BLOW-UP BOUNDARY SOLUTIONS FOR QUASILINEAR ANISOTROPIC EQUATIONS

Manuel Amzoiu

Abstract

This article refers to the study of the equation $\Delta_p u = m(x)f(u)$. Our aim is to find the conditions for f and m in which the equation has at least a positive solution and in which case the solution is large.

1 Introduction

In this paper we consider the following equation

$$\begin{cases} \Delta_p \ u = m(x)f(u) & \text{in } \Omega\\ u \ge 0 & \text{in } \Omega, \end{cases}$$
(1)

where $\Delta_p u = div(|\nabla u|^{p-2}\nabla u)$ is the Laplace operator and $\Omega \in \mathbb{R}^N$ is a smooth domain(bounded or unbounded) with a compact boundary. Throughout this paper we assume that m is a non-negative function with $m \in C^{0,\alpha}(\overline{\Omega})$ if Ω is bounded, and $m \in C^{0,\alpha}_{loc}(\Omega)$ if Ω is unbounded. The non-decreasing nonlinearity f fulfills

$$(f1) \ f \in C^1[0,\infty), f' \ge 0, f(0) = 0, f > 0 \text{ in } (0,\infty) \text{ and } \sup_{s \in (0,1]} \frac{f(s)^{\frac{1}{p-1}}}{s} < \infty,$$

Key Words: Explosive solution, elliptic equation, maximum principle Mathematics Subject Classification: 35D05, 35J60, 35J70 Received: July, 2009

Accepted: January, 2010

(f2) $\int_{1}^{\infty} [F(t)]^{-\frac{1}{p}} dt < \infty$ where $F(t) = \int_{0}^{t} f(s) ds$, (f3) $\frac{f(x)}{(x+\beta)^{p-1}}$ is non-decreasing, for some $\beta \in R$.

A solution u to the problem (1) is called *large* (explosive, blow - up) if $u(x) \to \infty$ as dist $(x, \partial \Omega) \to 0$ (when Ω is bounded). In the case of $\Omega = \mathbb{R}^N$ we call u an *entire large* (explosive) solution and the condition can be written $u(x) \to \infty$ as $|x| \to \infty$.

Remark 1.1. The case p = 2 has been intensively studied for different forms of f. The results of this article extend the work of Cîrstea and Radulescu from [5] where most of the results, especially the uniqueness, are proved using the linearity of Δ . The case of Δ_p raises some problems mainly because it is not linear. We overcome this problems by using a special technique developed by Covei in [8].

The paper is organized as follows: in Section 2, we present the main results as theorems and the proofs of theorems are given in Section 3.

2 The main results

Theorem 2.1. Let Ω be a bounded domain. Assume that f satisfies the conditions $(f1), (f2), (f3), m \in C^{0,\alpha}(\overline{\Omega})$ and $g : \partial\Omega \to (0,\infty)$ is a continuous function. Then the problem

$$\begin{cases}
\Delta_p \ u = m(x)f(u) & \text{in } \Omega \\
u = g & \text{on } \partial\Omega \\
u \ge 0 & \text{in } \Omega
\end{cases}$$
(2)

has a unique positive solution.

Theorem 2.2. Consider Ω to be a bounded domain and m satisfies the next condition

(m1) for every $x_0 \in \Omega$ with $m(x_0) = 0$, there exists a domain Ω_0 which contain x_0 such that $\overline{\Omega_0} \subset \Omega$ and m > 0 on $\partial \Omega_0$. Then the problem (1) has a positive large solution.

Theorem 2.3. Let's assume that the problem (1) has at least one solution for $\Omega = \mathbb{R}^N$. If m satisfies the modified condition (m1)' there exists a sequence of smooth bounded domains $(\Omega_n)_{n\geq 1}$ such that $\overline{\Omega_n} \subset \Omega_{n+1}$, $\mathbb{R}^N = \bigcup_{n=1}^{\infty} \Omega_n$ and (m1) holds in Ω_n , for every $n \geq 1$, then a maximal solution U of (1) exists. If m satisfies the additional condition $(m2) \int_0^{\infty} r \Phi(r) dr < \infty$ where $\Phi(r) = \max_{|x|=r} m(x)$, then U is an entire large solution. **Theorem 2.4.** If the problem (1) has at least a solution for a unbounded $\Omega \neq \mathbb{R}^N$ and m satisfies (m1)', then there exists a maximal solution U for the problem (1). If m satisfies (m2), with $\Phi(r) = 0$ for $r \in [0, \mathbb{R}]$ and $\Omega = \mathbb{R}^N \setminus \overline{B(0, \mathbb{R})}$, then U is a large solution that blows-up at infinity.

3 Proof of results

3.1 Proof of Theorem 2.1

For start it is easy to observe that the function $u^+(x) = n$ is a super-solution for the problem (2), when n is sufficiently large. In order to find a subsolution, we consider an auxiliary problem:

$$\Delta_p v = \Phi(r), v > 0 \text{ in } A(\underline{r}, \overline{r}) = \{ x \in \mathbb{R}^N, \underline{r} < |x| < \overline{r} \},$$
(1)

where

$$\underline{r} = \inf\{\tau > 0; \partial B(0,\tau) \bigcap \overline{\Omega} \neq \emptyset\}, \overline{r} = \sup\{\tau > 0; \partial B(0,\tau) \bigcap \overline{\Omega} \neq \emptyset\},$$
$$\Phi(r) = \max_{|x|=r} m(x) \text{ for any } r \in [\underline{r}, \overline{r}].$$

The assumptions on f and g imply

$$g_0 = \min_{\partial \Omega} g > 0$$
 and $\lim_{z \searrow 0} \int_z^{g_0} \frac{dt}{f(t)^{\frac{1}{p-1}}} = \infty.$

Using these relations, we prove the existence of a positive number c such that

$$\max_{\partial\Omega} v = \int_{c}^{g_0} \frac{dt}{f(t)^{\frac{1}{p-1}}}.$$
(2)

Now we can define u_{-} such that

$$v(x) = \int_{c}^{u_{-}(x)} \frac{dt}{f(t)^{\frac{1}{p-1}}}, \text{ for all } x \in \Omega.$$
(3)

Next we are going to prove that u_{-} is a subsolution. First we observe that

$$u_{-} \in C^{1,\alpha}(\Omega)$$
 and $u_{-} \ge c$ in Ω .

The way that u_{-} is defined let us say that

$$\nabla v = \frac{1}{f(u_-)^{\frac{1}{p-1}}} \cdot \nabla u_-.$$

It means

$$\nabla v |\nabla v|^{p-2} = \frac{1}{f(u_-)} \cdot \nabla u_- |\nabla u_-|^{p-2}.$$

Using the formula

$$div(u\vec{v}) = \nabla u\vec{v} + udiv\vec{v}$$

we find that

$$\Delta_p v = div(\nabla v | \nabla v|^{p-2}) = div(\frac{1}{f(u_-)} \cdot \nabla u_- | \nabla u_- |^{p-2}) = -\frac{f'(u_-)}{f^2(u_-)} \cdot |\nabla u_-|^2 | \nabla u_- |^{p-2} + \frac{1}{f(u_-)} \cdot \Delta_p u_-$$

and the relation can be written

$$m(x) \le \Delta_p v \le \frac{1}{f(u_-)} \cdot \Delta_p u_-.$$

This implies that $\Delta_p u_- \ge m(x)f(u_-)$ and using $u_-(x) \le g(x)$ it follows that u_- is subsolution. So far we have proved that the equation (1) has a sub- and supersolution which imply that the equation has at least a solution. To complete the proof of this theorem we have to show the uniqueness of the solution.

In order to prove its uniqueness, we consider that the equation (1) has two solutions u and v. It is sufficient to show that $u \leq v$ or, equivalently, $\ln(u(x) + \beta) \leq \ln(v(x) + \beta)$, for any $x \in \Omega$. We assume the contrary. So we have

$$\lim_{|x| \to \partial \Omega} (\ln(u(x) + \beta) - \ln(v(x) + \beta)) = 0$$

and we deduce that

$$\max(\ln(u(x) + \beta) - \ln(v(x) + \beta)) \text{ on } \Omega$$

exists and is positive. We denote this point x_0 . At x_0 we have

$$\nabla(\ln(u(x) + \beta) - \ln(v(x) + \beta)) = 0,$$

 \mathbf{SO}

$$\frac{1}{u(x_0)+\beta} \cdot \nabla u(x_0) = \frac{1}{v(x_0)+\beta} \cdot \nabla v(x_0),$$

which implies that

$$\frac{1}{(u(x_0)+\beta)^{p-2}} \cdot |\nabla u(x_0)|^{p-2} = \frac{1}{(v(x_0)+\beta)^{p-2}} \cdot |\nabla v(x_0)|^{p-2}.$$
 (4)

The condition (f3) yields to

$$\frac{f(u(x_0))}{(u(x_0)+\beta)^{p-1}} > \frac{f(v(x_0))}{(v(x_0)+\beta)^{p-1}}.$$

We observe $0 \ge \Delta(ln(u(x_0) + \beta) - ln(v(x_0) + \beta)))$, which yields to

$$\frac{\Delta(u(x_0))}{u(x_0) + \beta} \le \frac{\Delta v(x_0)}{v(x_0) + \beta}.$$

And by (4) it follows that

$$\frac{1}{(u(x_0)+\beta)^{p-1}} \cdot |\nabla u(x_0)|^{p-2} \Delta u(x_0) \le \frac{1}{(v(x_0)+\beta)^{p-1}} \cdot |\nabla v(x_0)|^{p-2} \Delta v(x_0).$$
(5)

Since

$$|\nabla \ln(u(x_0) + \beta)|^{p-2} = \frac{1}{(u(x_0) + \beta)^{p-2}} \cdot |\nabla u(x_0)|^{p-2},$$

it results that

$$\nabla(|\nabla \ln(u(x_0) + \beta)|^{p-2}) = -(p-2)\frac{|\nabla u(x_0)|^{p-2}(u(x_0) + \beta)^{p-3}}{(u(x_0) + \beta)^{2(p-2)}} \cdot \nabla u(x_0) + \frac{\nabla(|\nabla u(x_0)|^{p-2})}{(u(x_0) + \beta)^{p-2}}.$$

We conclude that

$$\nabla(|\nabla \ln(u(x_0) + \beta)|^{p-2}) \cdot \nabla \ln(u(x_0) + \beta) = -(p-2)\frac{|\nabla u(x_0)|^{p-2}|\nabla u(x_0)|^2}{(u(x_0) + \beta)^p} + \frac{\nabla(|\nabla u(x_0)|^{p-2}) \cdot \nabla u(x_0)}{(u(x_0) + \beta)^{p-1}}$$
(6)

and

$$|\nabla \ln(u(x_0) + \beta)|^{p-2} \cdot \Delta \ln(u(x_0) + \beta) = \frac{|\nabla u(x_0)|^{p-2} \Delta u(x_0)}{(u(x_0) + \beta)^{p-1}} - \frac{|\nabla u(x_0)|^p}{(u(x_0) + \beta)^p}.$$

By (4), (5) and (6) we have

$$0 \ge \Delta_p \ln(u(x_0) + \beta) - \Delta_p \ln(v(x_0) + \beta)$$

= $\frac{\Delta_p u(x_0)}{(u(x_0) + \beta)^{p-1}} - (p-1) \frac{|\nabla u(x_0)|^p}{(u(x_0) + \beta)^p} - \frac{\Delta_p v(x_0)}{(v(x_0) + \beta)^{p-1}} + (p-1) \frac{|\nabla v(x_0)|^p}{(v(x_0) + \beta)^p}$
= $\frac{\Delta_p u(x_0)}{(u(x_0) + \beta)^{p-1}} - \frac{\Delta_p v(x_0)}{(v(x_0) + \beta)^{p-1}} = m(x_0) (\frac{f(u(x_0))}{(u(x_0) + \beta)^{p-1}} - \frac{f(v(x_0))}{(v(x_0) + \beta)^{p-1}}) > 0$

and that is a contradiction. Hence $u \le v$. By symmetry, we also obtain $v \le u$ and the proof of its uniqueness is now complete.

3.2 Proof of Theorem 2.2

To complete the proof of Theorem 2.2, we need the next auxiliary result

Lemma 3.1. If the conditions (f1) and (f2) are fulfilled, then

1

$$\int_{1}^{\infty} \frac{1}{f(t)^{\frac{1}{p-1}}} < \infty$$

Proof. Being a low risk of confusion, we will denote B = B(0, R) for some fixed R > 0. By Theorem 2.1, we find that the problem

$$\begin{cases}
\Delta_p \ u_n = f(u_n) & \text{in } B \\
u_n = n & \text{on } \partial B \\
u \ge 0 & \text{in } B
\end{cases}$$
(7)

has a unique solution. The fact that f is non-decreasing implies, by the maximum principle, that $u_n(x)$ increases with n, when $x \in B$ is fix.

The first thing on our agenda is to try to prove that (u_n) is uniformly bounded in every compact subdomain of B. In order to achieve that, let $K \subset B$ be any compact set and $d := \operatorname{dist}(K, \partial B)$. Then

$$0 < d \le \operatorname{dist}(x, \partial B), \text{ for any } x \in K.$$
 (8)

By Proposition 1 in [1], there exists a continuous, non-increasing function $\mu: R_+ \to R_+$ such that

$$u_n(x) \leq \mu(\operatorname{dist}(x, \partial B)), \text{ for any } x \in K_1$$

and, using (8), the first part of the proof follows. This allows us to define $u(x) := \lim_{n \to \infty} u_n(x)$. The next step is to show that u is a large solution to

$$\Delta_p u = f(u) \text{ in } B. \tag{9}$$

To complete this step we make a change of variables, putting u(x) = u(r), r = |x| and the equation (9) becomes

$$(p-1)(u')^{p-2}u'' + (u')^{p-1}\frac{N-1}{r} = f(u).$$

Multiplying this by r^{N-1} the equation can be rewritten

$$(r^{N-1}(u')^{p-1})' = f(u)r^{N-1}.$$
(10)

Integrating from 0 to r, we obtain

$$(u')^{p-1} = r^{1-N} \int_0^r f(u(s)) s^{N-1}, \ 0 < r < R.$$

Taking into account the fact that f is non-decreasing,

$$u' \le [r^{1-N}f(u(r))\int_0^r s^{N-1}ds]^{\frac{1}{p-1}} = (\frac{r}{N}f(u))^{\frac{1}{p-1}}, \ 0 < r < R.$$
(11)

It results that u is a non-decreasing function and, in the same way, that u_n is non-decreasing on (0, R). It remains to prove that $u(r) \to \infty$ as $r \nearrow R$. We achieve that arguing by contradiction, assuming that there exists C > 0 such that u(r) < C for all $0 \le r < R$. Let $N_1 \ge 2C$ be fix. Using the facts that u_{N_1} is monotone and $u_{N_1}(r) \to N_1$ we find $r_1 \in (0, R)$ such that $C \le u_{N_1}(r)$, for $r \in [0, R)$. Hence

$$C \le u_{N_1}(r) \le u_{N_1+1}(r) \le \dots \le u_n(r) \le \dots$$

Passing to the limit $n \to \infty$, it follows that u(r) > C, which is a contradiction. Integrating (11) on (0, R) and taking $r \nearrow R$ we obtain

$$\int_{u(0)}^{\infty} \frac{1}{f(t)^{\frac{1}{p-1}}} \le \frac{p-1}{pN^{\frac{1}{p-1}}} \cdot R^{\frac{p}{p-1}},$$

which completes the proof of our lemma.

Proof of theorem 2.2. Using Theorem (2.1), the boundary value problem

$$\begin{cases}
\Delta_p \ v_n = m(x)f(v_n) & \text{in } \Omega \\
v_n = n & \text{on } \partial\Omega \\
v_n \ge 0 & \text{in } \Omega
\end{cases}$$
(12)

has a unique positive solution, for any $n \ge 1$. We claim that (a) for all $x_0 \in \Omega$ there exists an open set $\vartheta \subset \subset \Omega$ containing x_0 and $M_0 = m_0(x_0) > 0$ such that $v_n \le M_0$ in ϑ , for any $n \ge 1$; (b) $\lim_{x\to\partial\Omega} v(x) = \infty$, where $v(x) = \lim_{n\to\infty} v_n(x)$.

The first thing to be observed is that the sequence v_n is non-decreasing. Using again the Theorem (2.1), the problem

$$\begin{cases}
\Delta_p \ \zeta = ||m||_{\infty} f(\zeta) & \text{in } \Omega \\
\zeta = 1 & \text{on } \partial\Omega \\
\zeta > 0 & \text{in } \Omega
\end{cases}$$
(13)

has a unique solution. Then we obtain with the maximum principle

 $0 < \zeta \le v_1 \le v_2 \le \dots \le v_n \le \dots \text{ in } \Omega.$

We observe that (a) and (b) are sufficient for completing the proof. From (a) we obtain that the sequence (v_n) is uniformly bounded on every compact subset of Ω . Then, with the latest relation and (b), we prove that v is a solution.

To prove (a) we distinguish two cases:

Case $m(x_0) > 0$: By the continuity of m, there exists a ball $B = B(x_0, r) \subset \Omega$ such that

$$m_0 := \min_{x \in \overline{B}} m(x) > 0.$$

Let w be a positive solution to the problem

$$\begin{cases} \Delta_p \ w = m_0 f(w) & \text{in } \Omega\\ w(x) \to \infty & \text{as } x \to \partial \Omega. \end{cases}$$
(14)

By the maximum principle, it follows that $v_n \leq w$ in B. Furthermore, w is bounded in $\overline{B(x_0, \frac{r}{2})}$. We denote $M_0 = \sup_{\vartheta} w$, where $\vartheta = B(x_0, \frac{r}{2})$ and we obtain (a).

Case $m(x_0) = 0$: The boundedness of Ω and (m1) implies that there exists a domain $\vartheta \subset \Omega$, which contains x_0 such that m > 0 on $\partial\vartheta$. Then for any $x \in \partial\vartheta$ there exists a ball $B(x,r) \subset \Omega$ and a constant $M_x > 0$ such that $v_n \leq M_x$ on $B(x, \frac{r_x}{2})$, for any n. But $\partial\vartheta$ is compact and it can be covered with a finite number of balls, $B(x_i, \frac{r_{x_i}}{2})$, $i = 1, ..., k_0$. Taking $M_0 = \max(M_{x_1}, ..., M_{x_{k_0}})$ and applying the maximum principle we obtain $v_n \leq M_0$ and (a) follows.

We now consider the problem

1

$$\begin{cases}
\Delta_p \ z = -m(x) & \text{in } \Omega \\
z = 0 & \text{on } \partial\Omega \\
z \ge 0 & \text{in } \Omega
\end{cases}$$
(15)

that has a unique positive solution (by the maximum principle from [8]). To prove (b) it is sufficient to show

$$\int_{v(x)}^{\infty} \frac{dt}{f(t)^{\frac{1}{p-1}}} \le z(x), \text{ for any } x \in \Omega.$$
(16)

By Lemma 3.1, the left side of (16) is well defined in Ω .

For an easier following of the prof of (16), we denote $\overline{u} = \int_{v_n(x)}^{\infty} f(t)^{-\frac{1}{p-1}} dt$ and $\overline{v} = z(x)$. We want to show that $\overline{u} \leq \overline{v}$ or, equivalently, $\ln(\overline{u}(x) + \beta) \leq \ln(\overline{v}(x) + \beta)$, for any $x \in \Omega$. We assume the contrary. So we have

$$\lim_{|x|\to\partial\Omega} (\ln(\overline{u}(x)+\beta) - \ln(\overline{v}(x)+\beta)) = 0$$

and we deduce that

$$\max(\ln(\overline{u}(x) + \beta) - \ln(\overline{v}(x) + \beta)) \text{ on } \partial\Omega$$

exists and is positive. Let us denote this point x_0 . At x_0 we have

$$\nabla(\ln(\overline{u}(x) + \beta) - \ln(\overline{v}(x) + \beta)) = 0,$$

 \mathbf{SO}

$$\frac{1}{\overline{u}(x_0) + \beta} \cdot \nabla \overline{u}(x_0) = \frac{1}{\overline{v}(x_0) + \beta} \cdot \nabla \overline{v}(x_0)$$

which implies

$$\frac{1}{(\overline{u}(x_0) + \beta)^{p-2}} \cdot |\nabla \overline{u}(x_0)|^{p-2} = \frac{1}{(\overline{v}(x_0) + \beta)^{p-2}} \cdot |\nabla \overline{v}(x_0)|^{p-2}.$$
 (17)

The condition (f3) yields to

$$-\frac{f(\overline{u}(x_0))}{(\overline{u}(x_0)+\beta)^{p-1}} > \frac{f(\overline{v}(x_0))}{(\overline{v}(x_0)+\beta)^{p-1}}.$$

Following the same thinking as in the proof of Theorem 2.1 , and taking into account that

$$\Delta_p \overline{u} = div(\nabla \overline{v_n} |\nabla \overline{v_n}|^{p-2}) = div(-\frac{1}{f(v_n)} \cdot \nabla v_n |\nabla v_n|^{p-2}) = \frac{f'(v_n)}{f^2(v_n)} \cdot |\nabla v_n|^2 |\nabla v_n|^{p-2} - \frac{1}{f(v_n)} \cdot \Delta_p v_n,$$

we have

$$0 \ge \Delta_p ln(\overline{u}(x_0) + \beta) - \Delta_p ln(\overline{v}(x_0) + \beta) =$$

$$= \frac{\Delta_p \overline{u}(x_0)}{(\overline{u}(x_0) + \beta)^{p-1}} - (p-1) \frac{|\nabla \overline{u}(x_0)|^p}{(\overline{u}(x_0) + \beta)^p} - \frac{\Delta_p \overline{v}(x_0)}{(\overline{v}(x_0) + \beta)^{p-1}} + (p-1) \frac{|\nabla \overline{v}(x_0)|^p}{(\overline{v}(x_0) + \beta)^p} =$$
$$= \frac{\Delta_p \overline{u}(x_0)}{(\overline{u}(x_0) + \beta)^{p-1}} - \frac{\Delta_p \overline{v}(x_0)}{(\overline{v}(x_0) + \beta)^{p-1}} =$$

$$= \frac{\frac{f'(v_n(x_0))}{f^2(v_n(x_0))} \cdot |\nabla v_n(x_0)|^2 |\nabla v_n(x_0)|^{p-2} - \frac{1}{f(v_n(x_0))} \cdot \Delta_p v_n(x_0)}{(\overline{u}(x_0) + \beta)^{p-1}} - \frac{\Delta_p z(x_0)}{(\overline{v}(x_0) + \beta)^{p-1}} > \\ > \frac{\frac{f'(v_n(x_0))}{f^2(v_n(x_0))} \cdot |\nabla v_n(x_0)|^p - \frac{1}{f(v_n(x_0))} \cdot m(x_0)f(v_n(x_0)}{(\overline{u}(x_0) + \beta)^{p-1}} + \frac{m(x_0)}{(\overline{u}(x_0) + \beta)^{p-1}} = \\ = \frac{\frac{f'(v_n(x_0))}{f^2(v_n(x_0))} \cdot |\nabla v_n(x_0)|^p}{(\overline{u}(x_0) + \beta)^{p-1}} > 0$$

and that is a contradiction. Hence the assumption is false and the proof is now complete.

3.3 Proof of Theorem 2.3

Now we consider the following boundary value problem

$$\begin{cases}
\Delta_p \ v_n = m(x)f(v_n) & \text{in } \Omega \\
v_n \to \infty & \text{as } x \to \partial\Omega \\
v_n > 0 & \text{in } \Omega
\end{cases}$$
(18)

Again, using Theorem 2.1, the above problem has a solution. Since $\overline{\Omega_n} \subset \Omega$ applying the maximum principle we obtain $v_n \geq v_{n+1}$ in Ω_n . Since $R^N = \bigcup_{n=1}^{\infty} \Omega_n$ and $\overline{\Omega_n} \subset \Omega$ it follows that there exists $n_0 = n_0(x_0)$ such that $x_0 \in \Omega_n$ for all $n \geq n_0$ and $x_0 \in R^N$. We can define $U(x_0) = \lim_{n \to \infty} v_n(x_0)$. The regularity of U as in [9] is $U \in C_{loc}^{1,\alpha}(R^N)$ and $\Delta_p U = m(x)f(U)$. To prove that U is the maximal solution, let u be a arbitrary solution of (1).

To prove that U is the maximal solution, let u be a arbitrary solution of (1). By the maximum principle, we obtain $v_n \ge u$ in Ω_n , for all $n \ge 1$. It follows that $U \ge u$ in \mathbb{R}^N .

We prove now that if m satisfies (m2), then U blows-up at infinity. For that is sufficient to find $w \in C^2(\mathbb{R}^N)$ such that $U \ge w$ and $w(x) \to \infty$ as $|x| \to \infty$. By Theorem 2.1, we obtain that the problem

By Theorem 2.1, we obtain that the problem

$$\begin{cases} \Delta_p \ z = \Phi(r), \quad r = |x| < \infty \\ z(r) \to 0 \quad \text{as } |x| \to \infty \end{cases}$$
(19)

has a unique positive solution.

We define a function w impliciently by

$$z(x) = \int_{w(x)}^{\infty} \frac{dt}{f(t)^{\frac{1}{p-1}}}.$$
(20)

At the beginning of the article the condition imposed to f yields to

$$\lim_{t \searrow 0} \frac{f(t)^{\frac{1}{p-1}}}{t} \le C \text{ for a constant } C$$

which gives us the possibility to choose $\delta > 0$ such that

$$\frac{f(t)^{\frac{1}{p-1}}}{t} < C \text{ for all } 0 < t < \delta$$

We obtain

$$f(t)^{\frac{1}{p-1}} < C \cdot t$$

and

$$\frac{1}{f(t)^{\frac{1}{p-1}}} > \frac{1}{C} \cdot \frac{1}{t}.$$

This implies that for every $s \in (0, \delta)$ we have

$$\int_{s}^{\delta} \frac{dt}{f(t)^{\frac{1}{p-1}}} > \frac{1}{C} \int_{s}^{\delta} \frac{dt}{t} = \frac{1}{C} (\ln \delta - \ln s).$$

Passing to the limit it follows that $\lim_{s\searrow 0} \int_s^{\delta} f(t)^{-\frac{1}{p-1}} dt = \infty$ and we have the possibility to define w as in (20).

3.4 Proof of Theorem 2.4

The fact that $\Omega \neq R^N$ forces us to make some changes in the argument from theorem 2.3.

Let $(\Omega_n)_{n\geq 1}$ be a sequence of bounded domains given by (m1)'. For some n let v_n be a positive solution of (12). Set $U(x) = \lim_{n\to\infty} v_n(x)$. We find that U is a maximal solution to (2). When $\Omega = \mathbb{R}^N \setminus \overline{B(0,R)}$, we suppose that (m2) is fulfilled with $\Phi(r) = 0$ for $r \in [0, R]$. To prove that U is a maximal solution is enough to show that a positive function $w \in C(\mathbb{R}^N \setminus \overline{B(0,R)})$ with $U \geq w$ in $\mathbb{R}^N \setminus \overline{B(0,R)}$ and $w(x) \to \infty$ as $|x| \to \infty$ and as $|x| \searrow \mathbb{R}$. As in Theorem 2.3, z is the positive solution to the problem

$$\begin{cases}
\Delta_p \ z = \Phi(r) & \text{if } |x| = r > R \\
z(x) \to 0 & \text{as } x \to \infty \\
z(x) \to 0 & \text{as } |x| \searrow R.
\end{cases}$$
(21)

The uniqueness of z follows from the maximum principle.

1

Acknowledgements: The author thanks professor V. Radulescu at the University of Craiova for his valuable suggestions on the subject.

References

- Ambrosetti A. and Wang Z.Q., "Positive solutions to a class of quasilinear elliptic equations on R", Discrete Contin. Dynam. Systems, Ser. A, 9, p. 55-68, 2003.
- [2] Bandle C. and Giarrusso E., " Boundary blow-up solutions for semilinear elliptic equations with nonlinear gradient terms", Advances in Differential Equations, 1, p. 133-150, 1996.
- [3] Bandle C. and Marcus M., "Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior", J. Analize Math., 58, p. 9-24, 1992.
- [4] Cabré X., "Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations", Discrete Contin. Dynam. Systems, Ser. A, 8, p. 331-359, 2002.
- [5] Cirstea F. and Radulescu V., "Blow-up boundary solutions of semilinear elliptic problems", Nonlinear Anal., 48, p. 521-534, 2002.
- [6] Cirstea F. and Radulescu V., "Existence and uniqueness of blow-up solutions for a class of logistic equations", Commun. Contemp. Math., 3, p. 559-586, 2002.
- [7] Cirstea F. and Radulescu V., "Uniqueness of the blow-up boundary solutions of logistic equations with absorbtion", C.R. Acad. Sci. Paris, Ser. I, 335, p. 447-452, 2002.
- [8] Covei D. " Existence and uniqueness of positive solutions to a quasilinear elliptic problem in R^N", *Electronic Journal of Differential Equations*, No. 139, p. 1-15, 2005.
- [9] Di Benedetto E., " $C^{1,\alpha}$ local regularity of weak solutions of degenerate elliptic Equations", Non linear Anal. TMA, Vol 7, N8, 1983.
- [10] Fan X., Zhao Y., Huang G., "Existence of solutions for the p-Laplacian with crossing nonlinearity", *Discrete Contin. Dynam. Systems, Ser. A*, 8, p. 1019-1024, 2002.
- [11] deFigueiredo D.G. and Ding Y. H., "Solutions of a nonlinear Schrödinger equation", Discrete Contin. Dynam. Systems, Ser. A, 8, p. 563-584, 2002.

- [12] Galaktionov V. and Vazquez J.-L., "The problem of blow-up in nonlinear parabolic equations", Discrete Contin. Dynam. Systems, Ser. A, 8, p. 399-433, 2002.
- [13] Gaudenzi M., Habets P. and Zanolin F., "Positive solutions of superlinear boundary value problems with singular indefinite weight", *Commun. Pure Appl. Anal.*, 2, p. 403-414,2003.
- [14] Ghergu M., Niculescu C., and Radulescu V., "Explosive solutions of elliptic equations with absorption and nonlinear gradient term", Proc. Indian Acad. Sci(Math. Sciences), 112, p. 441-451, 2002.
- [15] Ghergu M. and Radulescu V., "Explosive solutions of semilinear elliptic systems with nonlinear gradient term", RACSAM Revista Real Academia de Ciencias (Serie A, Matemticas) 97, p. 437-445, 2003.
- [16] Ghergu M. and Radulescu V., "Nonradial blow-up solutions of sublinear elliptic equations with gradient term", Commun. Pure Appl. Anal., 3, p. 465-474, 2004.
- [17] Giarrusso E., " On blow-up solutions of a quasilinear elliptic equation", Math. Nachr, 213, p. 89-104, 2000.
- [18] Marcus M., " On solutions with blow-up at the boundary for a class of similinear elliptic equations", Developments in Partial Differential Equations and Aplications to Mathematical Physics Plenum Press, New York, p. 65-77, 1992.

University of Craiova, Department of Mathematics, Romania e-mail: m_amzoiu@yahoo.com