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A THEOREM ON COMMON FIXED

POINTS OF EXPANSION TYPE MAPPINGS

IN CONE METRIC SPACES

Ilker S. ahin and Mustafa Telci

Abstract

In this paper, we present a common fixed point theorem for expan-
sion type mappings in complete cone metric spaces. This result general-
izes and extends the theorem of S. Z. Wang, B. Y. Li and Z. M. Gao and
K. Iseki [8, Theorem 4] for a pair of mappings to cone metric spaces.

1 Introduction

In [3], Guang and Xian generalized the concept of a metric space, replacing
the set of real numbers by an ordered Banach space and proved some fixed
point theorems for mapping satisfying various contractive conditions. Re-
cently, Rezapour and Hamlbarani [6] generalized some results of [3] by omitting
the assumption of normality in the results. Also many authors proved some
fixed point theorems for contractive type mappings in cone metric [1, 2, 4, 5, 7]
spaces.

The main purpose of this paper is to present a common fixed point result
for expansion type mappings in complete cone metric spaces.

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers and by
R the set of real numbers.
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Definition 2.1 Let E be a real Banach space and P a subset of E. Then P
is called a cone if:

(i) P is closed, nonempty and satisfies P 6= {0},

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P ,

(iii) x ∈ P and −x ∈ P implies x = 0.

Given a cone P ⊆ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y − x ∈ P . We shall write x < y if x ≤ y and x 6= y, and
x ≪ y if y − x ∈ intP , where intP is the interior of P . The cone P is called

normal if there is a number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖.
The least positive number satisfying the above condition is then called the
normal constant of P .

Lemma 2.1 ([9]) Let E be a real Banach space with a cone P . Then:

(i) If x ≤ y and 0 ≤ a ≤ b, then ax ≤ by for x, y ∈ P ,

(ii) If x ≤ y and u ≤ v, then x+ u ≤ y + v,

(iii) If xn ≤ yn for each n ∈ N, and limn→∞ xn = x, limn→∞ yn = y then

x ≤ y.

Lemma 2.2 ([7]) If P is a cone, x ∈ P, α ∈ R, 0 ≤ α < 1, and x ≤ αx, then
x = 0.

In the following definition, we suppose that E is a real Banach space, P is
a cone in E with intP 6= ∅ and ≤ is partial ordering with respect to P .

Definition 2.2 Let X be a non-empty set. Suppose the mapping d : X×X →
E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

(d2) d(x, y) = d(y, x) for all x, y ∈ X,

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric
space. This definition is more general than that of a metric space.
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Example 2.1 Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2, X = R2 and
d : X ×X → E defined by

d(x, y) = d((x1, x2), (y1, y2)) = (max{|x1−y1|, |x2−y2|}, αmax{|x1−y1|, |x2−y2|}),

where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

3 Definitions and Lemmas

In this section we shall give some definitions and lemmas.

Definition 3.1([3]) Let (X, d) be a cone metric space. A sequence {xn} in X
is said to be:

(a) A convergent sequence if for every c ∈ E with 0 ≪ c, there is N ∈ N
such that for all n ≥ N , d(xn, x) ≪ c for some fixed x in X. We denote this
by limn→∞ xn = x or xn → x, n → ∞.

(b) A Cauchy sequence if for every c ∈ E with 0 ≪ c, there is N ∈ N such
that for all n,m ≥ N , d(xn, xm) ≪ c.

A cone metric space (X, d) is said to be complete if every Cauchy sequence
is convergent in X.

The following lemma was recently proved in ([2]), by omitting the normality
condition.

Lemma 3.1 Let (X, d) be a cone metric space. If {xn} is a convergent se-

quence in X, then the limit of {xn} is unique.

The proof of the following lemma is straighforward and is omitted.

Lemma 3.2 Let (X, d) be a cone metric space, {xn} be a sequence in X.

If {xn} converges to x and {xnk
} is any subsequence of {xn}, then {xnk

}
converges to x.

Lemma 3.3 Let (X, d) be a cone metric space, {xn} be a sequence in X and

x ∈ X. If there exists a sequence {cn} in E with cn → 0 as n → ∞ such that

d(xn, x) ≤ cn for all n ∈ N, then {xn} converges to x.

Proof. For c ∈ E with 0 ≪ c, choose ε > 0 such that c +Nε(0) ⊆ P , where
Nε(0) = {y ∈ E : ‖y‖ < ε}. Since cn → 0 (n → ∞), there exists a natural
number N such that ‖cn‖ < ε, for all n ≥ N . Thus we have cn ∈ Nε(0) and
−cn ∈ Nε(0), for all n ≥ N . Hence c − cn ∈ c +Nε(0) and so c − cn ∈ intP ,
for all n ≥ N . Thus, cn ≪ c for all n ≥ N . Then by hypothesis, d(xn, x) ≪ c,
for all n ≥ N . It follows that {xn} converges to x.

Lemma 3.4 ([7]) Let (X, d) be a cone metric space and {xn} be a sequence

in X. If there exists a sequence {an} in R with an > 0 for all n ∈ N and



332 Ilker S.ahin and Mustafa Telci

∑
an < ∞, which satisfies d(xn+1, xn) ≤ anM for all n ∈ N and for some

M ∈ E with M ≥ 0, then {xn} is a Cauchy sequence in (X, d).

Definition 3.2 Let E and F be reel Banach spaces and P and Q be cones
on E and F , respectively. Let (X, d) and (Y, ρ) be cone metric spaces, where
d : X × X → E and ρ : Y × Y → F . A function f : X → Y is said to be
continuous at x0 ∈ X, if for every c ∈ F with 0 ≪ c, there exists b ∈ E with
0 ≪ b such that, ρ(f(x), f(x0)) ≪ c whenever x ∈ X and d(x, x0) ≪ b.

If f is continuous at every point of X, then it is said to be continuous on
X.

We now prove the following lemma.

Lemma 3.5 Let (X, d) and (Y, ρ) be cone metric spaces as in Definition 3.2. A

function f : X → Y is continuous at a point x0 ∈ X if and only if whenever a

sequence {xn} in X converges to x0, the sequence {f(xn)} converges to f(x0).

Proof. Suppose that f is continuous at x0 ∈ X and let {xn} be a sequence in
X converging to x0. We shall show that {f(xn)} converges to f(x0). Since f
is continuous at x0, given c ∈ F with 0 ≪ c we can find b ∈ E with 0 ≪ b such
that x ∈ X and d(x, x0) ≪ b implies ρ(f(x), f(x0)) ≪ c. Since the sequence
{xn} converges x0, there exists N such that d(xn, x0) ≪ b for all n ≥ N .
Therefore for all n ≥ N , ρ(f(xn), f(x0)) ≪ c. Thus limn→∞ f(xn) = f(x0).

Now suppose that for every sequence {xn} in X converging to x0, the
sequence {f(xn)} converges to f(x0). We shall show that f is continuous at
x0. Suppose this is false. Then there exists c ∈ F with 0 ≪ c such that
for every b ∈ E with 0 ≪ b there exists x ∈ X such that d(x, x0) ≪ b but
c − ρ(f(x), f(x0)) /∈ intQ. For fixed 0 ≪ b, we have 0 ≪ b

n
for all n ∈ N.

Therefore we can find a sequence {xn} in X such that d(xn, x0) ≪ b

n
but

c − ρ(f(xn), f(x0)) /∈ intQ for n = 1, 2, . . . . Since b

n
→ 0 as n → ∞, by

Lemma 3.3, the sequence {xn} converges to x0. But the sequence {f(xn)}
does not converges to f(x0), because of c − ρ(f(xn), f(x0)) /∈ intQ. This
contradicts the assumption and the proof is complete.

4 Main result

In this section we prove a common fixed point theorem for expansion type
mappings in complete cone metric spaces.

Theorem 4.1 Let (X, d) be a complete cone metric space and P be a cone. Let

f and g be surjective self-mappings of X satisfying the following inequalities

d(gfx, fx) ≥ ad(fx, x), (1)

d(fgx, gx) ≥ bd(gx, x) (2)
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for all x in X, where a, b > 1. If either f or g is continuous, then f and g
have a common fixed point.

Proof. Let x0 be an arbitrary point in X. Since f and g are surjective
mappings, there exist points x1 ∈ f−1(x0) and x2 ∈ g−1(x1). Continuing
in this way, we obtain the sequence {xn} with x2n+1 ∈ f−1(x2n) and x2n+2 ∈
g−1(x2n+1).

Note that if xn = xn+1 for some n, then xn is a fixed point of f and g.
Indeed, if x2n = x2n+1 for some n ≥ 0, then x2n is a fixed point of f. On the
other hand, we have from equation (2) that

0 = d(x2n, x2n+1) = d(fx2n+1, gx2n+2) = d(fgx2n+2, gx2n+2)

≥ bd(x2n+1, x2n+2)

which implies −bd(x2n+1, x2n+2) ∈ P . Also we have bd(x2n+1, x2n+2) ∈ P .
Hence bd(x2n+1, x2n+2) = 0 and so x2n+1 = x2n+2, since b > 1. Thus, x2n is
a common fixed point of f and g. If x2n+1 = x2n+2 for some n ≥ 0, similarly,
by using inequality (1) leads to x2n+1 is a common fixed point of f and g.

Now we suppose that xn 6= xn+1 for all n. Using inequality (1), we have

d(x2n+1, x2n+2) = d(gx2n+2, fx2n+3) = d(gfx2n+3, fx2n+3)

≥ ad(x2n+2, x2n+3). (3)

Similarly, using inequality (2) we have

d(x2n, x2n+1) = d(fx2n+1, gx2n+2) = d(fgx2n+2, gx2n+2)

≥ bd(x2n+1, x2n+2). (4)

Suppose that α = min{a, b}. Then from inequalities (3) and (4) we have

d(x2n+2, x2n+3) ≤ α−1d(x2n+1, x2n+2)

and

d(x2n+1, x2n+2) ≤ α−1d(x2n, x2n+1).

Thus, we obtain

d(xn+1, xn+2) ≤ α−1d(xn, xn+1)

for n = 0, 1, 2, . . . and it follows that

d(xn, xn+1) ≤ α−nd(x0, x1).
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for n = 1, 2, 3, . . .. Since
∑

∞

n=0 α
−n < ∞, it follows from Lemma 3.4 that

{xn} is a Cauchy sequence in the complete cone metric space (X, d) and so
has a limit z in X.

Now we consider that f is continuous. Since x2n = fx2n+1, it follows from
Lemma 3.5 that

z = lim
n→∞

x2n = lim
n→∞

fx2n+1 = fz

and so z is a fixed point of f . Since g is surjective, there exists y such that
gy = z. Thus, using inequality (2) we have

0 = d(fz, gy) = d(fgy, gy) ≥ bd(gy, y) = bd(z, y)

which implies −bd(z, y) ∈ P . Also we have bd(z, y) ∈ P . Hence bd(z, y) = 0
and so y = z, since b > 1. Thus z = gz. We have therefore proved that z is a
common fixed point of f and g.

Similarly, considering the continuity of g, it can be seen that f and g have
a common fixed point and this completes the proof.

Putting f = g and k = min{a, b} in Theorem 4.1, we get

Corollary 4.1. Let (X, d) be a complete cone metric space and P be a cone.

Let f be a surjective self-mapping of X satisfying the following inequality

d(f2x, fx) ≥ kd(fx, x)

for all x in X, where k > 1. If f is continuous, then f has a fixed point.

Putting E = R, P = {x ∈ R : x ≥ 0} ⊂ R and d : X × X → R in
Corollary 4.1, then we obtain the following corollary.

Corollary 4.2 ( [8],Theorem 4 ) Let (X, d) be a complete metric space and

let f be a surjective self-mapping of X satisfying the following inequality

d(f2x, fx) ≥ kd(fx, x)

for all x in X, where k > 1. If f is continuous, then f has a fixed point.

We illustrate Theorem 4.1 by the following example.

Example 4.1 Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2, X = R and
the mapping d : X × X → E defined by d(x, y) = ( |x − y|, |x − y|). Then
(X, d) is a complete cone metric space.

Define the surjective self mappings f, g : X → X by
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fx = 2x and gx = 4x

for all x in X. Then we have

d(fx, gfx) = (|2x−8x|, |2x−8x|) = (6|x|, 6|x|) ≥ (2|x−2x|, 2|x−2x|) = 2d(x, fx)

and

d(gx, fgx) = (|4x−8x|, |4x−8x|) = (4|x|, 4|x|) = (
4

3
|x−4x|,

4

3
|x−4x|) =

4

3
d(x, gx)

hold for all x in X. Thus, inequalities (1) and (2) are satisfied and also x = 0
is a common fixed point of f and g.
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