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SOME REMARKS ON PARTITIONING

SEMIRINGS

Shahabaddin Ebrahimi Atani and Reza Ebrahimi Atani

Abstract

In this article we will introduce the notions of partitioning semirings

and strongly zero-sum semirings and study some of their properties. We

will analyze possible structures of semidomain and relationships between

semirings that share some properties with semidomains, but whose def-

initions are less restrictive. The main aim of this article is that of ex-

tending some results obtained for domain like rinks to the theory of

semirings.

1 Introduction

This article is devoted to an exploration of how ideal-theoretic considerations
in commutative semirings impact the multiplicative behavior of those elements
of the semiring that have additive inverses in the semiring. The general ques-
tion as to the algebraic nature of these so-called ”zero-sums” of a semiring is
one of the most central ideas in the theory of semirings. The idea of investi-
gating a mathematical structure via its representations in simpler structures is
commonly used and often successfully. The representation theory of semirings
has developed greatly in the recent years. It is an area which is very firmly
based on the detailed understanding of examples, and there are many powerful
techniques for investigating the representations of particular semirings and for
relating the representations of one semiring to another. One of the aims of
the modern representation theory of semirings is to solve ”zero-sum” problem
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for subcategories of semirings. The reader is referred to [12] and [13] for a de-
tailed discussion of ”zero-sum” problem and useful computational reduction
procedures.

Présimplifiable rings were introduced by Bouvier in [5, 6] and later studied
by D. D. Anderson and S. Valdes-Leon in [3]. Domainlike rings have been
studied by M. Axtell, S. F. Forman and J. Stickles in [2]. We are motivated in
this regard by the recent success of studies of the notions of ”présimplifiable”,
”strongly associate” and ”domainlike” commutative rings in such articles as [1,
3] and [2] because they are useful rings for study ”factorization in commutative
rings with zero-divisors”. The factorization of nonunits into atoms is a central
theme in algebra. Classically the theory has concentrated on integral domains.
Much of this theory generalizes to the case of rings with zero-divisors, but
important differences remain (see [1,3]). The authors study ways in which
factorization in a ring with zero-divisors differ markedly for the domain case.

In the present article we introduce a new class of semirings, called par-
titioning semirings (see Definition 2.2), and we study it in details from the
”zero-sum” problem point of view. We focus on a class of semirings, prop-
erly containing the class of semidomains, that is representable by the property
that every zero-divisor of the semiring is nilpotent. However, we demonstrate
here that some results from the papers listed in [1, 2] can be generalized by
means of certain ideal-theoretic properties connected with the set of zero-
divisors of a semiring. In Section 2, we begin by presenting several examples
and fundamental results concerning partitioning semirings that prove useful
throughtout this article. In Section 3, a number of basic results concerning
semidomainlike semirings are given. We also establish a connection between
the s-présimplifiable semirings, semidomainlike semirings and strongly asso-
ciate semirings (see Sections 2 and Section 3).

We now give some definitions that are used frequently throughout this
article. A commutative semiring R is defined as an algebraic system (R,+, .)
such that (R,+) and (R, .) are commutative semigroups, connected by a(b +
c) = ab + ac for all a, b, c ∈ R, and there exists 0 ∈ R such that r + 0 = r
and r0 = 0r = 0 for each r ∈ R. In this article all semirings considered will
be assumed to be commutative semirings with 1 6= 0. A nonempty subset I
of R is called an ideal of R if a + b ∈ I and ra ∈ R whenever a, b ∈ I and
r ∈ R. A prime ideal of R is a proper ideal I of R in which x ∈ I or y ∈ I
whenever xy ∈ I. The radical of the ideal I is given by rad(I) = {a ∈ R :
there exists a positive integer n such that an ∈ I}. A proper ideal I of R is
called a primary ideal of R if whenever a, b ∈ R such that ab ∈ I and a /∈ I, it
must be the case that there exists a positive integer n for which bn ∈ I. In this
case, rad(I) is the smallest prime ideal of R containing I. The ideal I of R is
called subtractive (simply k-ideal) if a, b ∈ R such that both a+b ∈ I and b ∈ I
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imply that a ∈ I (so {0} is a k-ideal of R). Given a nonempty subset X of R,
the ideal generated by X is (X) = {r1x1 + r2x2 + ...+ rnxn : ri ∈ R, xi ∈ X}.
In particular, for x ∈ R, the set (x) = Rx = {rx : r ∈ R} is an ideal of R
called the principal ideal of R generated by x.

Following [12, 13], an element a in a semiring R is called a zero-sum of
R if there exists an element b ∈ R such that a + b = 0. In such a case, the
element b is unique (we use S(R) to denote the set of all zero-sum elements
of R). A semiring R is called zerosumfree if 0 is the only zero-sum of R. An
element a of of R is called zero-divisor of R if there exists 0 6= b ∈ R such that
ab = 0 (note here that we include 0 in the set of zero-divisors of a semiring).
The collection of all zero-divisors of R will be denoted by Z(R). Furthermore,
the subset {a ∈ R : there exists a positive integer n such that an = 0} of
Z(R) consisting of the nilpotent elements of R will be denoted by nil(R), the
nilradical of R. A semiring R is said to be a semidomain if ab = 0 (a, b ∈ R)
implies either a = 0 or b = 0. It is clear that R is semidomain if and only if
(0) is a prime ideal of R. Finally, a semiring R is called cancellative whenever
ac = ab for some elements a, b and c of R with a 6= 0, then b = c.

Let R be a semiring. A non-zero element a of R is said to be a semi-unit
in R if there exist r, s ∈ R such that 1 + ra = sa. The set of all semi-units
of R will be denoted by U(R). A semiring R is said to be a local semiring if
and only if R has a unique maximal k-ideal. Moreover, a is a semi-unit of R
if and only if a lies outside each maximal k-ideal of R (see [8, Lemma 4]).

2 Properties of partitioning semirings

An ideal I of a semiring R is called a partitioning ideal (= Q-ideal) if there
exists a subset Q of R such that R = ∪{q + I : q ∈ Q} and if q1, q2 ∈ Q,
then (q1 + I) ∩ (q2 + I) 6= ∅ if and only if q1 = q2. Let I be a Q-ideal of a
semiring R and let R/I = {q + I : q ∈ Q}. Then R/I forms a semiring under
the binary operations ⊕ and ⊙ defined as follows: (q1+ I)⊕ (q2+ I) = q3+ I,
where q3 ∈ Q is the unique element such that q1 + q2 + I ⊆ q3 + I, and
(q1 + I) ⊙ (q2 + I) = q4 + I, where q4 ∈ Q is the unique element such that
q1q2+ I ⊆ q4+ I. This semiring R/I is called the quotient semiring of R by I.
By definition of Q-ideal, there exists a unique q0 ∈ Q such that 0+ I ⊆ q0+ I.
Then q0 + I is the zero element of R/I. Clearly, if R is commutative, then
so is R/I, see [4], [7], and [8] for a background of the quotient semirings and
their properties.

Recall that if I is a proper Q-ideal of R, then there exists a maximal k-ideal
P of R with I ⊆ P (see [8, Theorem 3]). Also, we define the Jacobson radical
of R, denoted by Jac(R), to be the intersection of all the maximal k-ideals of
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R. Then by [8, Lemma 2], the Jacobson radical of R always exists and by [7,
Lemma 2.12], it is a k-ideal of R. Our starting point is the following lemma.

Lemma 2.1. A semiring R is a ring if and only if some semi-unite of R is a
zero-sum of R.

Proof. The necessity is clear. For the sufficiency, Let x ∈ R, and choose a
semi-unit u of R that is a zero-sum of R. Let v be such that u+ v = 0. There
are elements r, s ∈ R such that 1+ru = su, asu+asv = 0 and a+aru+asv = 0,
whence a is a zero-sum of R. Thus R is a ring.

Definition 2.2. (1) A semiring R is called a partitioning semiring, if every
proper principal ideal of R is a partitioning ideal.

(2) A semiring R is called a strongly zero-sum semiring, if every nonsemi-
unit element of R is a zero-sum element.

(4) A proper ideal I of R is said to be a strongly zero-sum ideal, if every
element of I is a zero-sum element.

Example 2.3. (1) If I is a partitioning ideal of a semiring R, then I is a
k-ideal (see [12, Corollary 8.23]), but the converse is not true. To see this,
let Z+ denote the set of all nonnegative integers and consider the semiring
R = (Z+, gcd, lcd). Then the ideal 2Z+ of R is a k-ideal but not partitioning.
Thus R is not a partitioning semiring.

(2) Clearly, every commutative ring with non-zero identity is a strongly
zero-sum semiring and partitioning semiring.

(3) There exist infinite semidomains with nontrivial zero-sums that are not
rings; for example, the polynomial semiring XZ[X] +N , where Z is the ring
of integers and N is the semiring of nonnegative integers.

(4) Let Z+ denote the semiring of nonnegative integers with the usual
operrations of addition and multiplication. An inspection will show that if
n ∈ Z+ − {0}, then the ideal Rn = {kn : k ∈ Z+} is a Q-ideal when
Q = {0, 1, ..., n − 1} and if n = 0, the ideal Rn is a Q-ideal when Q = Z+.
Thus R is a partitioning semiring. Moreover, A simple argument will show
that the ideal Z+ − {1} can not be a Q-ideal. Also, it is clear that R is not a
strongly zero-sum semiring.

(5) Let R = {0, 1, 2, ..., 20}, and define a+ b = max{a, b}, a.b = min{a, b}
for each a, b ∈ R. Then (R,+, .) is easily checked to be a commutative semiring
with 20 as identity. Let J4 denote the ring integer modulo 4. Let J4 ⊕ R =
{(a, b) : a ∈ J4, b ∈ R} denote the direct sum of semirings J4 and R. Then
J4 ⊕R is a commutative semiring. An inspection will show that I0 = {(a, 0) :
a ∈ J4} is a proper strongly zero-sum ideal in J4⊕R and I10 = {(0, n) : n ≤ 10}
is a proper ideal of J4 ⊕R, which is not a strongly zero-sum ideal. Moreover,
R is not a partitioning and strongly zero-sum semiring.
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Remark 2.4. Let R be a semiring.
(1) Since 1+0.1 = 1.1, we have 1 is a semi-unit of R. Moreover, if rs = 1

(resp. rs ∈ U(R)) for some r, s ∈ R, then r and s are semi-units of R since
1 + 0.r = rs and 1 + 0.s = rs (resp. 1 + rsu = rsw for some u,w ∈ R).

(2) Let 0 6= a ∈ R be such that ab = 0 for some non-zero element b of R.
If 1 + ra = sa for some r, s ∈ R, then b = 0, which is a contradiction. So
every zero-divisor of R is not a semi-unit.

Proposition 2.5. Let R be a partitioning semiring that is not a ring.
(1) If a is a zero-sum of R, then a is a zero-divisor of R.
(2) If R is a strongly zero-sum semiring, then R is a local semiring with

maximal ideal Z(R).

Proof. (1) By assumption, a + b = 0 for some b ∈ R, so b ∈ Ra since Ra is a
k-ideal. Choose r ∈ R such that b = ra. Then (1 + r)a = 0. It then follows
from Lemma 2.1 that 1 + r 6= 0. Thus a is a zero-divisor of R.

(2) By Remark 2.4 (2) and (1), S(R) = Z(R) is the set of nonsemi-units
of R that is a k-ideal. Now R is a local semiring by [8, Theorem 5].

Theorem 2.6. If R is a partitioning semidomain such that there exists a
nonzero zero-sum a of R, then R is a domain. In particular, every strongly
zero-sum partitioning semidomain is a domain.

Proof. By a similar argument like that Proposition 2.5 (1), there exists r ∈
R such that (1 + r)a = 0. Then 1 is a zero-sum element of R since R is
semidomain. Now the assertion follows from Lemma 2.1 and Remar 2.4 (1).

Theorem 2.7. Let I be a proper Q-ideal of a partitioning semiring R. If R
is a strongly zero-sum semiring, then so is R/I.

Proof. Suppose that q′0 is the unique element of Q such that 1 = q′0 + a for
some a ∈ I; we show that q′0+I is the identity element in R/I. Let q+I ∈ R/I.
Then (q′0 + I)⊙ (q+ I) = q′ + I, where q′ ∈ Q is the unique element such that
q′0q + I ⊆ q′ + I, whence there exist a′, b′ ∈ I such that q′0q + a′ = q′ + b′. As
q + a′ = q′0q + qa + a′ = q′ + b′ + qa ∈ (q + I) ∩ (q′ + I), we have q = q′. So
q′0 + I is the identity element of R/I.

Assume that q1 + I is a nonsemi-unit of R/I (q1 ∈ Q); we show that q1 is
not a semi-unit of R. If not, then 1 + rq1 = sq1 for some r, s ∈ R, so 1 ∈ Rq1,
whence Rq1 = R by [12, Lemma 1]. Thus rq1 = 1 for some r ∈ R. There exist
q2 ∈ Q and c ∈ I such that 1 = q′0 + a = q1q2 + cq1. Then there is a unique
element q3 ∈ Q such that (q1 + I)⊙ (q2 + I) = q3 + I, where q1q2 + I ⊆ q3 + I,
so q1q2+ e = q3+ f for some e, f ∈ I. It follows that q′0+a+ e = q3+ f + cq1;
hence q3 = q′0. Thus (q1 + I)⊙ (q2 + I) = q′0 + I. It then follows from Remark



54 Shahabaddin Ebrahimi Atani and Reza Ebrahimi Atani

2.4 that q1 + I is a semi-unit of R/I, which is a contradiction. So q1 is not a
semi-unit of R.

Let q0 be the unique element in Q such that q0+P is the zero in R/P . By
assumption, there are elements q4 ∈ Q and d ∈ I such that q1+ q4+d = 0. So
there is a unique element q5 ∈ Q such that (q1 + I)⊕ (q4 + I) = q5 + I, where
q1 + q4 + I ⊆ q5 + I, so q1 + q4 + e′ = q5 + f ′ for some e′, f ′ ∈ I. It follows
that 0 + e′ = q1 + q4 + e′ + d = q5 + f ′ + d, so 0 + I ⊆ (q0 + I) ∩ (q5 + I),
whence q0 = q5, as needed.

Proposition 2.8. Let R be a partitioning semiring, and let r ∈ S(R). Then
r ∈ J(R) if and only if, for every a ∈ R, the element 1 + ra is a semi-unit of
R.

Proof. By [10, Lemma 3.4], it suffices to show that if for each a ∈ R, the
element 1+ ra is a semi-unit of R, then r ∈ J(R). Let P be a maximal k-ideal
of R: we show that r ∈ P . Suppose not. There is an element r′ ∈ R such that
r+ r′ = 0, so r′ /∈ P since P is a k-ideal. Then we should have M +Rr′ = R,
so that there exist p ∈ P and a ∈ R with p+ r′a = 1; hence 1 + ra = p ∈ P ,
which is a contradiction by [8, Lemma 1]. Thus r ∈ J(R).

Let R be a partitioning semiring and a, b ∈ R. We say a and b are associate,
denoted a ∼ b, if a|b and b|a, or equivalently, if Ra = Rb. We say a and b
are strongly associate, denoted a ≈ b, if there exists a u ∈ U(R) such that
a = ub. We say a and b are very strongly associate, denoted a ∼= b, if a ∼ b
and further when a 6= 0, a = ub (u ∈ R) implies u ∈ U(R). A semiring R
is called s-présimplifiable if ab = a for a, b ∈ R implies that either a = 0 or
b ∈ U(R). A semiring R is a strongly associate semiring if a ∼ b implies a ≈ b.
These definitions are the same as that introduced in [1].

Lemma 2.9. Suppose that R is a partitioning semiring and let ≈ and ∼ be
both equivalence relations on R. Then the relation ∼= is an equivalence relation
on R if and only if R is s-présimplifiable.

Proof. The proof is straightforward.

Lemma 2.10. Let R be a partitioning semiring and a, b ∈ R. Then the
following hold:

(1) If a ≈ b, then a ∼ b.
(2) If a ∼= b, then a ≈ b.
(3) If a ∼ b ⇒ a ∼= b For all a, b ∈ R, then a ≈ b ⇒ a ∼= b. In particular,

R is a s-présimplifiable semiring (so R is strongly associate).
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Proof. (1) There exists a u ∈ U(R) such that a = ub, so Ra ⊆ Rb. There
are elements r, s ∈ R such that 1 + ru = su, which implies b + ra = sa; thus
b ∈ Ra since Ra is a k-ideal, and so we have Ra = Rb. Thus a ∼ b. (2) Is
clear.

(3) The first part follows from (1) and (2). To see thatR is s-présimplifiable,
assume that c = cd. Now c ∼= c. Hence c = 0 or d ∈ U(R).

The following theorem shows how the property of s-présimplifiable is re-
lated to the types of associate elements defined above.

Theorem 2.11. For a strongly zero-sum partitioning semiring R that is not
a ring the following are equivalent.

(1) For all a, b ∈ R, a ∼ b ⇒ a ∼= b.
(2) For all a, b ∈ R, a ≈ b ⇒ a ∼= b.
(3) R is s-présimplifiable.
(4) Z(R) ⊆ J(R).

Proof. (1) ⇒ (2) and (2) ⇒ (3) follows from Lemma 2.10. For (3) ⇒ (4),
assume that x ∈ Z(R). Then xy = 0 for some 0 6= y ∈ R, so y(1 + x) = y,
whence 1+x ∈ U(R). For r ∈ R, rx ∈ Z(R) = S(R) and hence 1+rx ∈ U(R).
Thus x ∈ J(R) by Proposition 2.8, and so we have Z(R) ⊆ J(R). (4) ⇒ (1)
Suppose that a = rb. Then Ra = rRb = rRa and there exists a′ ∈ R such that
a+ a′ = 0. Now rRa = rRa′. Thus a = rsa′ for some s ∈ R, so a(1+ rs) = 0;
hence 1+rs ∈ Z(R) ⊆ J(R). Then rs is a semi-unit of R (otherwise, 1 ∈ J(R)
since R is local), and so r itself is a semi-unit by Remark 2.4. Hence r ∈ U(R).
So a ∼= b.

Corollary 2.12. If R is a strongly zero-sum partitioning semiring that is not
a ring, then R is a s-présimplifiable semiring (so R is strongly associate).

Proof. Apply Theorem 2.11 and Proposition 2.5.

3 Properties of semidomainlike semirings

We begin the key definition of this section.

Definition 3.1. A semiring R is called semidomainlike semiring, if Z(R) ⊆
nil(R) [1].

Proposition 3.2, which is well-known in the ring-theoretic context (see [1,
2]), provides characterizations in terms of the notions of ”primary ideal” and
”prime ideal” of when certain equalities amongst these algebraic structures
occur.
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Proposition 3.2. Let R be a semiring.
(1) (0) is a primary ideal of R if and only if Z(R) = nil(R). In particular,

if (0) is a primary ideal of R, then Z(R) is an ideal of R.
(2) (0) is primary if and only if R is semidomainlike.
(3) Every semidomailike semiring is s-présimplifiable.
(4) If R is semidomainlike, Then Z(R) is the unique minimal prime ideal

of R.

Proof. (1) Let (0) is a primary ideal of R. It is straightforward to see that
nil(R) = rad(0) ⊆ Z(R). It suffices to show that Z(R) ⊆ nil(R). Let x ∈
Z(R). Then xy = 0 for some 0 6= y ∈ R. Since (0) is a primary ideal of R,
there exists a positive integer n such that xn = 0, whence a ∈ rad(0), and so
we have equality. Conversely, suppose that Z(R) = nil(R), and let a, b ∈ R
such that ab = 0 but b 6= 0. Then b ∈ Z(R) = rad(0). So (0) must be a
primary ideal of R. (2) and (3) follows from (1) (note that nil(R) ⊆ J(R)).
To see that (4), as rad(Z(R)) = Z(R) = rad(0) by (1), we must have Z(R)
is a prime ideal of R since (0) is primary. Now if P is a prime ideal, then
Z(R) = nil(R) ⊆ P , as desired.

Let R be an Artinian cancellative semiring. Then every element of R is
either a semi-unit or a nilpotent element, and J(R) = nil(R) (see [10, Propo-
sition 3.7] and [8, Theorem 12]). Then R is a semidomainlike semiring (so R
is a s-présimplifiable semiring by Proposition 3.2).

Let R be a given semiring, and let S be the set of all multiplicatively
cancellable elements of R (so 1 ∈ S). Clearly, the set S is multiplicatively
closed. Define a relation ∼ on R × S as follows: for (a, s), (b, t) ∈ R × S, we
write (a, s) ∼ (b, t) if and only if ad = bc. Then ∼ is an equivalence relation
on R× S. For (a, s) ∈ R× S, denot the equivalence class of ∼ which contains
(a, s) by a/s, and denote the set of all equivalence classes of ∼ by RS . Then
RS can be given the structure of a commutative semiring under oprerations
for which a/s + b/t = (ta + sb)/st, (a/s)(b/t) = (ab)/st for all a, b ∈ R and
s, t ∈ S. This new semiring RS is called the semiring of fractions of R with
respect to S; its zero element is 0/1, its multiplicative identity element is 1/1
and each element of S has a multiplicative inverse in RS (see [14]). The next
theorem is a classical result stated in terms of the semidomainlike property.

Theorem 3.3. Let R be a semiring. Then R is semidomainlike if and only if
RS is semidomainlike.

Proof. Assume that R is a semidomainlike semiring and let 0/1 6= a/s ∈
Z(RS). Then (a/s)(a′/s′) = 0/1 for some 0/1 6= a′/s′ ∈ RS , whence aa′ = 0.
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If a 6= 0, then a′n = 0 for some n since (0) is primary in R by Proposition
3.2. Hence (a′/s′)n = 0/1, and so (0/1) is primary in RS . Thus RS is a
semidomainlike semiring. Conversely, let r, s ∈ R with r 6= 0 (so r/1 6= 0/1)
and assume rs = 0. Then (r/1)(s/1) = 0/1, so (s/1)m = 0/1; hence sm = 0,
and so (0) is a primary ideal of R. Therefore R is a semidomainlike semiring
by Proposition 3.2.

Lemma 3.4. Let P be a proper Q-ideal of a semiring R, and let q0 be the
unique element in Q such that q0 + P is the zero in R/P . If a ∈ P , then
a+ P = q0 + P .

Proof. There are elements q1 ∈ Q and p ∈ P such that a = q1 + p, so q1 ∈ P
since every Q-ideal is a k-ideal. By [10, Lemma 2.3], q1 = q0, and so we have
equality.

A classical result of commutative semiring theory is that a Q-ideal P is
prime if and only if R/P is a semidomain (see [7, Theorem 2.6]). The following
theorem is a parallel result for semidomainlike semirings.

Theorem 3.5. Let P be a proper Q-ideal of a semiring R. Then P is primary
if and only if R/P is semidomainlike.

Proof. Let q0 be the unique element in Q such that q0+P is the zero in R/P .
Let P be a primary ideal of R and let q1 + P ∈ Z(R/P ). Then there exists a
non-zero element q2+P of R/P such that (q1+P )⊙ (q2+P ) = q0+P , where
q1, q2 ∈ Q and q1q2+P ⊆ q0+P = P . So q1q2+e = f for some e, f ∈ P ; hence
q1q2 ∈ P since P is a k-ideal of R. If q2 ∈ P , then q2 ∈ (q0 + P ) ∩ (q2 + P );
hence q2 + P = q0 + p, which is a contradiction. Then P primary gives
(q1 +P )n = qn1 +P = q0 +P for some n by Lemma 3.4. Thus q1 +P ∈ nil(R)
and so R/P is a semidomainlike semiring. Conversely, let ab ∈ P , where
a, b ∈ R. There are elements q1, q2 ∈ Q such that a ∈ q1 + P and b ∈ q2 + P ,
so a = q1+c and b = q2+d for some c, d ∈ P . As ab = q1q2+q1d+cq2+cd, we
must have q1q2 ∈ P since P is a k-ideal of R. Let (q1+P )⊙ (q2+P ) = q4+P ,
where q4 ∈ Q is the unique element such that q1q2 + P ⊆ q4 + P . It follows
that q4 ∈ P ∩ Q; hence q4 + P = q0 + P by Lemma 3.4 (so q4 = q0). If
q1 + P = q0 + P , then a ∈ P . Similarly, for q2 + P = q0 + P . So we may
assume that q1 +P 6= q0 +P and q2 +P 6= q0 +P . Therefore, by assumption,
(q1 + P )m = qm1 + P = q0 + P for some m. Then am = qm1 + e ∈ P for some
e ∈ P . Thus P is primary.

Example 3.6. Let R = Z+ denote the semiring of nonnegative integers with
the usual operrations of addition and multiplication. Then by example 2.3, R
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is a partitioning semiring. Let R6 denote the ideal generated by 6. It is clear
that R6 is not a prime k-ideal. The only prime ideals in R that contain R6
are R2, R3 and {0} ∪ {x ∈ R : x > 1}. Since R2 ∩ R3 ∩ {x ∈ R : x > 1} is
equal to R6, it follows that rad(R6) = R6 is a partitioning ideal of R.

Theorem 3.7. Let I be an ideal of a partitioning semiring R such that rad(I)
is a Q-ideal of R. Then R/rad(I) is semidomainlike if and only if R/rad(R)
is a semidomain.

Proof. Let q0 be the unique element in Q such that q0 + rad(I) is the zero
in R/rad (I). Let R/rad(I) be semidomainlike, and let (q1 + rad(I)) ⊙ (q2 +
rad(I)) = q0 + rad(I) in R/rad(I) with q1 + rad(I) 6= q0 + rad(I), where
q1, q2 ∈ Q and q1q2+rad(I) ⊆ q0+rad(I). Then q1q2 ∈ rad(I), but q1 /∈ rad(I).
Since R/rad(I) is semidomainlike, rad(I) is primary by Theorem 3.5. Thus
qn2 ∈ rad(I) for some positive integer m, whence q2 ∈ rad(I), q2 + rad(I) =
q0 + rad(I) by [14, Lemma 2.3], and R/rad(I) is a semidomain. The other
implication is similar.

Corollary 3.8. Let R be a partitioning semiring such that nil(R) is a Q-
ideal of R. Then R/nil(R) is semidomainlike if and only if R/nil(R) is a
semidomain.

Proof. Apply Theorem 3.7.

Theorem 3.9. Let R be a partitioning semiring such that nil(R) is a Q-ideal
of R. If R is a semidomainlike semiring, then R/nil(I) is a semidomainlike
semiring.

Proof. By [7, Theorem 2.6] and Corollary 3.8, it is enough to show that nil(R)
is a prime ideal of R. Let a, b ∈ R such that ab ∈ nil(R) with a /∈ nil(R).
Then anbn = 0 and an 6= 0 for some n. We may assume that bn 6= 0.
Therefore bn ∈ Z(R) ⊆ nil(R) since R is semidomainlike, whence b ∈ nil(R),
as required.

Proposition 3.10. Let I be a Q-ideal of a semiring R and let u = q + a ∈
U(R) for some q ∈ Q. Then q + I ∈ U(R/I).

Proof. Let q0 (resp. q′0) be the unique element in Q such that q0 + I (resp.
q′0 + I) is the zero in R/I (resp. q′0 + I is the identity in R/I). Since u is a
semi-unit, 1 + ru = su for some r, s ∈ R. There are elements q1, q2 and q3 of
Q, and a1, b1 of I such that r = q2+b1 and s = q3+c1, so 1+qq2+ l = qq3+ l′

for some l, l′ ∈ I. It follows that

q′0 + qq2q
′

0 + q′0l = qq3q
′

0 + q′0l
′. (1)
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By (1), since q′0 + I is the identity element of R/I, we must have

q′0 + qq2 + I ⊆ qq3 + I. (2)

We show that (q′0 + I) ⊕ ((q + I) ⊙ (q2 + I) = (q + I) ⊙ (q3 + I)) (in
fact, 1R/I + q̄2q̄ = q̄3q̄, where q̄ = q + I, q̄2 = q2 + I and q̄3 = q3 + I).
There are unique elements q4, q5 and q′4 of Q such that qq2 + I ⊆ q4 + I,
q′0 + q4 + I ⊆ q5 + I and qq3 + I ⊆ q′4 + I. It suffices to show that q5 = q′4.
By assumption, there exist elements a1, a2, a3, a4, a5 and a6 of I such that
qq2 + a1 = q4 + a2, q

′

0 + q4 + a3 = q5 + a4 and qq3 + a5 = q′4 + a6. Therefore,
q′0 + q4 + a3 + a2 = q5 + a4 + a2 = q′0 + qq2 + a1 + a3. It follows from (2)
that q′0 + qq2 ∈ (q5 + I) ∩ (qq3 + I) ⊆ (q5 + I) ∩ (q′4 + I); hence q5 = q′4, as
desired.

Theorem 3.11. Let R be a strongly zero-sum partitioning semiring that R is
not a ring. If nil(R) is a Q-ideal of R, then R/nil(R) is a s-présimplifiable.

Proof. Let q0 be the unique element in Q such that q0 + nil(R) is the zero in
R/nil(R). Suppose (e + nil(R)) ⊙ (f + nil(R)) = e+ nil(R) and e + nil(R) 6=
q0 + nil(R) (so e /∈ nil(R)), where e, f ∈ Q. By Theorem 2.7, there is an
element f ′ of Q such that

(f + nil(R))⊕ (f ′ + nil(R)) = q0 + nil(R),

whence (e + nil(R)) ⊕ ((e + nil(R)) ⊙ (f ′ + nil(R))) = q0 + nil(R). Thus
e(1 + f ′) ∈ nil(R). This implies en(1 + f ′)n = 0 for some n. Since e /∈ nil(R),
we have en 6= 0, and so (1 + f ′)n ∈ Z(R) ⊆ J(R) by Theorem 2.11 and
Corollary 2.12. Since by Proposition 2.5, R is local, we get 1 + f ′ ∈ J(R);
hence f ′ ∈ U(R) and so f ′ + nil(R) ∈ U(R/nil(R)) by Proposition 3.10. Now
a semi-unit of R/nil(R) is a zero-sum of R/nil(R), so R/nil(R) is a ring by
Lemma 2.1. Hence f + nil(R) ∈ U(R/nil(R)), as required.

Let R be a non-trivial semiring. An expression P0 ⊂ P1 ⊂ ... ⊂ Pn

(note the strict inclusions) in which P0, ..., Pn are prime k-ideals of R, is
called a chain of prime k-ideals of R; the length of such a chain is the num-
ber of ”links”, that is, 1 less than the number of prime k-ideals present.
The dimension of R, denoted by dim(R), is defined to be sup{n ∈ Z+ :
there exists a chain of prime k-ideals of R of length n} if this supremum ex-
ists, and ∞ otherwise (Z+ is the set of non-negative integers).

Proposition 3.12. Assume that R is a strongly zero-sum partitioning semir-
ing that R is not a ring. If nil(R) is a Q-ideal of R, then the following hold:

(1) If (0) is not a primary ideal of R, then dim(R) ≥ 1.
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(2) If dim(R) = 0, then (0) is primary. In particular, R is a semidomain-
like semiring.

Proof. (1) Since (0) is not primary, there are elements a, b ∈ R such that
ab = 0, where b 6= 0 and an 6= 0 for all n. So a ∈ Z(R) ⊆ J(R) by Theorem 2.11
and Corollary 2.12, and hence a is contained in every maximal k-ideal of R.
Set T = {an : n is a positive integer}. Then T is a multiplicatively closed set
with nil(R)∩T = ∅. We denote by TR the set of all Q-ideals of R. Since nil(R)
is a proper Q-ideal of R, the set ∆ = {J ∈ TR : nil(R) ⊆ J and J ∩ T = ∅}
is not empty and the set ∆ of Q-ideals of R (partially ordered by inclusion)
has at least one maximal element P , and any such maximal element of ∆ is a
prime Q-ideal of R with P ∩ T = ∅. Then a /∈ P and so P is not a maximal
k-ideal. Thus P $ M for some maximal k-ideal M of R by [8, Theorem 3],
which implies dim(R) ≥ 1. (2) follows from (1) and Proposition 3.2.

Theorem 3.13. Let R be a strongly zero-sum partitioning semiring that R is
not a ring. If nil(R) is a Q-ideal of R, then the following are equivalent.

(1) dim(R) = 0.
(2) R has a unique prime k-ideal.
(3) R is semidomainlike.

Proof. (1) ⇒ (2) Since dim(R) = 0, all prime k-ideals are maximal k-ideals.
By Propositions 3.12 (2) and 3.2, we must have Z(R) = nil(R) is a prime
k-ideal, and hence a maximal k-ideal. Since nil(R) is a maximal k-ideal and
is the intersection of all prime ideals of R, we have nil(R) as the only prime
ideal in R (note that R is s-présimplifiable by Corollary 2.12).

(2) ⇒ (3) Since R is a strongly zero-sum semiring, Z(R) = nil(R) by
Propositin 2.5 and so R is a semidomainlike semiring.

(3) ⇒ (1) By proposition 3.2, we have Z(R) is the unique minimal prime
ideal of R. Since all nonsemi-units are zero-divisors, we have that Z(R) is the
unique prime k-ideal of R.
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