HARNACK INEQUALITY FOR NONLINEAR WEIGHTED EQUATIONS

Nedra Belhaj Rhouma and Mahel Mosbah

Abstract

In this paper, we prove the Harnack inequality for nonnegative weak solutions of the following nonlinear subelliptic equation $$
-\operatorname{div} A(x, u, \nabla u)=f(x, u, \nabla u) .
$$

1 Introduction

In this paper, we prove Harnack inequality for nonnegative (weak) solutions of some class of nonlinear subelliptic equations
More precisely, we consider the equation

$$
\begin{equation*}
-\operatorname{div} A(x, u, \nabla u)=f(x, u, \nabla u) \tag{1}
\end{equation*}
$$

in an open set $\Omega \subseteq \mathbb{R}^{n}$.
Throughout this paper we assume that A and f satisfy the following structural conditions with respect to the weight ω : there exist $a, b \geq 0$ and measurable functions $f_{1}, f_{2}, f_{3}, g_{2}, g_{3}$ and h_{3} on \mathbb{R}^{n} such that for a.e. $x \in \mathbb{R}^{n}, u \in \mathbb{R}$ and $\xi \in \mathbb{R}^{n}$

$$
(\mathcal{S})\left\{\begin{array}{l}
|A(x, u, \xi)| \leq \omega(x)\left[b|\xi|^{p-1}+g_{2}(x)|u|^{p-1}+g_{3}(x)\right], \\
|f(x, u, \xi)| \leq \omega(x)\left[f_{1}(x)|\xi|^{p-1}+f_{2}(x)|u|^{p-1}+f_{3}(x)\right], \\
A(x, u, \xi) \xi \geq \omega(x)\left[a|\xi|^{p}+f_{2}(x)|u|^{p}-h_{3}(x)\right] .
\end{array}\right.
$$

Key Words: Harnack inequality, p-admissible weight, Moser's iteration Mathematics Subject Classification: 35D30, 35H20
Received: July, 2009
Accepted: January, 2010

The weight ω is supposed to be p-admissible satisfying a property (\mathcal{P}) (which will be given in section 2).

In section 2, we point out the essential properties of p-admissible weight, satisfying the \mathcal{P} property and we illustrate with some examples.

The main result is given in section 3, it concerns the Harnack inequality to the case of general operators in (1.1). We generalize the results given in [3], [5], [7] and [8].

We note the equation (1.1) covers equations of the form

$$
\begin{equation*}
-\operatorname{div}\left((\theta(x) \nabla u \cdot \nabla u)^{\frac{p-2}{2}} \theta(x) \nabla u\right)=f(x, u, \nabla u) \theta(x), \tag{2}
\end{equation*}
$$

where $\theta: \mathbb{R}^{n} \rightarrow G L(n, \mathbb{R})$ is a measurable matrix function satisfying for some $\lambda>0$, the ellipticity conditions:

$$
\lambda^{-1}|\xi|^{2} \leq \theta(x) \xi . \xi \leq \lambda|\xi|^{2} \text { for } x, \xi \in \mathbb{R}^{n}
$$

We remark that, if $\omega=1,(\mathcal{S})$ is a condition required by Serrin in [9].
Fabes, Kenig and Serapioni proved in [5] the Harnack principle for nonnegative (weak) solutions for the linear equation $-\partial_{j}\left(a_{i, j} \partial_{i} u\right)=0$, where Ω is bounded and the coefficients $a_{i, j}$ satisfy the following ellipticity condition:

$$
\lambda \omega(x)|\xi|^{2} \leq a_{i, j}(x) \xi_{i} \xi_{j} \leq \Lambda \omega(x)|\xi|^{2}, \quad 0<\lambda<\Lambda
$$

with respect to a weight ω belonging to the Muckenhoupt class A_{2} or the (Q.C) class.

De Cicco and Vivaldi proved in [3] the Harnack inequality in the case

$$
-\partial_{j}\left(a_{i, j} \partial_{i} u+d_{i} u\right)+\left(b_{i} \partial_{i} u+c u\right)=0
$$

where the matrix $\left(a_{i, j}\right)$ satisfies the above ellipticity condition and the coefficients b_{i}, d_{i} and c belong to suitable Lebesgue spaces with respect to ω. The weight ω is supposed belonging either to the class A_{2} or to (Q.C).

In [7] Heinonen, Kilpelanen and Martio proved the same result when $A(x, u, \nabla u)=A(x, \nabla u)$ and $f \equiv 0$.

In [2] Capponia, Danielli and Carofalo give a similar result when $\omega=1$ for the equation $\sum_{j=1}^{j=m} X_{j}^{*} A_{j}\left(x, u, X_{1} u, \ldots, X_{m} u\right)=f\left(x, u, X_{1} u, \ldots, X_{m} u\right)$, where X_{1}, \ldots, X_{m} are C^{∞} vector fields in \mathbb{R}^{n}, satisfying Hörmander's condition for hypoellipticity.

$2 \quad p$-admissible weights

Throughout this paper Ω will denote an open subset of $\mathbb{R}^{n}, n \geq 2$ and $1<p<\infty$.

Let ω be a locally integrable, nonnegative function in \mathbb{R}^{n}. Then a Radon measure μ is canonically associated with the weight ω,

$$
\mu(E)=\int_{E} \omega(x) d x
$$

Thus $d \mu(x)=\omega(x) d x$, where $d x$ is the n-dimentional Lebesgue measure.
Definition 2.1. We say that ω (or μ) is p-admissible if the following four conditions are satisfied:

1. $0<\omega<\infty$ almost everywhere in \mathbb{R}^{n} and the measure μ is doubling, i.e. there is a constant $c_{1}>0$ such that

$$
\mu(2 B) \leq c_{1} \mu(B)
$$

whenever B is a ball in \mathbb{R}^{n},
2. If D is an open set and $\varphi_{i} \in \mathcal{C}^{\infty}(D)$ is a sequence of functions such that

$$
\int_{D}\left|\varphi_{i}\right|^{p} d \mu \rightarrow 0 \text { and } \int_{D}\left|\varphi_{i}-v\right|^{p} d \mu \rightarrow 0 \text { as } i \rightarrow \infty
$$

where v is a vector-valued measurable function in $L^{p}\left(D, \mu, \mathbb{R}^{n}\right)$, then $v=0$.
3. The weighted Sobolev embedding Theorem :

There are constants $\kappa>1$ and $c_{3}>0$ such that

$$
\left.\left(\frac{1}{\mu(B)} \int_{B}|\varphi|^{\kappa p} d \mu\right)^{\frac{1}{\kappa p}} \leq c_{3} r\left(\frac{1}{\mu(B)} \int_{B}|\nabla \varphi|^{p} d \mu\right)^{\frac{1}{p}}\right)
$$

whenever $B=B\left(x_{0}, r\right)$ is a ball in \mathbb{R}^{n} and $\varphi \in \mathcal{C}_{0}^{\infty}(B)$.
4. The weighted Poincaré inequality:

There is a constant $c_{4}>0$ such that

$$
\int_{B}\left|\varphi-\varphi_{B}\right|^{p} d \mu \leq c_{4} r^{p} \int_{B}|\nabla \varphi|^{p} d \mu,
$$

whenever $B=B\left(x_{0}, r\right)$ is a ball in \mathbb{R}^{n} and $\varphi \in \mathcal{C}^{\infty}(B)$ is bounded.
$\left(\right.$ Here $\left.\left.\varphi_{B}=\frac{1}{\mu(B)} \int_{B} \varphi d \mu\right)=\oint_{B} \varphi d \mu.\right)$
Remark 2.1. We note that in the classical situation (i.e. $\omega=1$), the constant c_{1} in (1) is equal to 2^{n}.

Example 2.1. 1. If $\omega=1$ and μ is the Lebesgue measure. Then (1) is obvious, (3) is the ordinary Sobolev inequality and condition (4) is the classical Poincaré inequality.
2. Consider the Muckenhoupt class $A_{p},(p>1)$ which consists of all nonnegative locally integrable functions ω in \mathbb{R}^{n} such that:

$$
\sup \left(\oint_{B} \omega d x\right)\left(\oint_{B} \omega^{\frac{1}{1-p}} d x\right)^{p-1}<+\infty
$$

where the supremum is taken over all balls B in \mathbb{R}^{n}. If ω belongs to A_{p}, then ω is p-admissible (see [7]).
3. The weight ω is said to be in A_{1} if there is a constant c such that:

$$
\left(\oint_{B} \omega d x\right) \leq c \operatorname{essinf}_{B} \omega,
$$

for all balls B in \mathbb{R}^{n}.
Since $A_{1} \subset A_{p}$ whenever $p>1$, an A_{1}-weight is p-admissible for every $p>1$.
4. Consider the $(Q C)$ class of weights $\omega:=\left|\operatorname{det} F^{\prime}\right|^{1-\frac{2}{n}}$, associated with the quasi-conformal map F in \mathbb{R}^{n} (det F^{\prime} denotes the Jacobian determinant of F), by [7], ω is p-admissible.

Definition 2.2. For a function $\varphi \in \mathcal{C}^{\infty}(\Omega)$, we let

$$
\|\varphi\|_{1, p}=\left(\int_{\Omega}|\varphi|^{p} d \mu\right)^{\frac{1}{p}}+\left(\int_{\Omega}|\nabla \varphi|^{p} d \mu\right)^{\frac{1}{p}} .
$$

The Sobolev space $H^{1, p}(\Omega, \mu)$ is defined to be the completion of $\left\{\varphi \in \mathcal{C}^{\infty}(\Omega)\right.$: $\left.\|\varphi\|_{1, p}<\infty\right\}$ with respect to the norm $\|\varphi\|_{1, p}$.

In other words, a function u is in $H^{1, p}(\Omega, \mu)$ if and only if u is in $L^{p}(\Omega, \mu)$ and there is a vector-valued function v in $L^{p}(\Omega, \mu)$ such that for some sequence $\varphi_{i} \in \mathcal{C}^{\infty}(\Omega), \int_{\Omega}\left|\varphi_{i}-u\right|^{p} d \mu \rightarrow 0$ and $\int_{\Omega}\left|\nabla \varphi_{i}-v\right|^{p} d \mu \rightarrow 0$ as $i \rightarrow \infty$.
The function v is called the gradient of u in $H^{1, p}(\Omega, \mu)$ and denoted by $v=\nabla u$. The space $H_{0}^{1, p}(\Omega, \mu)$ is the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ in $H^{1, p}(\Omega, \mu)$.
The corresponding local space $H_{L o c}^{1, p}(\Omega, \mu)$ is defined in the obvious manner: a function u is in $H_{L o c}^{1, p}(\Omega, \mu)$ if and only if u is in $H^{1, p}\left(\Omega^{\prime}, \mu\right)$ for each open set $\Omega^{\prime} \subset \bar{\Omega} \subset \Omega$.
In all the next, let $Q>p$, such that $\kappa=\frac{Q}{Q-p}$ where κ is the constant satisfying the condition (3).

Definition 2.3. We say that μ satisfies condition (\mathcal{P}) if for some $\widetilde{R_{0}}>0$, there exists $M>0$ such that for every $R \leq \frac{1}{2} \widetilde{R_{0}}$ we have $R \mu\left(B_{2 R}\right)^{\frac{-1}{Q}} \leq M$

Example 2.2. 1. If μ is the Lebesgue measure, then μ satisfies (\mathcal{P}). In fact we choose

$$
Q= \begin{cases}n & \text { if } p<n \\ 2 p & \text { if } p \geq n\end{cases}
$$

2. We recall that by the open-end property (see [7]), if $\omega \in A_{p}, p>1$, then $\omega \in A_{q}$ for some $q<p$. Let $p_{0}=\left\{q>1: \omega \in A_{q}\right\}$. We suppose that $p<n p_{0}$. Thus by [7], any κ such that $1<\kappa<\frac{n}{n-1}<\frac{n}{n-\frac{p}{p_{0}}}$ satisfies the weighted Sobolev embedding theorem and therefore ω is p-admissible. Using the strong doubling of A_{p} weights (see 15.5 in [7]):

$$
\mu\left(B_{R}\right) \geq c\left(\frac{2 R}{\widetilde{R_{0}}}\right)^{n p} \mu\left(B_{\widetilde{R_{0}}}\right), \text { for } R \leq \frac{1}{2} \widetilde{R_{0}}
$$

we get $R \mu\left(B_{R}\right)^{\frac{-1}{Q}} \leq c\left(\frac{2 R}{R_{0}}\right)^{\frac{-n p}{Q}+1} \mu\left(B_{\widetilde{R_{0}}}\right)^{\frac{-1}{Q}}$. Hence, the p-admissible weight ω satisfies (\mathcal{P}).
In particular, if $\omega \in A_{2}$, then ω satisfies (\mathcal{P}).
3. If $\omega \in A_{1}$, then by [7], $\omega \in A_{p}$ for $1<p \leq n$. Using the last assertion we conclude that ω is p-admissible and satisfies (\mathcal{P}).
4. Let $\omega \in(Q C)$, then by [4] and [1] there exists a positive constant ν such that for $0<R<\frac{1}{2} \widetilde{R_{0}}$ we have:

$$
\mu\left(B_{R}\right) \geq \frac{1}{2}\left(\frac{2 R}{R_{0}}\right)^{\nu} \mu\left(B_{\frac{R_{0}}{2}}\right) .
$$

Note that for $\nu>2$ we have $\kappa=\frac{\nu}{\nu-2}$ and so the property (\mathcal{P}) is satisfied. The same statement holds for $\nu \leq 2$.

3 Harnack inequality

In all the next, we suppose that ω is a p-admissible weight in \mathbb{R}^{n} satisfying the property (\mathcal{S}) and (\mathcal{P}) with the resolvent integrability requirements on the functions f_{i}, g_{i}, h_{i}
(i) $g_{2}, g_{3} \in L_{L o c}^{r}(\Omega, \mu)$ for $r=\frac{Q}{p-1}$,
(ii) $f_{2}, f_{3}, h_{3} \in L_{L o c}^{s}(\Omega, \mu)$ for $s>\frac{Q}{p}$,
(iii) $f_{1} \in L_{L o c}^{t}(\Omega, \mu)$ for $t>Q$.

Assumptions (ii) and (iii) allow to write for some $0<\epsilon<1, s=\frac{Q}{p-\epsilon}$ and $t=\frac{Q}{1-\epsilon}$.
From now on the letter ϵ will be only used with this meaning.
We propose then to prove Harnack inequality of nonnegative (weak) solution of nonlinear subelliptic equations (1.1).
Definition 3.1. A function u in $H_{L o c}^{1, p}(\Omega, \mu)$ is a (weak) solution of the equation:

$$
-\operatorname{div} A(x, u, \nabla u)=f(x, u, \nabla u)
$$

if u is a solution of:

$$
\int_{\Omega} A(x, u(x), \nabla u(x)) \nabla \varphi(x) d x=\int_{\Omega} f(x, u(x), \nabla u(x)) \varphi(x) d x
$$

whenever $\varphi \in H_{\text {Loc }}^{1, p}(\Omega, \mu)$.
Remark 3.1. Let $u \in H_{L o c}^{1, p}(\Omega, \mu)$, for $R>0$ and $K=K(R)$, where
$K(R)=\left[\left(\mu\left(B_{2 R}\right)\right)^{\frac{\epsilon}{Q}}\left\|f_{3}\right\|_{L^{s}\left(B_{R}\right)}+\left\|g_{3}\right\|_{L^{r}\left(B_{R}\right)}\right]^{\frac{1}{p-1}}+\left[\left(\mu\left(B_{2 R}\right)\right)^{\frac{\epsilon}{Q}}\left\|h_{3}\right\|_{L^{s}\left(B_{2 R}\right)}\right]^{\frac{1}{p}}$.
Then the function $\bar{u}=|u|+K$ satisfies $\nabla \bar{u}=\nabla|u|$ a.e. in Ω (see [7]). The assumptions (S) may be written as follows.

$$
\left(\mathcal{S}^{\prime}\right)\left\{\begin{array}{l}
|A(x, u, \xi)| \leq \omega(x)\left(b|\xi|^{p-1}+\bar{g}_{2}(x)|\bar{u}|^{p-1}\right), \\
|f(x, u, \xi)| \leq \omega(x)\left(f_{1}(x)|\xi|^{p-1}+\bar{f}_{2}(x)|\bar{u}|^{p-1}\right), \\
A(x, u, \xi) \xi \geq \omega(x)\left(a|\xi|^{p}-\bar{f}_{2}(x)|\bar{u}|^{p}\right) .
\end{array}\right.
$$

With $\bar{g}_{2}=g_{2}+K^{1-p} g_{3}$ and $\bar{f}_{2}=f_{2}+K^{1-p} f_{3}+K^{-p} h_{3}$ satisfying

$$
\left\|\bar{f}_{2}\right\|_{L^{s}\left(B_{2 R}\right)} \leq\left\|f_{2}\right\|_{L^{s}\left(B_{2 R}\right)}+2\left(\mu\left(B_{2 R}\right)\right)^{\frac{-\epsilon}{Q}}
$$

and

$$
\left\|\bar{g}_{2}\right\|_{L^{r}\left(B_{2 R}\right)} \leq\|g\|_{L^{r}\left(B_{2 R}\right)}+1
$$

Theorem 3.1. Let u be a nonnegative (weak) solution of (1.1) in Ω and \widetilde{R}_{0} for which μ satisfies the condition (\mathcal{P}) and $B\left(x, \widetilde{R}_{0}\right) \subset \Omega$, then there exists a positive constant c, such that, for any $2 R \leq \widetilde{R}_{0}$, we have

$$
\left.\operatorname{ess}^{\sup _{B_{R}} u \leq c(e s s} \sup _{B_{R}} u+K(R)\right)
$$

Proof. Step 1

We define, for $q \geq 1, l>K$ and $\beta=p q-p+1$

$$
F(t)= \begin{cases}t^{q} & \text { if } K \leq t \leq l, \\ q l^{q-1} t-(q-1) l^{q} & \text { if } l \leq t .\end{cases}
$$

and

$$
G(t)=\operatorname{sgn}(t)\left[F(|t|+K)\left(F^{\prime}(|t|+K)\right)^{p-1}-q^{p-1} K^{\beta}\right], \quad t \in \mathbb{R}
$$

Since $F \in \mathcal{C}^{1}(\mathbb{R}), F^{\prime}$ is bounded and $F(\bar{u}) \in L^{p}(\Omega, \mu)$, hence, by [7], Theorem 1.18 and Lemma 1.11, we get that $F(\bar{u})$ and $G \in H^{1, p}(\Omega, \mu)$.

Now, let $\eta \in \mathcal{C}_{0}^{\infty}\left(B_{2 R}\right), 0 \leq \eta \leq 1$ and put $\varphi=\eta^{p} G(u)$.
Taking φ in (1.1) and using ($\overline{\mathcal{S}^{\prime}}$), we obtain:

$$
\begin{aligned}
& 0=\int_{\Omega} A(x, u(x), \nabla u(x)) \nabla \varphi(x) d x-\int_{\Omega} f(x, u(x), \nabla u(x)) \varphi(x) d x \\
& \quad \geq-p \int_{\Omega} \eta^{p-1}|\nabla \eta||G(u)|\left(b|\nabla u|^{p-1}+\bar{g}_{2}|\bar{u}|^{p-1}\right) d \mu+ \\
& \quad \int_{\Omega} \eta^{p}\left|G^{\prime}(u)\right|\left(a|\nabla u|^{p}-\bar{f}_{2} \bar{u}^{p}\right) d \mu-\int_{\Omega}\left(f_{1}|\nabla u|^{p-1}+\bar{f}_{2} \bar{u}^{p-1}\right) \eta^{p}|G(u)| d \mu .
\end{aligned}
$$

Using the fact that $|G(u)| \leq F(\bar{u})\left(F^{\prime}(\bar{u})\right)^{p-1}$, we get $\left|G^{\prime}(u)\right| \leq \beta q^{-1}\left(F^{\prime}(\bar{u})\right)^{p}$ and $\left|G^{\prime}(u)\right| \geq\left|F^{\prime}(\bar{u})\right|^{p}$. Therefore

$$
\begin{aligned}
0 \geq & \int_{\Omega}-p b|\nabla \eta F(\bar{u})|\left(\eta F^{\prime}(\bar{u})|\nabla u|\right)^{p-1}-p \bar{g}_{2}\left(\eta \bar{u} F^{\prime}(\bar{u})\right)^{p-1}|\nabla \eta F(\bar{u})| \\
& +a \eta^{p}\left|F^{\prime}(\bar{u}) \nabla u\right|^{p}-f_{1} F(\bar{u}) \eta\left(|\nabla u| \eta F^{\prime}(\bar{u})\right)^{p-1} \\
& -\bar{f}_{2}\left(\beta q^{-1}\left|\eta \bar{u} F^{\prime}(\bar{u})\right|^{p}+(\bar{u} F(\bar{u}) \eta)^{p-1} \eta F(\bar{u}) d \mu .\right.
\end{aligned}
$$

By setting $v=F(\bar{u})$ and since $\bar{u} F^{\prime}(\bar{u}) \leq q F(\bar{u})$, we get

$$
\begin{aligned}
\int_{\Omega} \eta^{p}|\nabla v|^{p} d \mu & \leq \frac{1}{a}\left(p b \int_{\Omega}(|\nabla \eta| v)(\eta|\nabla v|)^{p-1} d \mu+p q^{p-1} \int_{\Omega} \bar{g}_{2}(\eta v)^{p-1}|(\nabla \eta) v| d \mu+\right. \\
& +\int_{\Omega} f_{1}(\eta v)(|\nabla v| \eta)^{p-1} d \mu+(1+\beta) q^{p-1} \int_{\Omega} \bar{f}_{2}(\eta v)^{p} d \mu
\end{aligned}
$$

Hölder inequality yields

$$
\int_{\Omega}(|\nabla \eta| v)(\eta|\nabla v|)^{p-1} d \mu \leq\left(\int_{\Omega} \eta^{p}|\nabla v|^{p} d \mu\right)^{\frac{p-1}{p}}\left(\int_{\Omega} v^{p}|\nabla \eta|^{p}\right)^{\frac{1}{p}} .
$$

Step 2

Let $\alpha>0$ such that $\frac{1}{\alpha}=1-\frac{p-1}{p}-\frac{1-\epsilon}{Q}$. Hölder's inequality gives us

$$
\left.\int_{\Omega} f_{1}(\eta v)(|\nabla v| \eta)^{p-1} d \mu \leq\left(\int_{\Omega} f_{1}^{\frac{Q}{1-\epsilon}} d \mu\right)^{\frac{1-\epsilon}{Q}}\left(\int_{\Omega} \eta^{p}|\nabla v|\right)^{p} d \mu\right)^{\frac{p-1}{p}}\left(\int_{\Omega}(\eta v)^{\alpha} d \mu\right)^{\frac{1}{\alpha}}
$$

and

$$
\left(\int_{\Omega}(\eta v)^{\alpha} d \mu\right)^{\frac{1}{\alpha}} \leq\left(\int_{\Omega}(\eta v)^{p} d \mu\right)^{\frac{\epsilon}{p}}\left(\int_{\Omega}(\eta v)^{\kappa p} d \mu\right)^{\frac{1-\epsilon}{\kappa p}}
$$

Using the Sobolev embedding property, we get

$$
\begin{gathered}
\left.\int_{\Omega}(\eta v)^{\kappa p} d \mu\right)^{\frac{1-\epsilon}{\kappa p}} \leq\left(2 c_{3}\right)^{1-\epsilon} R^{1-\epsilon}\left(\mu\left(B_{2 R}\right)\right)^{\frac{\epsilon-1}{Q}}\left[\left(\int_{B_{2 R}} \eta^{p}|\nabla v|\right)^{p} d \mu\right)^{\frac{1-\epsilon}{p}}+ \\
\left.\left.+\left(\int_{B_{2 R}} v^{p}|\nabla \eta|\right)^{p} d \mu\right)^{\frac{1-\epsilon}{p}}\right]
\end{gathered}
$$

Finally, we get:

$$
\begin{array}{r}
\int_{\Omega} f_{1}(\eta v)(|\nabla v| \eta)^{p-1} d \mu \leq c_{R}\left(\int_{B_{2 R}} f_{1}^{\frac{Q}{1-\epsilon}} d \mu\right)^{\frac{1-\epsilon}{Q}}\left(\int_{\Omega} \eta^{p}|\nabla v|^{p} d \mu\right)^{\frac{p-1}{p}} \\
\left.\quad\left(\int_{\Omega}(\eta v)^{p} d \mu\right)^{\frac{\epsilon}{p}}\left[\left(\int_{\Omega} \eta^{p}|\nabla v|\right)^{p} d \mu\right)^{\frac{1-\epsilon}{p}}+\left(\int_{\Omega} v^{p}|\nabla \eta|^{p} d \mu\right)^{\frac{1-\epsilon}{p}}\right]
\end{array}
$$

By analogous arguments we can estimate the terms $\int_{\Omega} \bar{f}_{2}(\eta v)^{p} d \mu$ and $\int_{\Omega} \bar{g}_{2}|v||\nabla \eta|(\eta v)^{p-1} d \mu$ as follows: For $\frac{1}{\alpha}=1-\frac{p-\epsilon}{Q}$

$$
\int_{\Omega} \bar{f}_{2}(\eta v)^{p} d \mu \leq\left(\int_{B_{2 R}} \bar{f}_{2}^{\frac{Q}{p-\epsilon}}\right)^{\frac{p-\epsilon}{Q}}\left(\int_{B_{2 R}}(\eta v)^{p \alpha} d \mu\right)^{\frac{1}{\alpha}}
$$

and

$$
\left(\int_{B_{2 R}}(\eta v)^{p \alpha} d \mu\right)^{\frac{1}{\alpha}} \leq\left(\int_{B_{2 R}}(\eta v)^{\kappa p} d \mu\right)^{\frac{p-\epsilon}{\kappa p}}\left(\int_{B_{2 R}}(\eta v)^{p} d \mu\right)^{\frac{\epsilon}{p}}
$$

Then, by Sobolev embedding property, we obtain

$$
\begin{gathered}
\left.\int_{\Omega}(\eta v)^{\kappa p} d \mu\right)^{\frac{p-\epsilon}{\kappa p}} \leq\left(2 c_{3} R\right)^{p-\epsilon}\left(\mu\left(B_{2 R}\right)\right)^{\frac{-p+\epsilon}{Q}}\left[\left(\int_{B_{2 R}}(|\nabla \eta| v)^{p} d \mu\right)^{\frac{p-\epsilon}{p}}+\right. \\
\left.+\left(\int_{B_{2 R}}(|\nabla v| \eta)^{p} d \mu\right)^{\frac{p-\epsilon}{p}}\right]
\end{gathered}
$$

Finally

$$
\begin{gathered}
\int_{\Omega} \bar{f}_{2}(\eta v)^{p} d \mu \leq c_{R}^{\prime}\left(\int_{B_{2 R}} \bar{f}_{2}^{\frac{Q}{p-\epsilon}}\right)^{\frac{p-\epsilon}{Q}}\left(\int_{\Omega}(\eta v)^{p} d \mu\right)^{\frac{\epsilon}{p}}\left[\left(\int_{\Omega} \eta^{p}|\nabla v|^{p} d \mu\right)^{\frac{p-\epsilon}{p}}+\right. \\
\left.+\left(\int_{\Omega}|\nabla \eta|^{p} v^{p} d \mu\right)^{\frac{p-\epsilon}{p}}\right]
\end{gathered}
$$

Where $c_{R}^{\prime}=\left(2 c_{3} R\right)^{p-\epsilon}\left(\mu\left(B_{2 R}\right)\right)^{\frac{-p+\epsilon}{Q}}$.
Similarly

$$
\begin{aligned}
& \quad \int_{\Omega} \bar{g}_{2} v|\nabla \eta|(\eta v)^{p-1} d \mu \leq\left(\int_{\Omega} \bar{g}_{2}^{\frac{Q}{p-1}} d \mu\right)^{\frac{p-1}{Q}}\left(\int_{\Omega} v^{p}|\nabla \eta|^{p} d \mu\right)^{\frac{1}{p}}\left(\int_{\Omega}|v \eta|^{\kappa p} d \mu\right)^{\frac{p-1}{\kappa p}} \leq \\
& \leq c_{R}^{\prime \prime}\left(\int_{\Omega} \bar{g}_{2}^{\frac{Q}{p-1}} d \mu\right)^{\frac{p-1}{Q}}\left(\int_{\Omega} v^{p}|\nabla \eta|^{p} d \mu\right)^{\frac{1}{p}}\left[\left(\int_{\Omega} v^{p}|\nabla \eta|^{p} d \mu\right)^{\frac{p-1}{p}}+\left(\int_{\Omega} \eta^{p}|\nabla v|^{p} d \mu\right)^{\frac{p-1}{p}}\right],
\end{aligned}
$$

where $c_{R}^{\prime \prime}=\left(2 c_{3} R\right)^{p-1}\left(\mu\left(B_{2 R}\right)\right)^{\frac{1-p}{Q}}$. Therefore we get

$$
\begin{aligned}
& \|\eta \nabla v\|_{p}^{p} \leq c\left(\|\eta \nabla v\|_{p}^{p-1}\|v \nabla \eta\|_{p}+\|\eta v\|_{p}^{\epsilon}\|\eta \nabla v\|_{p}^{p-1}\left(\|\eta \nabla v\|_{p}^{1-\epsilon}+\|v \nabla \eta\|_{p}^{1-\varepsilon}\right)+\right. \\
& \quad+q^{p-1}\|v \nabla \eta\|_{p}\left(\|v \nabla \eta\|_{p}^{p-1}+\|\eta \nabla v\|_{p}^{p-1}\right)+(1+\beta) q^{p-1}\|v \eta\|_{p}^{\epsilon}\left(\|v \nabla \eta\|_{p}^{p-\epsilon}+\right.
\end{aligned}
$$

$$
\left.\left.\|\eta \nabla v\|_{p}^{p-\epsilon}\right)\right) .
$$

By setting $z=\frac{\|\eta \nabla v\|_{p}}{\|v \nabla \eta\|_{p}}$ and $\zeta=\frac{\|v \eta\|_{p}}{\|v \nabla \eta\|_{p}}$, we get that

$$
z^{p} \leq c\left[z^{p-1}+q^{p-1}\left(1+z^{p-1}\right)+z^{p-1} \zeta^{\epsilon}\left(1+z^{\epsilon-1}\right)+(1+\beta) q^{p-1} \zeta^{\epsilon}\left(1+z^{p-\epsilon}\right)\right] .
$$

So, using the results in $([9])$, we get $z \leq c q^{\frac{p}{\epsilon}}(1+\zeta)$. Hence we obtain

$$
\|\eta(\nabla v)\|_{p} \leq c q^{\frac{p}{\epsilon}}\left(\|\eta v\|_{p}+\|v \nabla \eta\|_{p}\right)
$$

for $c=c\left(p, c_{3},\left\|f_{1}\right\|_{L^{t}(\Omega)},\left\|f_{2}\right\|_{L^{s}(\Omega)},\left\|g_{2}\right\|_{L^{r}(\Omega)}\right)$.
We use the embedding theorem which gives us

$$
\begin{aligned}
& \left.\int_{B_{2 R}}|\eta v|^{\kappa p} d \mu\right)^{\frac{1}{\kappa p}} \leq 2 c_{3} R\left(\mu\left(B_{2 R}\right)\right)^{\frac{-1}{Q}}\left(\int_{B_{2 R}}|\nabla(\eta v)|^{p} d \mu\right)^{\frac{1}{p}} \leq \\
& \leq\left(2 c_{3} R\right)\left(\mu\left(B_{2 R}\right)\right)^{\frac{-1}{Q}}\left[c q^{\frac{p}{\epsilon}}\left(\|\eta v\|_{p}+\|v \nabla \eta\|_{p}\right)+\|v \nabla \eta\|_{p}\right] .
\end{aligned}
$$

Then

$$
\left(\int_{B_{2 R}}|\eta v|^{\kappa p} d \mu\right)^{\frac{1}{\kappa^{p}}} \leq c_{R}\left(\mu\left(B_{2 R}\right)\right)^{\frac{-1}{Q}} q^{\frac{p}{\epsilon}}\left[\left(\int_{B_{2 R}}|\eta v|^{p} d \mu\right)^{\frac{1}{p}}+\left(\int_{B_{2 R}}|v|^{p}|\nabla \eta|^{p} d \mu\right)^{\frac{1}{p}}\right] .
$$

Step 3

Let a and b be real numbers satisfying $1<a<b \leq 2$.
Let the function η be chosen so that $\eta \in \mathcal{C}_{0}^{\infty}\left(B_{b R}\right)$ with $\eta=1$ in $B_{a R}$ and $|\nabla \eta| \leq \frac{c}{(b-a) R}$. Setting this function in [9], it yields

$$
\left(\int_{B_{a R}} v^{\kappa p} d \mu\right)^{\frac{1}{\kappa p}} \leq \frac{c q^{\frac{p}{\epsilon}}}{(b-a)}\left(\mu\left(B_{2 R}\right)\right)^{-\frac{1}{Q}}\left(\int_{B_{b R}} v^{p} d \mu\right)^{\frac{1}{p}} .
$$

At this point, if we let $l \rightarrow \infty$ in the definition of F, we get $v=F(\bar{u})$ tends to \bar{u}^{q} monotonically. Hence, we obtain

$$
\left(\int_{B_{a R}} \bar{u}^{\kappa p q} d \mu\right)^{\frac{1}{\kappa p q}} \leq \frac{c q^{\frac{p}{q \epsilon}}}{(b-a)^{\frac{1}{q}}}\left(\mu\left(B_{2 R}\right)\right)^{-\frac{1}{q Q}}\left(\int_{B_{b R}} \bar{u}^{p q} d \mu\right)^{\frac{1}{p q}} .
$$

By Moser's iteration technique, we easily infer

$$
\operatorname{ess} \sup _{B_{R}} \bar{u} \leq c\left(\frac{1}{\mu\left(B_{2 R}\right)} \int_{B_{2 R}} \bar{u}^{p} d \mu\right)^{\frac{1}{p}}
$$

An extrapolation argument shows that the exponent p can be replaced by any positive number α.
Using the fact that $\bar{u}=|u|+K=|u|+K(R)$, we have the conclusion.

Step 4

We assume at first that $u \geq \alpha \geq 0$ in Ω. We set $K=K(R)$ and $\bar{u}=|u|+K$. Let $\eta \in \mathcal{C}_{0}^{\infty}\left(B_{2 R}\right)$. Then the function $\varphi=\eta^{p} \bar{u}^{1-p}$ belongs to $H_{0}^{1, p}(\Omega, \mu)$. Using (\mathcal{S}^{\prime}), we have

$$
\begin{gathered}
0=p \int_{\Omega} A(x, u, \nabla u) \eta^{p-1} \bar{u}^{1-p} \nabla \eta d x+(1-p) \int_{\Omega} A(x, u, \nabla u) \eta^{p} \bar{u}^{-p} \nabla u d x- \\
\quad-\int_{\Omega} f(x, u, \nabla u) \eta^{p} \bar{u}^{1-p} d x \leq \\
\leq p \int_{\Omega} \eta^{p-1} \bar{u}^{1-p} \nabla \eta\left(b|\nabla u|^{p-1}+\bar{g}_{2}|\bar{u}|^{p-1}\right) d \mu+ \\
+(1-p) \int_{\Omega} \eta^{p} \bar{u}^{-p}\left(a|\nabla u|^{p}-\bar{f}_{2}|\bar{u}|^{p}\right) d \mu+\int_{\Omega}\left(f_{1}|\nabla u|^{p-1}+\bar{f}_{2}|\bar{u}|^{p-1}\right) \eta^{p} \bar{u}^{1-p} d \mu .
\end{gathered}
$$

Denoting $v=\ln \bar{u}$, we obtain:

$$
\begin{gathered}
(p-1) a \int_{\Omega} \eta^{p}|\nabla v|^{p} d \mu \leq p b \int_{\Omega}(|\nabla v| \eta)^{p-1} \nabla \eta d \mu+p \int_{\Omega} \bar{g}_{2} \eta^{p-1}|\nabla \eta| d \mu+ \\
+p \int_{\Omega} \overline{f_{2}} \eta^{p} d \mu+\int_{\Omega}\left(f_{1}(\eta|\nabla v|)^{p-1} \eta d \mu\right.
\end{gathered}
$$

Let $\eta \in \mathcal{C}_{0}^{\infty}\left(B_{2 R}\right)$ such that $\eta=1$ on B_{R} and $|\nabla \eta| \leq \frac{C}{R}$.
Using Hölder inequality and the Sobolev embedding Theorem, we get the following inequalities:

$$
\begin{aligned}
& \int_{\Omega} \bar{g}_{2} \eta^{p-1}|\nabla \eta| d \mu \leq\left\|\bar{g}_{2}\right\|_{L^{r}\left(B_{2 R}\right)}\left(\int_{B_{2 R}} \eta^{\kappa p} d \mu\right)^{\frac{p-1}{\kappa}}\left(\int_{B_{2 R}}|\nabla \eta|^{p}\right)^{\frac{1}{p}} \leq \\
& \quad \leq\left\|\bar{g}_{2}\right\|_{L^{r}\left(B_{2 R}\right)} c R^{p-1}\left(\mu\left(B_{2 R}\right)\right)^{\frac{1-p}{Q}}\left(\int_{B_{2 R}}|\nabla \eta|^{p}\right) \leq \\
& \quad \leq \frac{c}{R}\left(\mu\left(B_{2 R}\right)\right)^{\frac{Q+1-p}{Q}}\left\|\bar{g}_{2}\right\|_{L^{r}\left(B_{2 R}\right)}
\end{aligned}
$$

$$
\begin{gathered}
\int_{\Omega} \overline{f_{2}} \eta^{p} d \mu \leq\left\|\bar{f}_{2}\right\|_{L^{\frac{Q}{p}\left(B_{2 R}\right)}}\left(\int_{B_{2 R}} \eta^{\kappa p} d \mu\right)^{\frac{1}{\kappa}} \leq \\
\leq c\left\|\bar{f}_{2}\right\|_{L^{\frac{Q}{p}}\left(B_{2 R}\right)}\left(\mu\left(B_{2 R}\right)\right)^{\frac{1}{\kappa}}, \\
\int_{\Omega} f_{1} \eta(\eta|\nabla v|)^{p-1} d \mu \leq\left\|f_{1}\right\|_{L^{Q}\left(B_{2 R}\right)}\left(\int_{B_{2 R}} \eta^{\kappa p} d \mu\right)^{\frac{1}{k p}}\left(\int_{B_{2 R}} \eta^{p}|\nabla v|^{p} d \mu\right)^{\frac{p-1}{p}} \leq \\
\leq c\left\|f_{1}\right\|_{L^{Q}\left(B_{2 R}\right)}\left(\mu\left(B_{2 R}\right)\right)^{\frac{1}{k p}}\left(\int_{B_{2 R}} \eta^{p}|\nabla v|^{p} d \mu\right)^{\frac{p-1}{p}}
\end{gathered}
$$

and

$$
\begin{aligned}
& \int_{\Omega}(\eta|\nabla v|)^{p-1} \nabla \eta d \mu \leq\left(\int_{B_{2 R}}|\nabla \eta|^{p} d \mu\right)^{\frac{1}{p}}\left(\int_{B_{2 R}}(\eta|\nabla v|)^{p} d \mu\right)^{\frac{p-1}{p}} \leq \\
& \quad \leq \frac{c}{R}\left(\mu\left(B_{2 R}\right)\right)^{\frac{1}{p}}\left(\int_{B_{2 R}}(\eta|\nabla v|)^{p} d \mu\right)^{\frac{p-1}{p}} .
\end{aligned}
$$

Finally

$$
\begin{gathered}
\int_{\Omega} \eta^{p}|\nabla v|^{p} d \mu \leq c\left[R ^ { - 1 } \left(\mu\left(B_{2 R}\right)^{\frac{1}{p}}\left(\int_{B_{2 R}}(\eta|\nabla v|)^{p} d \mu\right)^{\frac{p-1}{p}}+\right.\right. \\
+R^{-1}\left(\mu\left(B_{2 R}\right)^{\frac{Q+1-p}{Q}}\left\|\bar{g}_{2}\right\|_{L^{r}\left(B_{2 R}\right)}+\right. \\
+\left\|\bar{f}_{2}\right\|_{L^{\frac{Q}{p}}\left(B_{2 R}\right)}\left(\mu\left(B_{2 R}\right)^{\frac{1}{k}}+\left\|f_{1}\right\|_{L^{Q}\left(B_{2 R}\right)}\left(\mu\left(B_{2 R}\right)^{\frac{1}{k p}}\left(\int_{B_{2 R}} \eta^{p}|\nabla v|^{p} d \mu\right)^{\frac{p-1}{p}}\right] .\right.
\end{gathered}
$$

If we set $z=\left(\int_{B_{2 R}} \eta^{p}|\nabla v|^{p} d \mu\right)^{\frac{1}{p}}$ we obtain

$$
\begin{aligned}
& z^{p} \leq c\left[R ^ { - 1 } \left(\mu\left(B_{2 R}\right)^{\frac{1}{p}} z^{p-1}+R^{-1}\left(\mu\left(B_{2 R}\right)^{\frac{Q+1-p}{Q}}\left\|\bar{g}_{2}\right\|_{L^{r}\left(B_{2 R}\right)}+\right.\right.\right. \\
& \quad+\left(\mu \left(B_{2 R} \frac{1}{)^{\frac{1}{x}}}\left\|\bar{f}_{2}\right\|_{L^{\frac{Q}{p}}\left(B_{2 R}\right)}++\left(\mu\left(B_{2 R}\right)^{\frac{1}{k p}}\left\|f_{1}\right\|_{L^{Q}\left(B_{2 R}\right)} z^{p-1}\right] .\right.\right.
\end{aligned}
$$

Using [9], we get

$$
z \leq \frac{c}{R}\left(\mu (B _ { 2 R }) ^ { \frac { 1 } { p } } \left[1+R^{\frac{p-1}{p}}\left(\mu\left(B_{2 R}\right)^{\frac{1-p}{p Q}}+R\left(\mu\left(B_{2 R}\right)^{\frac{-1}{Q}}\right] .\right.\right.\right.
$$

So

$$
\int_{B_{R}}|\nabla v|^{p} d \mu \leq c \mu\left(B_{2 R}\right) R^{-p}
$$

Step 5

The Poincaré inequality yields:

$$
\oint_{B_{R}}\left|v-v_{B}\right|^{p} d \mu \leq c
$$

It follows, from the John-Nirenberg Lemma 3.6 in [7], there are constants c_{1} and c_{2} such that

$$
\begin{gathered}
\left(\oint_{B_{R}} \exp \left(c_{1} v\right) d \mu\right)\left(\oint_{B_{R}} \exp \left(-c_{1} v\right) d \mu\right) \leq\left(\oint_{B_{R}} \exp \left(c_{1}\left(v_{B}-v\right)\right) d \mu\right) \\
\left(\oint_{B_{R}} \exp \left(c_{1}\left(v-v_{B}\right)\right) d \mu\right) \leq c_{2}^{2}
\end{gathered}
$$

Hence $\left(\oint_{B_{R}} \bar{u}^{c_{1}} d \mu\right)^{\frac{1}{c_{1}}} \leq c\left(\oint_{B_{R}} \bar{u}^{-c_{1}} d \mu\right)^{\frac{1}{c_{1}}}$.
At this point, we choose $\beta \leq 1-p \leq 0$ and set $q=\frac{p+\beta-1}{p}$. Let $\varphi \in H_{0}^{1, p}(\Omega, \mu)$.
Proceeding as in the proof of Step 1, we get

$$
\begin{aligned}
0= & p \int_{\Omega} A(x, u, \nabla u) \eta^{p-1}(\nabla \eta) \bar{u}^{\beta} d x+\beta \int_{\Omega} A(x, u, \nabla u) \eta^{p} \bar{u}^{\beta-1} \nabla u d x \leq \\
& -\int_{\Omega} f(x, u, \nabla u) \eta^{p} \bar{u}^{\beta} d x \leq \\
& \leq p b \int_{\Omega}(|\nabla u| \eta)^{p-1} \nabla \eta \bar{u}^{\beta} d \mu+p \int_{\Omega} \bar{g}_{2}(\bar{u} \eta)^{p-1} \nabla \eta \bar{u}^{\beta} d \mu+\beta a \int_{\Omega}(|\nabla u| \eta)^{p} \bar{u}^{\beta-1} d \mu- \\
& -\beta \int_{\Omega} \bar{f}_{2}(|\bar{u}| \eta)^{p} \bar{u}^{\beta-1} d \mu+\int_{\Omega} f_{1}|\nabla u|^{p-1} \eta^{p} \bar{u}^{\beta} d \mu+\int_{\Omega} \bar{f}_{2}|\bar{u}|^{p+\beta-1} \eta^{p} d \mu .
\end{aligned}
$$

By setting $v=\bar{u}^{q}$ we have

$$
\begin{array}{r}
|\beta| a \int_{\Omega} \eta^{p}|\nabla v|^{p} d \mu \leq p b|q| \int_{\Omega}(\eta|\nabla v|)^{p-1} v|\nabla \eta| d \mu+p|q|^{p} \int_{\Omega} \bar{g}_{2} v|\nabla \eta|(v \eta)^{p-1} d \mu \\
+(1+\beta) q^{p} \int_{\Omega} \bar{f}_{2}(\eta v)^{p} d \mu+|q| \int_{\Omega} f_{1}(\eta v)(\eta|\nabla v|)^{p-1} d \mu
\end{array}
$$

As in the estimates in the proof of Step 1, we get
$\left.\left.\left(\int_{B_{2 R}}|\eta v|^{\kappa p}\right)^{\frac{1}{\kappa p}} \leq c R\left(\mu\left(B_{2 R}\right)\right)^{\frac{-1}{Q}}(1+|q|)^{\frac{p}{\epsilon}}\left[\int_{B_{2 R}}|\eta v|^{p}\right)^{\frac{1}{p}}+\int_{B_{2 R}} v|\nabla \eta|^{p}\right)^{\frac{1}{p}}\right]$.
Let $1 \leq a<b \leq 2$ and $\eta \in \mathcal{C}_{0}^{\infty}\left(B_{b R}\right)$ such that $\eta=1$ on $B_{a R}$ and $|\nabla \eta| \leq$ $\frac{c}{(b-a) R}$. We finally obtain

$$
\left(\int_{B_{a R}} \bar{u}^{\kappa p q} d \mu\right)^{\frac{1}{\kappa_{p q}}} \geq c \frac{(1+|q|)^{\frac{p}{\epsilon q}}}{(b-a)^{\frac{1}{q}}}\left(\mu\left(B_{2 R}\right)\right)^{\frac{-1}{Q q}}\left(\int_{B_{b R}} \bar{u}^{p q} d \mu\right)^{\frac{1}{p q}} .
$$

Then, by Moser's iteration procedure, we get

$$
\operatorname{ess}_{\inf _{B_{R}} \bar{u} \geq c\left(\frac{1}{\mu\left(B_{2 R}\right)} \int_{B_{2 R}} \bar{u}^{-p_{0}} d \mu\right)^{\frac{-1}{p_{0}}}, \text {. }}
$$

for some constant $p_{0}>0$. The proof of the theorem is achieved by getting previous steps.

References

[1] M. Biroli, U. Mosco, Sobolev inequalities for Dirichlet forms on homogeneous spaces, in Boundary value problems for partial differential equations and applications (dedicated to E. Magenes) C. Baiocchi and J.-L. Lions Eds., Research Notes in Applied Mathematics, Masson, 1993, 305-311.
[2] L. Capogna, D. Danielli, N. Garofallo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Diff. Equations 18 (1993), 1765-1794.
[3] V. De Cicco, M. Vivaldi, Harnack inequalities for Fuchsian weighted elliptic equations. Comm. Partial Diff. Equations 21 (1996), 1321-1347.
[4] R.R. Coifman, G. Weiss, Analyse Harmonique Noncommutative sur Certains Espaces Homogènes, Lecture Notes in Mathematics, Vol. 242, Springer Verlag, Berlin, 1971.
[5] E.B. Fabes, C.E. Kenig, R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations. Comm. Partial Diff. Equations 7 (1982), 77-116.
[6] M. Ghergu, V. Rădulescu, Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Its Applications, Vol. 37, Oxford University Press, 2008.
[7] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford University Press, Oxford, 1993.
[8] J. Malý, W.P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, Vol. 51, American Mathematical Society, Providence, RI, 1997.
[9] J. Serrin, Local behaviour of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302.

Nedra Belhaj Rhouma,
Faculté des Sciences de Tunis,
Campus Universitaire 2092, Tunis, Tunisia
e-mail: Nedra.Belhajrhouma@fst.rnu.tn

Mahel Mosbah,
Faculté des Sciences de Bizerte,
7021 Jarzouna, Bizerte, Tunisia
e-mail: Mahel.Mosbah@fsb.rnu.tn

