta}\left\langle\lambda_{\alpha}, G_{\gamma} \square \widehat{a}_{\beta}\right\rangle=\lim _{\beta} \lim _{\gamma}\left\langle\lambda_{\alpha}, G_{\gamma} \square \widehat{a}_{\beta}\right\rangle .
$$

Then, by Arens regularity of φ, we see

$$
\begin{aligned}
\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle\lambda_{\alpha}, G_{\gamma} \square \widehat{a}_{\beta}\right\rangle & =\lim _{\alpha} \lim _{\beta} \lim _{\gamma}\left\langle\lambda_{\alpha}, G_{\gamma} \square \widehat{a}_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle\lambda_{\alpha},\left(w^{*}-\lim _{\alpha} G_{\gamma}\right) \square \widehat{a}_{\beta}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle\widehat{a_{\beta} \cdot \lambda_{\alpha}},\left(w^{*}-\lim _{\alpha} G_{\gamma}\right)^{\gamma}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha}\left\langle\widehat{a_{\beta} \cdot \lambda_{\alpha}},\left(w^{*}-\lim _{\alpha} G_{\gamma}\right)^{\top}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle a_{\beta} \cdot \lambda_{\alpha}, G_{\gamma}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle\lambda_{\alpha}, G_{\gamma} \square \widehat{a}_{\beta}\right\rangle .
\end{aligned}
$$

43 -weak amenability of the second dual

Let $D: \mathcal{A} \longrightarrow \mathcal{A}^{\prime \prime \prime}$ be a derivation. Then $D^{\prime \prime}: \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{(5)}=\left(\mathcal{A}^{\prime \prime \prime}\right)^{\prime \prime}$ the second transpose of D is a derivation (see [3] and [11]), that means that for every $F, G \in \mathcal{A}^{\prime \prime}$

$$
D^{\prime \prime}(F \square G)=D(F) \circ G+F \circ D(G)
$$

But $D^{\prime \prime}: \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{(5)}=\left(\mathcal{A}^{\prime \prime}\right)^{\prime \prime \prime}$ is not always a derivation. In the following we put other conditions on D such that $D^{\prime \prime}$ is a derivation (also see Theorem 4.3).

Proposition 4.1. Let \mathcal{A} be a Banach algebra and let $D: \mathcal{A} \longrightarrow \mathcal{A}^{\prime \prime \prime}$ be a derivation. Then $D^{\prime \prime}: \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{(5)}=\left(\mathcal{A}^{\prime \prime}\right)^{\prime \prime \prime}$ is a derivation if and only if $D^{\prime \prime}\left(\mathcal{A}^{\prime \prime}\right) \cdot \mathcal{A}^{(4)} \subseteq \widehat{\mathcal{A}^{\prime}}$.

Proof. Let $F, G \in \mathcal{A}^{\prime \prime}$. Then there are nets $\left(a_{\alpha}\right)$ and $\left(b_{\beta}\right)$ in \mathcal{A} which converge to F and G in the w^{*} - topology of $\mathcal{A}^{\prime \prime}$ respectively. Clearly $D^{\prime \prime}$ is w^{*} - continuous. Then

$$
\begin{aligned}
D^{\prime \prime}(F \square G) & =w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} D\left(a_{\alpha} b_{\beta}\right) \\
& =w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} D\left(a_{\alpha}\right) \cdot b_{\beta}+w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} a_{\alpha} \cdot D\left(b_{\beta}\right) \\
& =D^{\prime \prime}(F) \cdot G+\lim _{\alpha} a_{\alpha} \cdot D^{\prime \prime}(G) .
\end{aligned}
$$

By (5), it is easy to see that $D^{\prime \prime}$ is a derivation if and only if for every $F, G \in \mathcal{A}^{\prime \prime}$ that $F=w^{*}-\lim _{\alpha} a_{\alpha}$, the following equality holds

$$
\begin{equation*}
F \cdot D^{\prime \prime}(G)=w^{*}-\lim _{\alpha} a_{\alpha} \cdot D^{\prime \prime}(G) \tag{6}
\end{equation*}
$$

The relation (6) is true if and only if for every

$$
\Lambda \in \mathcal{A}^{(4)},\left\langle F \cdot D^{\prime \prime}(G), \Lambda\right\rangle=\lim _{\alpha}\left\langle a_{\alpha} \cdot D^{\prime \prime}(G), \Lambda\right\rangle(7)
$$

Also (7) holds if and only if

$$
\left\langle D^{\prime \prime}(G) \cdot \Lambda, F\right\rangle=\lim _{\alpha}\left\langle D^{\prime \prime}(G) \cdot \Lambda, a_{\alpha}\right\rangle
$$

So (8) holds if and only if $D^{\prime \prime}(G) \cdot \Lambda: \mathcal{A}^{\prime \prime} \rightarrow \mathbb{C}$ is $w^{*}-w^{*}-$ continuous. This means that $D^{\prime \prime}(G) . \Lambda \in \widehat{\mathcal{A}^{\prime}}$.
Corollary 4.2 Let \mathcal{A} be a Banach algebra such that $\mathcal{A}^{\prime \prime}$ is 3-weakly amenable. If $D^{\prime \prime}\left(\mathcal{A}^{\prime \prime}\right) \cdot \mathcal{A}^{(4)} \subseteq \widehat{\mathcal{A}^{\prime}}$, for each derivation $D: \mathcal{A} \longrightarrow \mathcal{A}^{\prime \prime \prime}$. Then \mathcal{A} is 3 -weakly amenable.

Let \mathcal{A} be a Banach algebra and let $\iota: \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{(4)}$ be an injective map $(\langle\iota(F), \lambda\rangle=\langle\lambda, F\rangle)$ for $F \in \mathcal{A}^{\prime \prime}$ and $\lambda \in \mathcal{A}^{\prime \prime \prime}$. Then ι is an \mathcal{A}-bimodule homomorphism . Also ι is an $\mathcal{A}^{\prime \prime}$-bimodule homomorphism with the module structures (a) and (b) on $\mathcal{A}^{(4)}$, but it is not always an $\mathcal{A}^{\prime \prime}$-bimodule homomorphism with the module structures (c). Therefore the adjoint of ι $\left(\iota^{*}\right)$ is an $\mathcal{A}^{\prime \prime}$-bimodule homomorphism with the module structures (a) and (b). Let X be a Banach space. For $n \in \mathbb{Z}^{+}$, we denote X^{\perp}, the subspace of $X^{(2 n+1)}$ annihilating \widehat{X}, where $X^{(2 n+1)}$ is the $(2 \mathrm{n}+1)$-th dual of X, i.e. $X^{\perp}=\left\{\lambda \in X^{(2 n+1)} ;\langle\lambda, x\rangle=0, \quad x \in X\right\}$. For the Banach algebra $\mathcal{A},\left(\mathcal{A}^{\prime \prime}\right)^{\perp}$ is clearly w^{*}-closed $\mathcal{A}^{\prime \prime}$-submodule of $\mathcal{A}^{(5)}$. Now we get the main theorem of this paper.
Theorem 4.3. Let \mathcal{A} be a Banach algebra such that $\mathcal{A}^{\prime \prime}$ is weakly amenable. Suppose that one the following conditions holds
(1) $D^{\prime \prime}\left(\mathcal{A}^{\prime \prime}\right) \cdot \mathcal{A}^{(4)} \subseteq \widehat{\mathcal{A}^{\prime}}$, for each derivation $D: \mathcal{A} \longrightarrow \mathcal{A}^{\prime \prime \prime}$.
(2) Conditions (i) of Lemma 3.1 and Lemma 3.2 are true.
(3) $\lim _{\alpha} \lim _{\gamma} \lim _{\beta}\left\langle\lambda_{\alpha}, F_{\gamma} \cdot a_{\beta}\right\rangle=\lim _{\beta} \lim _{\alpha} \lim _{\gamma}\left\langle\lambda_{\alpha}, F_{\gamma} \cdot a_{\beta}\right\rangle$, for every bounded nets $\left(\lambda_{\alpha}\right)$ in $\mathcal{A}^{\prime \prime \prime},\left(F_{\gamma}\right)$ in $\mathcal{A}^{\prime \prime}$ and every net $\left(a_{\beta}\right)$ in \mathcal{A}.

Then \mathcal{A} is 3 -weakly amenable.
Proof. Suppose that one of conditions (1) or (2) holds, so the two $\mathcal{A}^{\prime \prime}$ bimodule structures in parts (II) and (III) on $\mathcal{A}^{(5)}$ are equal. We know $\left(\mathcal{A}^{\prime \prime}\right)^{\prime \prime \prime}=\left(\mathcal{A}^{\prime \prime}\right)^{\prime} \oplus\left(\mathcal{A}^{\prime \prime}\right)^{\perp}$. In other words $\mathcal{A}^{(5)}=\left(\mathcal{A}^{\prime \prime}\right)^{\prime \prime \prime}$ is a direct summand of $\mathcal{A}^{\prime \prime}-$ submodules of $\mathcal{A}^{(5)}$. Let $P:\left(A^{\prime \prime}\right)^{\prime \prime \prime} \longrightarrow\left(\mathcal{A}^{\prime \prime}\right)^{\prime}$ be the projection defined by the above direct sum. Suppose $D: \mathcal{A} \longrightarrow \mathcal{A}^{\prime \prime \prime}$ is a derivation. Then we can show that P is an $\mathcal{A}^{\prime \prime}$-module homomorphism. Thus $P \circ D^{\prime \prime}: \mathcal{A}^{\prime \prime} \longrightarrow\left(\mathcal{A}^{\prime \prime \prime}\right)^{\prime \prime}=\left(\mathcal{A}^{\prime \prime}\right)^{\prime \prime \prime} \longrightarrow\left(\mathcal{A}^{\prime \prime}\right)^{\prime}$ is a derivation. Since $\mathcal{A}^{\prime \prime}$ is weakly amenable, there exists $\theta_{0} \in\left(\mathcal{A}^{\prime \prime}\right)^{\prime}$ such that $P \circ D=\delta_{\theta_{0}}$. On the other hand D is the restriction of $P \circ D^{\prime \prime}$ to \mathcal{A}. Thus $D=\delta_{\theta_{0}}$.

Now assume that the condition (3) holds, then the two $\mathcal{A}^{\prime \prime}$-bimodule structures in parts (I) and (III) on $\mathcal{A}^{(5)}$ are equal. Suppose $D: \mathcal{A} \longrightarrow \mathcal{A}^{\prime \prime \prime}$ is a
derivation. Then $\iota^{*} \circ D^{\prime \prime}: \mathcal{A}^{\prime \prime} \longrightarrow\left(\mathcal{A}^{\prime \prime \prime}\right)^{\prime \prime}=\left(\mathcal{A}^{(4)}\right)^{\prime} \longrightarrow\left(\mathcal{A}^{\prime \prime}\right)^{\prime}$ is a derivation. Due to the weak amenability of $\mathcal{A}^{\prime \prime}$, there exists $\theta_{0} \in\left(\mathcal{A}^{\prime \prime}\right)^{\prime}$ such that $\iota^{*} o D^{\prime \prime}=\delta_{\theta_{0}}$. For every $a \in \mathcal{A}$ and $F \in \mathcal{A}^{\prime \prime}$, we have

$$
\left\langle\iota^{*} \circ D^{\prime \prime}(a), F\right\rangle=\left\langle D^{\prime \prime}(a), \iota(F)\right\rangle=\langle\iota(F), D(a)\rangle=\langle D(a), F\rangle .
$$

So D is the restriction of $\iota^{*} \circ D^{\prime \prime}$ to \mathcal{A}. Thus $D=\delta_{\theta_{0}}$. Therefore \mathcal{A} is 3 -weakly amenable.

By applying Theorem 4.3 we have the following results.
Corollary 4.4. Let \mathcal{A} be a Banach algebra such that one of the conditions (1) up to (4) of Theorem 4.3 holds. If $\mathcal{A}^{\prime \prime}$ is weakly amenable, then \mathcal{A} is weakly amenable.
Proof. It follows immediately from Theorem 4.3 and [4, Proposition 1.2].
Corollary 4.5. Let \mathcal{A} be a Banach algebra such that one of the conditions (1) up to (3) of Theorem 4.3 holds. If $\mathcal{A}^{\prime \prime}$ is 3 -weakly amenable, then \mathcal{A} is 3 -weakly amenable.
Proof. By Theorem 4.3 and [4, Proposition 1.2], \mathcal{A} is 3 -weakly amenable.
The following Theorem has been proved in [10].
Theorem 4.6. Let \mathcal{A} be an Arens regular Banach algebra. Suppose that for every continuous derivation $D: \mathcal{A}^{\prime \prime} \longrightarrow \mathcal{A}^{\prime \prime \prime}$ and every F in $\mathcal{A}^{\prime \prime}, D(F)$ and D are w^{*}-continuous. If \mathcal{A} is weakly amenable, then so is $\mathcal{A}^{\prime \prime}$.

Let one of the conditions of Theorem 4.3 holds. Then we have
Corollary 4.7. Under assumptions of Theorem 4.6, if \mathcal{A} is weakly amenable, then \mathcal{A} is 3 -weakly amenable.
Proof. It is an immediate consequence of Theorem 4.3 and Theorem 4.6.

References

[1] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
[2] N. Arikan, Arens regularity and reflexivity, Quart. J. Math. Oxford Ser. 32 (1981), 383-388.
[3] H. G. Dales, Banach algebra and Automatic continuity, Oxford University Press, 2000.
[4] H. G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19-54.
[5] H. G. Dales, A. Rodriguez-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. (2)64 (2001),707-721.
[6] J. Duncan and S. A. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309-325.
[7] M. Eshaghi Gordji, Arens regularity of some bilinear maps, Proyecciones 28 (2009), no. 1, 21-26.
[8] M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia Math. 181 (2007), 237-254.
[9] M. Eshaghi Gordji and M. Filali, Weak amenability of the second dual of a Banach algebra, Studia Math., 182, no. 3, (2007), 205-213.
[10] M. Ettefagh, The third dual of a Banach algebra, Studia. Sci. Math. Hung., 45 (1), 1-11 (2008).
[11] F. Ghahramani and J. Laali, Amenability and topological center of the second duals of Banach algebras, Bull. Austral. Math. Soc., 65 (2002),191197.
[12] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second cojugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), 1489-1497.
[13] A. T.-M. Lau and A. Ülger, Topological centers of certain dual algebras, Trans. Amer. Math. Soc., 348 (1996), 1191-1212.
[14] A. R. Medghalchi and T. Yazdanpanah, n-weak amenability and strong double limit property, Bull. Korean. Math. Soc., 42 (2005), no. 2, 359367.
[15] R. E. Megginson, An Introduction to Banach Space Theory, SpringerVerlag, New York Berlin Heidelberg, 1998.
[16] A. Ülger, Weakly compact bilinear forms and Arens regularity, Proc. Amer. Math. Soc., 101 (1987), 697-704.
[17] A. Ülger, Arens regularity sometimes implies the RNP, Pacific J. Math., 143 (1990), 377-399.
[18] N. J. Young, The irregularity of multiplication in group algebras, Quart. J. Math. Oxford, 24 (1973), 59-62.
[19] Yong Zhang, Weak amenability of module extension of Banach algebras, Trans. Amer. Math. Soc., 354, no. 10 (2002), 4131-4151.
[20] Yong Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. Vol., 44 (4) (2001), 504-508.

```
A. Bodaghi,
Islamic AZAD University,
Garmsar Branch, Garmsar, Iran
e-mail: abasalt_bodaghi@yahoo.com
M. Ettefagh,
Islamic AZAD University,
Tabriz Branch, Tabriz, Iran.
e-mail:mm_ettefag@yahoo.com
M. Eshaghi Gordji,
Semnan University,
Department of Mathematics,
Semnan, Iran,
e-mail: madjid.eshaghi@gmail.com
A. R. Medghalchi,
Tarbiat Moallem University,
Department of Mathematical Sciences,
Tehran, Iran,
e-mail: a_medghalchi@saba.tmu.ac.ir
```


[^0]: Key Words: Banach algebra, Derivation, Arens product, Arens regular, strong double limit property, 3 -weak amenability.

 Mathematics Subject Classification: 46H25
 Received: May, 2009
 Accepted: January, 2010

