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MATLAB EVALUATION OF THE Ωm,n
j,k (x)

COEFFICIENTS FOR PDE SOLVING BY

WAVELET - GALERKIN APPROXIMATION

Constantin I. Popovici

Abstract

After approaching the problem of the numerical solution of Stefan’s
Problem by Finite Element Methods (FEM) or by Finite Difference
Methods in his earlier papers [5]-[11], the author goes on with using
the wavelet - Galerkin method for the solution of the earlier mentioned
problem.

The evaluation of the coefficients Ωm,n

j,k (x) is a first step in the nu-
merical approximation of the Navier - Stokes equation, of the problem
with free boundary of Stefan type, etc.

This paper is one in a set of articles dealing with solutions to PDEs
or ODEs using the wavelet - Galerkin method. In order to approxi-
mate the solution, a couple of families of coefficients are needed; they
occur in wavelet series and they are involved in discretizing differential
equations that characterize mathematical-mechanical models. Follow-
ing some earlier ideas (of references [1],[2],[3],[4],[12],[13],[14]), we have
worked out several algorithms and MATLAB - based programs that dif-
fer from the algorithms in [2], allowing to obtain high precision results
for the necessary functionals. The accuracy of the results follows from
the performances of the MATLAB programming environment. In this
paper it is described the MATLAB evaluation of the integral

Ωm,n

j,k (x) =

∫ x

0

Φ (y)Φ(m) (y − j)Φ(n) (y − k) dy.

The orthonormal wavelet class with compact support, developed by
Daubechies (in 1988) follows to be adapted as a Galerkin basis in the
space domain.
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1. INTRODUCTION

Using some results due to Prof. Ingrid Daubechies (Princeton University,
USA) regarding the determination of an orthonormal basis of functions with
compact support on L2 (R) [4], the team led by Prof. Chen (National Cheng
Kung University of Taiwan) has proposed in [2] some algorithms for calculating
seven functionals that occur in wavelet - Galerkin discretization of differential
equations. In our paper we present the algorithms and programs needed for
the calculation of one of these functionals, namely

Ωm,n
j,k (x) =

∫ x

0

Φ(y) Φ(m) (y − j) Φ(n) (y − k) dy. (1)

using the programming environment MATLAB. In expression (1), j, k ∈ Z,
m,n ∈ N

∗ and Φ(n) (u) denotes the n-order derivative of function Φ. We will
calculate the coefficients Ωm,n

j,k (5). Having the values of Ωm,n
j,k (5) for j, k ∈ Z

calculated, we can determine the values of Ωm,n
j,k (x) for x = 1, 2, 3, 4 and

j, k ∈ Z, taking into account the properties of the coefficients Ωm,n
j,k (x) of the

formulae (2)-(4).

2. CALCULATION OF COEFFICIENTS Ωm,n
j,k

Each member of the family of wavelets built by Daubechies is governed by
a set of L (an integer number) coefficients {pk : k = 0, 1, . . . , L− 1} and two
functions Φ (x) and Ψ (x).

The function Φ (x), called the scalar or waveleted function is defined on
[0, L− 1] and it has the expression

Φ (x) =

L−1
∑

j=0

pjΦ(2x− j) .

The function Ψ (x), called wavelet-mother, is defined on [1− L/2, L/2] and its
expression is

Ψ (x) =

1
∑

j=2−L

(−1)
j
p1−jΦ(2x− j) .

The Daubechies filtration coefficients pk, k = 0, L− 1 for L = 6 are the
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following:

p0 =
1 +

√
10 +

√

5 + 2
√
10

16
, p1 =

5 +
√
10 + 3

√

5 + 2
√
10

16
,

p2 =
10− 2

√
10 + 2

√

5 + 2
√
10

16
, p3 =

10− 2
√
10− 2

√

5 + 2
√
10

16
,

p4 =
5 +

√
10− 3

√

5 + 2
√
10

16
, p5 =

1 +
√
10−

√

5 + 2
√
10

16
.

It can be seen that the equation
5
∑

k=0

pk = 2 is satisfied. We are going to calcu-

late Ωm,n
j,k (x) for x = 5, L = 6, m = 0, n = 1 and −4 ≤ j, k ≤ 4. Ωm,n

j,k (x) plays
an important role in the numerical solution of nonlinear differential equations
by the wavelet - Galerkin method, according to the assertion and the exam-
ple given by A. Latto and E. Tenenbaum, ”Les ondelettes a support compact
et la solution numerique de l’equation de Burgers”, C. R. Acad. Sci. Paris,
311, 903-909 (1990). In the paper ”The evaluation of connection coefficients
of compactly supported wavelets” authored by A. Latto, H. L. Resnikoff and
E. Tenenbaum and published in Proc. French - USA Workshop on wavelets
and Turbulence, Y. Maday (ed.), the coefficient Ωm,n

j,k (x) is called the third
coefficient of wavelets connection.

The coefficients Ωm,n
j,k (x) have the following properties:

Ωm,n
j,k (x) = 0 for |j| , |k| , or |j − k| ≥ L− 1, (2)

Ωm,n
j,k (x) = 0 for x− j, x− k, or x ≤ 0, (3)

Ωm,n
j,k (x) = Ωm,n

j,k (L− 1) for x− j, x− k, or x ≥ L− 1. (4)

In equation (113) of [2] we consider −4 ≤ j, k ≤ 4 and, taking into account
formulas (2) − (4), we will obtain a homogeneous system in the unknowns
Ωm,n

j,k (x) with m = 0 and n = 1. Equation (113) of [2] has the form

Ωm,n
j,k (x) = 2m+n−1

L−1
∑

ia=0

L−1
∑

ib=0

L−1
∑

ic=0

piapibpicΩ
m,n
2j+ib−ia,2k+ic−ia

(2x− ia) . (5)

We have a system with 3L2−9L+7 unknowns Ωm,n
j,k (L− 1). We obtain, from

equation (5), a homogeneous system of the form

v = 21−m−nSv. (6)

where

v = [v2−L, v3−L, . . . , vL−2]
T
, (7)

vj =
[

Ωm,n
j,α (L− 1) , Ωm,n

j,α+1 (L− 1) , . . . , Ωm,n
j,β (L− 1)

]

, (8)
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α = max (j + 2− L, 2− L), β = min (j + L− 2, L− 2), and the entries of
matrix S are sums of products of the form piapibpic . Since x = 5, m = 0 and
n = 1, we denote the unknown by Ωj,k.

The unknowns of system are: Ω−4,−4; Ω−4,−3; Ω−4,−2; Ω−4,−1; Ω−4,0;
Ω−3,−4; Ω−3,−3; Ω−3,−2; Ω−3,−1; Ω−3,0; Ω−3,1; Ω−2,−4; Ω−2,−3; Ω−2,−2;
Ω−2,−1; Ω−2,0; Ω−2,1; Ω−2,2; Ω−1,−4; Ω−1,−3; Ω−1,−2; Ω−1,−1; Ω−1,0; Ω−1,1;
Ω−1,2; Ω−1,3; Ω0,−4; Ω0,−3; Ω0,−2; Ω0,−1; Ω0,0; Ω0,1; Ω0,2; Ω0,3; Ω0,4; Ω1,−3;
Ω1,−2; Ω1,−1; Ω1,0; Ω1,1; Ω1,2; Ω1,3; Ω1,4; Ω2,−2; Ω2,−1; Ω2,−0; Ω2,1; Ω2,2; Ω2,3;
Ω2,4; Ω3,−1; Ω3,0; Ω3,1; Ω3,2; Ω3,3; Ω3,4; Ω4,0; Ω4,1; Ω4,2; Ω4,3; Ω4,4.

Taking j = −4 and k = −4 in equation (5), and also taking into account
(2)− (4), we obtain

Ω−4,−4 = (p0p4p4 + p1p5p5) Ω−4,−4+p0p4p5Ω−4,−3+p0p5p4Ω−3,−4+p0p5p5Ω−3,−3.

It follows that

s11 = p0p4p4 + p1p5p5, s12 = p0p4p5, s13 = p0p5p4, s14 = p0p5p5,

the remaining entries on the first row being equal to zero.
Similarly, if we consider j = −4 and k = −3 in formula (5) we have

Ω−4,−3 = (p0p4p2 + p1p5p3) Ω−4,−4 + (p1p5p4 + p0p4p3) Ω−4,−3+

+ (p0p4p4 + p1p5p5) Ω−4,−2 + p0p4p5Ω−4,−1 + p0p5p2Ω−3,−4+

+ p0p5p3Ω−3,−3 + p0p5p4Ω−3,−2 + p0p5p5Ω−3,−1.

It follows that

s21 = p0p4p2 + p1p5p3, s22 = p1p5p4 + p0p4p3,

s23 = p0p4p4 + p1p5p5, s24 = p0p4p5, s25 = 0,

s26 = p0p5p2, s27 = p0p5p3, s28 = p0p5p4, s29 = p0p5p5;

the remaining entries in the second row are = 0. Following this procedure, the
matrix S is generated as follows:

% The generate matrix omega

clc

p1=0.47046720778416;

p2=1.14111691583144;

p3=0.65036500052623;

p4=-0.19093441556833;

p5=-0.12083220831040;

p6=0.04981749973688;
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a=[-4 -4 -4 -4 -4 -3 -3 -3 -3 -3 -3 -2 -2 -2 -2 -2 -2 -2 -1 ...

-1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 ...

2 2 2 2 3 3 3 3 3 3 4 4 4 4 4];

b=[-4 -3 -2 -1 0 -4 -3 -2 -1 0 1 -4 -3 -2 -1 0 1 2 -4 -3 -2 ...

-1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4 -2 -1 0 ...

1 2 3 4 -1 0 1 2 3 4 0 1 2 3 4];

L=6;

s=zeros(61);

for r=1:61

j=a(r);

k=b(r);

for ia=1:L

for ib=1:L

for ic=1:L

jj=2*j+ib-ia;

kk=2*k+ic-ia;

for t=1:61

if ((jj==a(t))&(kk==b(t))

q=t;

s(r,q)=s(r,q)+p(ia)*p(ib)*p(ic);

break

end

end

end

end

end

end

[vp,dp]=eig(s)

The matrix S has the eigenvalues 21−k, k = 0, 1, . . . , L − 2 with their
multiplicity order k + 1.

It can be seen from (6) that v is an eigenvector corresponding to the eigen-
value 2m+n−1. In our case v is the solution corresponding to the eigenvalue 1
with its multiplicity order two. It follows that we cannot determine a unique
solution from (6).

In order to determine a solution to system (6) we attach the equations
resulting from the equation of moments (formulas (117) and (118) of [2]),
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namely

−4Ω−4,−4 − 3Ω−4,−3 − 2Ω−4,−2 − 1 · Ω−4,−1 + 0 · Ω−4,0 = Γ0
−4

−4Ω−3,−4 − 3Ω−3,−3 − 2Ω−3,−2 − 1 · Ω−3,−1 + 0 · Ω−3,0 + 1 · Ω−3,1 = Γ0
−3

−4Ω−2,−4 − 3Ω−2,−3 − 2Ω−2,−2 − 1 · Ω−2,−1 + 0 · Ω−2,0 + 1 · Ω−2,1+
+2Ω−2,2 = Γ0

−2

−4Ω−1,−4 − 3Ω−1,−3 − 2Ω−1,−2 − 1 · Ω−1,−1 + 0 · Ω−1,0 + 1 · Ω−1,1+
+2Ω−1,2 + 3Ω−1,3 = Γ0

−1

−4Ω0,−4 − 3Ω0,−3 − 2Ω0,−2 − 1 · Ω0,−1 + 0 · Ω0,0 + 1 · Ω0,1 + 2Ω0,2+
+3Ω0,3 + 4Ω0,4 = Γ0

0

−3Ω1,−3 − 2Ω1,−2 − 1 · Ω1,−1 + 0 · Ω1,0 + 1 · Ω1,1 + 2Ω1,2 + 3Ω1,3+
+4Ω1,4 = Γ0

1

−2Ω2,−2 − 1 · Ω2,−1 + 0 · Ω2,0 + 1 · Ω2,1 + 2Ω2,2 + 3Ω2,3 + 4Ω2,4 = Γ0
2

−1 · Ω3,−1 + 0 · Ω3,0 + 1 · Ω3,1 + 2Ω3,2 + 3Ω3,3 + 4Ω3,4 = Γ0
3

0 · Ω4,0 + 1 · Ω4,1 + 2Ω4,2 + 3Ω4,3 + 4Ω4,4 = Γ0
4

Ω−4,−4 +Ω−3,−4 +Ω−2,−4 +Ω−1,−4 +Ω0,−4 = Γ1
−4

Ω−4,−3 +Ω−3,−3 +Ω−2,−3 +Ω−1,−3 +Ω0,−3 +Ω1,−3 = Γ1
−3

Ω−4,−2 +Ω−3,−2 +Ω−2,−2 +Ω−1,−2 +Ω0,−2 +Ω1,−2 +Ω2,−2 = Γ1
−2

Ω−4,−1 +Ω−3,−1 +Ω−2,−1 +Ω−1,−1 +Ω0,−1 +Ω1,−1 +Ω2,−1 +Ω3,−1 = Γ1
−1

Ω−4,0 +Ω−3,0 +Ω−2,0 +Ω−1,0 +Ω0,0 +Ω1,0 +Ω2,0 +Ω3,0 +Ω4,0 = Γ1
0

Ω−3,1 +Ω−2,1 +Ω−1,1 +Ω0,1 +Ω1,1 +Ω2,1 +Ω3,1 +Ω4,1 = Γ1
1

Ω−2,2 +Ω−1,2 +Ω0,2 +Ω1,2 +Ω2,2 +Ω3,2 +Ω4,2 = Γ1
2

Ω−1,3 +Ω0,3 +Ω1,3 +Ω2,3 +Ω3,3 +Ω4,3 = Γ1
3

Ω0,4 +Ω1,4 +Ω2,4 +Ω3,4 +Ω4,4 = Γ1
4

The numbers Γ0
−4,Γ

0
−3,Γ

0
−2, . . . ,Γ

1
4 are known.

The attachment of these equations to system (6) is accomplished after
the elimination of the rows corresponding to the unknowns Ω−4,0, Ω−3,0 and
Ω0,0. The replacement is rather difficult; the obtained solution must satisfy
the conditions (117) and (118) of [2].

% Program for determinate solution

for i=1:61

for j=1:61

if i==j

s(i,j)=-1+s(i,j)

end
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end

end

s(5,1:4)=[-4 -3 -2 -1]; s(5,5:61)=0;

s(10,1:5)=0; s(10,6:11)=[-4 -3 -2 -1 0 1]; s(10,12:61)=0;

% s(31,1:11)=0; s(31,12:18)=[-4 -3 -2 0 1 2]; s(31,20:61)=0;

rang=rank(s)

dets=det(s);

d=zeros(61,1);

d(5,1)=-0.34246575e-3;

d(10,1)=-0.14611872e-1;

% d(31,1)=0.14520548;

format long

sol=s\d

The solution thus obtained has a higher accuracy.

3. CONCLUSIONS

The calculation of the cefficients Ωm,n
j,k (x), for x = 1, 2, 3, 4, 5 and j, k ∈ Z,

is a first step in the numerical solution of the nonlinear parabolic equation

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2

– the Burgers equation. The approach to the solution of Burgers equation will
be developed in a subsequent paper.
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phases. Studii şi cercetări matematice, 48 (1996), nr. 5-6, 383-391.

[6] C. I. Popovici, The finite element method for solving the two-dimensional
Stefan problem with two phases (I). Math. Reports, 3 (53) (2001), nr. 1,
67-74.

[7] C. I. Popovici, The finite element method for solving the two-dimensional
Stefan problem with two phases (II). Math. Reports, 3 (53) (2001), nr. 3,
273-286.

[8] C. I. Popovici, A difference scheme for solving two dimensional Stefan’s
problem with two phases heat equation. Studii şi cercetări ştiinţifice, Ba-
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