FIXED POINT RESULTS FOR φ-CONTRACTIONS ON A SET WITH TWO SEPARATING GAUGE STRUCTURES

Tünde Petra Petru

Abstract

The purpose of this article is to present some fixed point theorems for Cirić-type generalized φ-contractions on a set with two separating gauge structures. Fixed point theorems and a homotopy result are given in Section 2. Then, as applications, some existence results for a multivalued Cauchy problem and a Volterra-type integral inclusion are presented in Section 3. Our theorems extend and generalize some previous results in the literature, such as: [1], [3], [7], [10], [11], [13].

1 Introduction

Throughout this paper X will denote a gauge space endowed with a separating gauge structure $\mathcal{P}=\left\{p_{\alpha}\right\}_{\alpha \in A}$, where A is a directed set (see [8] for definitions).

[^0]A sequence $\left(x_{n}\right)$ of elements in X is said to be Cauchy if for every $\varepsilon>0$ and $\alpha \in A$, there is an N with $p_{\alpha}\left(x_{n}, x_{n+p}\right) \leq \varepsilon$ for all $n \geq N$ and $p \in \mathbb{N}$. The sequence $\left(x_{n}\right)$ is called convergent if there exists an $x_{0} \in X$ such that for every $\varepsilon>0$ and $\alpha \in A$, there is an N with $p_{\alpha}\left(x_{0}, x_{n}\right) \leq \varepsilon$ for all $n \geq N$.

A gauge space is called sequentially complete if any Cauchy sequence is convergent. A subset of X is said to be sequentially closed if it contains the limit of any convergent sequence of its elements.

If $\mathcal{P}=\left\{p_{\alpha}\right\}_{\alpha \in A}$ and $\mathcal{Q}=\left\{q_{\beta}\right\}_{\beta \in B}$ are two separating gauge structures (A, B are directed sets), then for $r=\left\{r_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$ and $x_{0} \in X$ we will denote by $\bar{B}_{q}^{p}\left(x_{0}, r\right)$ the closure of $B_{q}\left(x_{0}, r\right)$ in (X, \mathcal{P}), where

$$
B_{q}\left(x_{0}, r\right)=\left\{x \in X \mid q_{\beta}\left(x, x_{0}\right)<r_{\beta} \text { for all } \beta \in B\right\}
$$

Let $P((X, \mathcal{P}))$ be the set of all nonempty subsets of X regarding to the separating gauge structure \mathcal{P}. We will use the following symbols where is no place to confusion:

$$
\begin{gathered}
P(X):=\{Y \in \mathcal{P}(X) \mid Y \neq \emptyset\} ; P_{b}(X):=\{Y \in P(X) \mid Y \text { is bounded }\} ; \\
P_{c l}(X):=\{Y \in P(X) \mid Y \text { is closed }\}
\end{gathered}
$$

Let us define the gap functional between Y and Z in the (X, \mathcal{P}) gauge space

$$
D_{\alpha}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, D_{\alpha}(Y, Z)=\inf \left\{p_{\alpha}(y, z) \mid y \in Y, z \in Z\right\}
$$

(in particular, if $x_{0} \in X$ then $\left.D_{\alpha}\left(x_{0}, Z\right):=D_{\alpha}\left(\left\{x_{0}\right\}, Z\right)\right)$ and the (generalized) Pompeiu-Hausdorff functional

$$
H_{\alpha}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, H_{\alpha}(Y, Z)=\max \left\{\sup _{y \in Y} D_{\alpha}(y, Z), \sup _{z \in Z} D_{\alpha}(Y, z)\right\}
$$

If $F: X \rightarrow P(X)$ is a multivalued operator, then $x \in X$ is called fixed point for F if and only if $x \in F(x)$. The set FixF $:=\{x \in X \mid x \in F(x)\}$
is called the fixed point set of F. The multivalued operator F is said to be closed if GraphF $:=\{(x, y) \in X \times X \mid y \in F(x)\}$ is closed in $X \times X$.

The aim of this paper is to give some (local and global) fixed point theorems for multivalued operators on a set endowed with two separating gauge structures. As a consequence we also obtain a homotopy result. Then, as applications, some existence results for a multivalued Cauchy problem and a Volterra-type integral inclusion are presented in Section 3. Our theorems extend and generalize some previous results (in metric spaces as well as in gauge spaces) given by: R.P. Agarwal, J. Dshalalow, D. O’Regan [1], L.B. Ćirić [7], M. Frigon [10], [11], T. Lazăr, D. O'Regan, A. Petruşel [13], R.P. Agarwal, D. O'Regan, M. Sambandham [3].

2 The main results

Ćirić ([7]) proved that if (X, d) is a complete metric space, $F: X \rightarrow P_{c l}(X)$ is a multivalued operator and there exists $\alpha \in[0,1]$ such that $H(F(x), F(y)) \leq$ $\alpha \cdot M_{d}^{F}(x, y)$, for every $x, y \in X\left(\right.$ where $M_{d}^{F}(x, y)=\max \{d(x, y), D(x, F(x))$, $\left.\left.D(y, F(y)), \frac{1}{2}[D(x, F(y))+D(y, F(x))]\right\}\right)$. Then FixF $\neq \emptyset$ and for every $x \in X$ and $y \in F(x)$ there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that
(1) $x_{0}=x, x_{1}=y$;
(2) $x_{n+1} \in F\left(x_{n}\right), n \in \mathbb{N}$;
(3) $x_{n} \xrightarrow{d} x^{*} \in F\left(x^{*}\right)$, for every $n \rightarrow \infty$.
V.G. Angelov [4] introduced the notion of generalized φ-contractive singlevalued map in gauge spaces in 1987, meanwhile the concept for multivalued operators was given in 1998 (see V.G. Angelov [5]). In what follows we will give a local version of Ćirić's theorem ([7]) for generalized φ-contractions on a set with two separating gauge structures.

Theorem 2.1. Let X be a nonempty set endowed with two separating gauge structures $\mathcal{P}=\left\{p_{\alpha}\right\}_{\alpha \in A}, \mathcal{Q}=\left\{q_{\beta}\right\}_{\beta \in B}$ (A,B are directed sets), $r=\left\{r_{\beta}\right\}_{\beta \in B} \in$ $(0, \infty)^{B}, x_{0} \in X$ and $F: \bar{B}_{q}^{p}\left(x_{0}, r\right) \rightarrow P(X)$. We suppose that:
(i) (X, \mathcal{P}) is a sequentially complete gauge space;
(ii) there exists a function $\psi: A \rightarrow B$ and $c=\left\{c_{\alpha}\right\}_{\alpha \in A} \in(0, \infty)^{A}$ such that

$$
p_{\alpha}(x, y) \leq c_{\alpha} \cdot q_{\psi(\alpha)}(x, y), \text { for every } \alpha \in A \text { and } x, y \in \bar{B}_{q}^{p}\left(x_{0}, r\right)
$$

(iii) $F: \bar{B}_{q}^{p}\left(x_{0}, r\right) \rightarrow P(X)$ has closed graph;
(iv) Suppose that for each $\beta \in B$ there exists a continuous function φ_{β} : $[0, \infty) \rightarrow[0, \infty)$, with $\varphi_{\beta}(t)<t$, for every $t>0$ and φ_{β} is strictly increasing on $\left(0, r_{\beta}\right]$ such that for $x, y \in \bar{B}_{q}^{p}\left(x_{0}, r\right)$ we have

$$
H_{\beta}(F(x), F(y)) \leq \varphi_{\beta}\left(M_{\beta}^{F}(x, y)\right)
$$

where $M_{\beta}^{F}(x, y)=\max \left\{q_{\beta}(x, y), D_{\beta}(x, F(x)), D_{\beta}(y, F(y)), \frac{1}{2}\left[D_{\beta}(x, F(y))+\right.\right.$

$$
\left.\left.D_{\beta}(y, F(x))\right]\right\} .
$$

In addition assume for each $\beta \in B$ that

$$
\begin{equation*}
\Phi_{\beta} \text { is strictly increasing on }[0, \infty) \text {, where } \Phi_{\beta}(x)=x-\varphi_{\beta}(x) \text {, } \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{\infty} \varphi_{\beta}^{i}(t)<\infty, \text { for } t \in\left(0, r_{\beta}-\varphi\left(r_{\beta}\right)\right] \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{\infty} \varphi_{\beta}^{i}\left(r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right) \leq \varphi_{\beta}\left(r_{\beta}\right) \tag{2.3}
\end{equation*}
$$

hold. Finally suppose the following two conditions are satisfied:
(i) For each $\beta \in B$, we have: $D_{\beta}\left(x_{0}, F\left(x_{0}\right)\right)<r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)$
and
(ii) For every $x \in \bar{B}_{q}^{p}\left(x_{0}, r\right)$ and every $\varepsilon=\left\{\varepsilon_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$,
there exists $y \in F(x)$ with $q_{\beta}(x, y) \leq D_{\beta}(x, F(x))+\varepsilon_{\beta}$, for every $\beta \in B$.
Then F has a fixed point.

Proof. From (2.4) we may choose $x_{1} \in F\left(x_{0}\right)$ with

$$
\begin{equation*}
q_{\beta}\left(x_{0}, x_{1}\right)<r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right), \text { for every } \beta \in B \tag{2.6}
\end{equation*}
$$

Then $x_{1} \in \bar{B}_{q}^{p}\left(x_{0}, r\right)$.
For $\beta \in B$ choose $\varepsilon_{\beta}>0$ with $\Phi_{\beta}^{-1}\left(\varepsilon_{\beta}\right)<r_{\beta}$ so that

$$
\begin{equation*}
\varphi_{\beta}\left(q_{\beta}\left(x_{0}, x_{1}\right)+\varepsilon_{\beta}\right)+\varepsilon_{\beta}+\varphi_{\beta}\left(\Phi_{\beta}^{-1}\left(\varepsilon_{\beta}\right)\right)<\varphi_{\beta}\left(r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right) \tag{2.7}
\end{equation*}
$$

This is possible from (2.6) and the fact that φ_{β} is strictly increasing on $\left(0, r_{\beta}\right]$.
From (2.16) we can choose $x_{2} \in F\left(x_{1}\right)$ so that for every $\beta \in B$ we have

$$
\begin{equation*}
q_{\beta}\left(x_{1}, x_{2}\right) \leq D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)+\varepsilon_{\beta} \leq H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)+\varepsilon_{\beta} \tag{2.8}
\end{equation*}
$$

We want to see if

$$
\begin{equation*}
q_{\beta}\left(x_{1}, x_{2}\right) \leq \varphi_{\beta}\left(q_{\beta}\left(x_{0}, x_{1}\right)+\varepsilon_{\beta}\right)+\varepsilon_{\beta}+\varphi_{\beta}\left(\Phi_{\beta}^{-1}\left(\varepsilon_{\beta}\right)\right) . \tag{2.9}
\end{equation*}
$$

We can notice that

$$
\begin{equation*}
H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)+\varepsilon_{\beta} \leq \varphi_{\beta}\left(M_{\beta}\left(x_{0}, x_{1}\right)\right)+\varepsilon_{\beta} . \tag{2.10}
\end{equation*}
$$

Let us consider $\gamma_{\beta}=\max \left\{q_{\beta}\left(x_{0}, x_{1}\right), D_{\beta}\left(x_{0}, F\left(x_{0}\right)\right), D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right), \frac{1}{2}\left[D_{\beta}\left(x_{0}, F\left(x_{1}\right)\right)+\right.\right.$ $\left.\left.D_{\beta}\left(x_{1}, F\left(x_{0}\right)\right)\right]\right\}$.

If $\gamma_{\beta}=q_{\beta}\left(x_{0}, x_{1}\right)$ then from (2.8) and (2.10) we have

$$
\begin{aligned}
q_{\beta}\left(x_{1}, x_{2}\right) & \leq H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)+\varepsilon_{\beta} \leq \varphi_{\beta}\left(q_{\beta}\left(x_{0}, x_{1}\right)\right)+\varepsilon_{\beta} \leq \\
& \leq \varphi_{\beta}\left(q_{\beta}\left(x_{0}, x_{1}\right)+\varepsilon_{\beta}\right)+\varepsilon_{\beta}+\varphi_{\beta}\left(\Phi_{\beta}^{-1}\left(\varepsilon_{\beta}\right)\right)
\end{aligned}
$$

So (2.9) is true.
If $\gamma_{\beta}=D_{\beta}\left(x_{0}, F\left(x_{0}\right)\right)$ then $\gamma_{\beta} \leq q_{\beta}\left(x_{0}, x_{1}\right)$ so (2.9) is true again.
If $\gamma_{\beta}=D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)$ then (2.8) implies

$$
\begin{aligned}
D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right) & \leq q_{\beta}\left(x_{1}, x_{2}\right) \leq H_{\beta}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)+\varepsilon_{\beta} \leq \\
& \leq \varphi_{\beta}\left(D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)\right)+\varepsilon_{\beta},
\end{aligned}
$$

from where we have $D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)-\varphi_{\beta}\left(D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right)\right) \leq \varepsilon_{\beta}$, so

$$
D_{\beta}\left(x_{1}, F\left(x_{1}\right)\right) \leq \Phi_{\beta}^{-1}\left(\varepsilon_{\beta}\right)
$$

Thus, $q_{\beta}\left(x_{1}, x_{2}\right) \leq \varphi_{\beta}\left(\Phi_{\beta}^{-1}\left(\varepsilon_{\beta}\right)\right)+\varepsilon_{\beta}$ and (2.9) is true.
If $\gamma_{\beta}=\frac{1}{2}\left[D_{\beta}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\beta}\left(x_{1}, F\left(x_{0}\right)\right)\right]$ then

$$
\begin{aligned}
q_{\beta}\left(x_{1}, x_{2}\right) & \leq \frac{1}{2}\left[D_{\beta}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\beta}\left(x_{1}, F\left(x_{0}\right)\right)\right]+\varepsilon_{\beta} \leq \\
& \leq \frac{1}{2}\left[q_{\beta}\left(x_{0}, x_{1}\right)+q_{\beta}\left(x_{1}, x_{2}\right)\right]+\varepsilon_{\beta}
\end{aligned}
$$

from where $\frac{1}{2} q_{\beta}\left(x_{1}, x_{2}\right) \leq \frac{1}{2} q_{\beta}\left(x_{0}, x_{1}\right)+\varepsilon_{\beta}$. So

$$
\begin{aligned}
q_{\beta}\left(x_{1}, x_{2}\right) & \leq \varphi_{\beta}\left(\frac{1}{2}\left[D_{\beta}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\beta}\left(x_{1}, F\left(x_{0}\right)\right)\right]\right)+\varepsilon_{\beta} \leq \\
& \leq \varphi_{\beta}\left(\frac{1}{2}\left[q_{\beta}\left(x_{0}, x_{1}\right)+q_{\beta}\left(x_{1}, x_{2}\right)\right]\right)+\varepsilon_{\beta} \leq \\
& \leq \varphi_{\beta}\left(q_{\beta}\left(x_{0}, x_{1}\right)+\varepsilon_{\beta}\right)+\varepsilon_{\beta} .
\end{aligned}
$$

Thus, (2.9) is true again, which means that it holds in all cases. We now have from (2.7) that

$$
\begin{equation*}
q_{\beta}\left(x_{1}, x_{2}\right)<\varphi_{\beta}\left(r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right) . \tag{2.11}
\end{equation*}
$$

Also we can point out that

$$
\begin{aligned}
q_{\beta}\left(x_{0}, x_{2}\right) & \leq q_{\beta}\left(x_{0}, x_{1}\right)+q_{\beta}\left(x_{1}, x_{2}\right)< \\
& <\left[r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right]+\varphi_{\beta}\left(r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right) \leq \\
& \leq r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)+\varphi_{\beta}\left(r_{\beta}\right)=r_{\beta}
\end{aligned}
$$

Thus, $x_{2} \in \bar{B}_{q}^{p}\left(x_{0}, r\right)$.
Next, for $\beta \in B$, we choose $\delta_{\beta}>0$, with $\Phi_{\beta}^{-1}\left(\delta_{\beta}\right)<r_{\beta}$ so that

$$
\begin{equation*}
\varphi_{\beta}\left(q_{\beta}\left(x_{1}, x_{2}\right)+\delta_{\beta}\right)+\delta_{\beta}+\varphi\left(\Phi_{\beta}^{-1}\right)<\varphi_{\beta}^{2}\left(r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right) \tag{2.12}
\end{equation*}
$$

This is possible from (2.11).

From (2.16) we can choose $x_{3} \in F\left(x_{2}\right)$ so that for every $\beta \in B$ we have

$$
q_{\beta}\left(x_{2}, x_{3}\right) \leq D_{\beta}\left(x_{2}, F\left(x_{2}\right)\right)+\delta_{\beta} \leq H_{\beta}\left(F\left(x_{1}\right), F\left(x_{2}\right)\right)+\delta_{\beta} .
$$

As above, we can easily prove that

$$
\begin{equation*}
q_{\beta}\left(x_{2}, x_{3}\right) \leq \varphi_{\beta}\left(q_{\beta}\left(x_{2}, x_{3}\right)+\delta_{\beta}\right)+\delta_{\beta}+\varphi_{\beta}\left(\Phi_{\beta}^{-1}\left(\delta_{\beta}\right)\right) . \tag{2.13}
\end{equation*}
$$

From (2.12) and (2.13) we have that $q_{\beta}\left(x_{2}, x_{3}\right)<\varphi_{\beta}^{2}\left(r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right)$.
For $\beta \in B$ we have

$$
\begin{aligned}
q_{\beta}\left(x_{0}, x_{3}\right) & \leq q_{\beta}\left(x_{0}, x_{1}\right)+q_{\beta}\left(x_{1}, x_{2}\right)+q_{\beta}\left(x_{2}, x_{3}\right) \leq \\
& \leq\left[r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right]+\varphi_{\beta}\left(r_{\beta}-\varphi\left(r_{\beta}\right)\right)+\varphi_{\beta}^{2}\left(r_{\beta}-\varphi_{\beta} r_{\beta}\right) \leq \\
& \leq r_{\beta}+\left[\sum_{i=1}^{\infty} \varphi_{\beta}^{i}\left(r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right)-\varphi_{\beta}\left(r_{\beta}\right)\right] \leq r_{\beta} .
\end{aligned}
$$

Proceeding in the same way, we obtain $x_{n+1} \in F\left(x_{n}\right)$, for $n \in\{3,4, \ldots\}$, with $x_{n+1} \in \bar{B}_{q}^{p}\left(x_{0}, r\right)$ and

$$
q_{\beta}\left(x_{n}, x_{n+1}\right)<\varphi_{\beta}^{n}\left(r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right), \text { for every } \beta \in B
$$

From (2.2) it is immediate that $\left\{x_{n}\right\}$ is a Cauchy sequence with respect to q_{β}, for each $\beta \in B$. (ii) implies that $\left\{x_{n}\right\}$ is also \mathcal{P}-Cauchy, hence it is \mathcal{P}_{-} convergent to some $x \in \bar{B}_{q}^{p}\left(x_{0}, r\right)$. It only remains to show that $x \in F(x)$.

$$
\begin{aligned}
D_{\beta}(x, F(x)) \leq & q_{\beta}\left(x, x_{n}\right)+D_{\beta}\left(x_{n}, F(x)\right) \leq \\
\leq & q_{\beta}\left(x, x_{n}\right)+H_{\beta}\left(F\left(x_{n-1}\right), F(x)\right) \leq \\
\leq & q_{\beta}\left(x, x_{n}\right)+\varphi_{\beta}\left(\operatorname { m a x } \left\{q_{\beta}\left(x_{n-1}, x\right), D_{\beta}\left(x_{n-1}, F\left(x_{n-1}\right)\right), D_{\beta}(x, F(x)),\right.\right. \\
& \left.\left.\frac{1}{2}\left[D_{\beta}\left(x_{n-1}, F(x)\right)+D_{\beta}\left(x, F\left(x_{n-1}\right)\right)\right]\right\}\right) .
\end{aligned}
$$

Since $D_{\beta}\left(x, F\left(x_{n-1}\right)\right) \leq q_{\beta}\left(x, x_{n}\right) \rightarrow 0, D_{\beta}\left(x_{n-1}, F\left(x_{n-1}\right)\right) \leq q_{\beta}\left(x_{n-1}, x_{n}\right) \rightarrow$ 0 and $\left|D_{\beta}\left(x_{n-1}, F(x)\right)-D_{\beta}(x, F(x))\right| \leq q_{\beta}\left(x_{n-1}, x\right) \rightarrow 0$, then, letting $n \rightarrow$ ∞, we obtain:

$$
D_{\beta}(x, F(x)) \leq 0+\varphi_{\beta}\left(\left\{0,0, D_{\beta}(x, F(x)), \frac{1}{2} D_{\beta}(x, F(x))\right\}\right) .
$$

Thus, $D_{\beta}(x, F(x))=0$, so $x \in F(x)$.
We continue with a global version of Ćirić's theorem ([7]) for generalized φ-contractions on a set with two separating gauge structures.

Theorem 2.2. Let X be a nonempty set endowed with two separating gauge structures $\mathcal{P}=\left\{p_{\alpha}\right\}_{\alpha \in A}, \mathcal{Q}=\left\{q_{\beta}\right\}_{\beta \in B}$ (A, B are directed sets), $x_{0} \in X$ and $F:(X, \mathcal{P}) \rightarrow P((X, \mathcal{P}))$ be a multivalued operator with closed graph. We suppose that:
(i) (X, \mathcal{P}) is a sequentially complete gauge space;
(ii) there exists a function $\psi: A \rightarrow B$ and $c=\left\{c_{\alpha}\right\}_{\alpha \in A} \in(0, \infty)^{A}$ such that

$$
p_{\alpha}(x, y) \leq c_{\alpha} \cdot q_{\psi(\alpha)}(x, y), \text { for every } \alpha \in A \text { and } x, y \in X
$$

(iii) suppose for each $\beta \in B$, there exists a continuous function $\varphi_{\beta}:[0, \infty) \rightarrow$ $[0, \infty)$, with $\varphi_{\beta}(t)<t$, for every $t>0$ and φ_{β} is strictly increasing such that for $x, y \in X$ we have

$$
H_{\beta}(F(x), F(y)) \leq \varphi_{\beta}\left(M_{\beta}^{F}(x, y)\right)
$$

where

$$
M_{\beta}^{F}(x, y)=\max \left\{q_{\beta}(x, y), D_{\beta}(x, F(x)), D_{\beta}(y, F(y)), \frac{1}{2}\left[D_{\beta}(x, F(y))+D_{\beta}(y, F(x))\right]\right\}
$$

In addition assume for each $\beta \in B$ that
Φ_{β} is strictly increasing $[0, \infty)$, where $\Phi_{\beta}(x)=x-\varphi_{\beta}(x)$,
and

$$
\sum_{i=1}^{\infty} \varphi_{\beta}^{i}(t)<\infty, \text { for } t>0
$$

for every $x \in X$ and every $\varepsilon=\left\{\varepsilon_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$ there
exists $y \in F(x)$, with $q_{\beta}(x, y) \leq D_{\beta}(x, F(x))+\varepsilon_{\beta}$, for every $\beta \in B$.
Then F has a fixed point.

Proof. Let $r=\left\{r_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$. We claim that we can choose $x_{0} \in X$ and $x_{1} \in F\left(x_{0}\right)$ such that

$$
\begin{equation*}
q_{\beta}\left(x_{1}, x_{0}\right)<r_{\beta}-\varphi\left(r_{\beta}\right) \tag{2.17}
\end{equation*}
$$

If (2.17) is true then as in Theorem 2.1 we can choose $x_{n+1} \in F\left(x_{n}\right)$, for $n \in\{1,2, \ldots\}$, with

$$
q_{\beta}\left(x_{n}, x_{n+1}\right)<\varphi_{\beta}^{n}\left(r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)\right), \text { for every } \beta \in B
$$

The same reasonings guarantees that $\left\{x_{n}\right\}$ is a \mathcal{P}-Cauchy sequence to some $x \in X$, hence it is \mathcal{P}-convergent to some $x \in X$. So as in Theorem 2.1, we have $D_{\beta}(x, F(x))=0$, thus $x \in F(x)$.

It remains to show (2.17).
We can observe that (2.17) is immediate if we could show that for any $\beta \in B$ we have

$$
\begin{equation*}
\inf _{x \in X} D_{\beta}(x, F(x))=0 \tag{2.18}
\end{equation*}
$$

Assuming that (2.18) is true there exists $x \in X$ with $D_{\beta}(x, F(x))<r_{\beta}-$ $\varphi\left(r_{\beta}\right)$, so there exists $y \in F(x)$, with $q_{\beta}(x, y)<r_{\beta}-\varphi\left(r_{\beta}\right)$.

Suppose that (2.18) is false, i.e. suppose that there exists $\beta \in B$ such that

$$
\begin{equation*}
\inf _{x \in X} D_{\beta}(x, F(x))=\delta_{\beta} \tag{2.19}
\end{equation*}
$$

Since $\varphi_{\beta}\left(\delta_{\beta}\right)<\delta_{\beta}$ and φ_{β} is continuous, we have that there exists $\varepsilon_{\beta}>0$ such that

$$
\begin{equation*}
\varphi_{\beta}(t)<\delta_{\beta}, \text { for } t \in\left[\delta_{\beta}, \delta_{\beta}+\varepsilon_{\beta}\right) \tag{2.20}
\end{equation*}
$$

We can choose $v \in X$ such that

$$
\begin{equation*}
\delta_{\beta} \leq D_{\beta}(v, F(v))<\delta_{\beta}+\varepsilon_{\beta} \tag{2.21}
\end{equation*}
$$

Then there exists $y \in F(v)$ such that

$$
\begin{equation*}
\delta_{\beta} \leq q_{\beta}(v, y)<\delta_{\beta}+\varepsilon_{\beta} \tag{2.22}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
D_{\beta}(y, F(y)) \leq & H_{\beta}(F(v), F(y)) \leq \\
\leq & \varphi_{\beta}\left(\operatorname { m a x } \left\{q_{\beta}(v, y), D_{\beta}(v, F(v)), D_{\beta}(y, F(y))\right.\right. \\
& \left.\left.\frac{1}{2}\left[D_{\beta}(v, F(y))+D_{\beta}(y, F(v))\right]\right\}\right)
\end{aligned}
$$

Let

$$
\begin{gathered}
\gamma=\max \left\{q_{\beta}(v, y), D_{\beta}(v, F(v)), D_{\beta}(y, F(y)),\right. \\
\left.\frac{1}{2}\left[D_{\beta}(v, F(y))+D_{\beta}(y, F(v))\right]\right\} .
\end{gathered}
$$

If $\gamma=q_{\beta}(v, y)$ then (2.20) and (2.22) yields

$$
D_{\beta}(y, F(y)) \leq \varphi_{\beta}\left(q_{\beta}(v, y)\right)<\delta_{\beta} .
$$

If $\gamma=D_{\beta}(v, F(v))$ then (2.20) and (2.21) yields

$$
D_{\beta}(y, F(y)) \leq \varphi_{\beta}\left(D_{\beta}(v, F(v))\right)<\delta_{\beta} .
$$

If $\gamma=D_{\beta}(y, F(y))$ then $\gamma=0$, since $\gamma \neq 0$ results the following inequality

$$
D_{\beta}(y, F(y)) \leq \varphi_{\beta}\left(D_{\beta}(y, F(y))\right)<D_{\beta}(y, F(y))
$$

which is a contradiction.

$$
\begin{aligned}
& \text { If } \gamma=\frac{1}{2}\left[D_{\beta}(v, F(y))+D_{\beta}(y, F(v))\right] \text { and } \gamma \neq 0 \text { then } \\
& \qquad \begin{aligned}
D_{\beta}(y, F(y)) & \leq \varphi_{\beta}(\gamma)<\gamma=\frac{1}{2}\left[D_{\beta}(v, F(y))+D_{\beta}(y, F(v))\right] \leq \\
& \leq \frac{1}{2}\left[q_{\beta}(v, y)+D_{\beta}(y, F(y))+0\right],
\end{aligned}
\end{aligned}
$$

so $\frac{1}{2} D_{\beta}(y, F(y)) \leq \frac{1}{2} q_{\beta}(v, y)$. Thus, $\gamma=\frac{1}{2}\left[D_{\beta}(v, F(y))+D_{\beta}(y, F(v))\right] \leq$ $\frac{1}{2}\left[q_{\beta}(v, y)+D_{\beta}(y, F(y))\right]<\frac{1}{2} q_{\beta}(v, y)+\frac{1}{2} q_{\beta}(v, y)=q_{\beta}(v, y)$, which contradicts the definition of γ. So we have proved that in this case $\gamma=0$, which implies $D_{\beta}(y, F(y)) \leq \varphi_{\beta}(\gamma)=\varphi(0)=0$.

We can notice that in all cases we have $D_{\beta}(y, F(y))<\delta_{\beta}$, which contradicts (2.19), thus, (2.18) is true, so (2.17) is immediate and the proof is complete.

In what follows we will present a homotopy result for Ćirić-type generalized φ-contractions on a set with two separating gauge structures.

Theorem 2.3. Let X be a nonempty set endowed with two separating gauge structures $\mathcal{P}=\left\{p_{\alpha}\right\}_{\alpha \in A}, \mathcal{Q}=\left\{q_{\beta}\right\}_{\beta \in B}$ (A,B are directed sets), (X, \mathcal{P}) is a sequentially complete gauge space, there exists a function $\psi: A \rightarrow B$ and $c=\left\{c_{\alpha}\right\}_{\alpha \in A} \in(0, \infty)^{A}$ such that $p_{\alpha}(x, y) \leq c_{\alpha} \cdot q_{\psi(\alpha)}(x, y)$ for every $\alpha \in A$ and $x, y \in X$. Let U be an open subset of (X, Q). Let $G: \bar{U} \times[0,1] \rightarrow P(X, \mathcal{P})$ be a multivalued operator such that the following assumptions are satisfied:
(i) $x \notin G(x, t)$, for each $x \in \partial U$ and each $t \in[0,1]$;
(ii) suppose for each $\beta \in B$ there exists a continuous and strictly increasing function $\varphi_{\beta}:[0, \infty) \rightarrow[0, \infty)$, with $\varphi_{\beta}(t)<t$, for every $t>0$, such that for $x, y \in X$ we have

$$
H_{\beta}(G(x, t), G(y, t)) \leq \varphi_{\beta}\left(M_{\beta}^{G(\cdot, t)}(x, y)\right),
$$

where

$$
\begin{aligned}
M_{\beta}^{G(\cdot, t)}(x, y)= & \max \left\{q_{\beta}(x, y), D_{\beta}(x, G(x, t)), D_{\beta}(y, G(y, t)),\right. \\
& \left.\frac{1}{2}\left[D_{\beta}(x, G(y, t))+D_{\beta}(y, G(x, t))\right]\right\} ;
\end{aligned}
$$

(iii) there exists a continuous increasing function $\gamma:[0,1] \rightarrow \mathbb{R}$ such that

$$
H_{\beta}(G(x, t), G(x, s)) \leq|\gamma(t)-\gamma(s)|, \text { for all } t, s \in[0,1] \text { and each } x \in \bar{U}
$$

(iv) $G:(\bar{U}, \mathcal{P}) \times[0,1] \rightarrow P(X, \mathcal{P})$ has closed graph;
(v) Φ_{β} is strictly increasing on $[0, \infty)$ for each $\beta \in B$, where $\Phi_{\beta}(x)=x-$ $\varphi_{\beta}(x) ;$
(vi) $\sum_{i=1}^{\infty} \varphi^{i}(t)<\infty$, for $t>0$;
(vii) for every $x \in X$ and every $\varepsilon=\left\{\varepsilon_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$ there exists $y \in F(x)$ with $q_{\beta}(x, y) \leq D_{\beta}(x, F(x))+\varepsilon_{\beta}$, for every $\beta \in B$.

Then $G(\cdot, 0)$ has a fixed point if and only if $G(\cdot, 1)$ has a fixed point.
Proof. Suppose that $z \in \operatorname{Fix} G(\cdot, 0)$. From (i) we have that $z \in U$. We will define the following set:

$$
E:=\{(x, t) \in U \times[0,1] \mid x \in G(x, t)\}
$$

Since $(z, 0) \in E$, we have that $E \neq \emptyset$. We introduce a partial order defined on E

$$
(x, t) \leq(y, s) \text { if and only if } t \leq s \text { and } q_{\beta}(x, y) \leq \Phi_{\beta}^{-1}(2[\gamma(s)-\gamma(t)])
$$

Let M be a totally ordered subset of $E, t^{*}:=\sup \{t \mid(x, t) \in M\}$ and $\left(x_{n}, t_{n}\right)_{n \in \mathbb{N}^{*}} \subset M$ be a sequence such that $\left(x_{n}, t_{n}\right) \leq\left(x_{n+1}, t_{n+1}\right)$ and $t_{n} \rightarrow t^{*}$, as $n \rightarrow \infty$. Then

$$
q_{\beta}\left(x_{m}, x_{n}\right) \leq \Phi_{\beta}^{-1}\left(2\left[\gamma\left(t_{m}\right)-\gamma\left(t_{n}\right)\right]\right), \text { for each } m, n \in \mathbb{N}^{*}, m>n
$$

from where we can conclude that $q_{\beta}\left(x_{m}, x_{n}\right)-\varphi_{\beta}\left(q_{\beta}\left(x_{m}, x_{n}\right)\right) \leq 2\left[\gamma\left(t_{m}\right)-\right.$ $\left.\gamma\left(t_{n}\right)\right]$.

Letting $m, n \rightarrow+\infty$, we obtain that $q_{\beta}\left(x_{m}, x_{n}\right)-\varphi_{\beta}\left(q_{\beta}\left(x_{m}, x_{n}\right)\right) \rightarrow 0$, so $\varphi_{\beta}\left(q_{\beta}\left(x_{m}, x_{n}\right)\right) \rightarrow q_{\beta}\left(x_{m}, x_{n}\right)$, as $m, n \rightarrow+\infty$. Therefore $q_{\beta}\left(x_{m}, x_{n}\right) \rightarrow 0$, as $m, n \rightarrow+\infty$. Thus, $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ is \mathcal{Q}-Cauchy, so is \mathcal{P}-Cauchy too. Denote by $x^{*} \in(X, \mathcal{P})$ its limit. We know that $x_{n} \in G\left(x_{n}, t_{n}\right), n \in \mathbb{N}^{*}$ and G is \mathcal{P}-closed. Therefore we have that $x^{*} \in G\left(x^{*}, t^{*}\right)$. From (i) we can notice that $x^{*} \in U$. So $\left(x^{*}, t^{*}\right) \in E$.

From the fact that M is totally ordered we have that $(x, t) \leq\left(x^{*}, t^{*}\right)$, for each $(x, t) \in M$. Thus, $\left(x^{*}, t^{*}\right)$ is an upper bound of M. We can apply Zorn's Lemma, so E admits a maximal element $\left(x_{0}, t_{0}\right) \in E$. We want to prove that $t_{0}=1$.

Suppose that $t_{0}<1$. Let $r=\left\{r_{\beta}\right\}_{\beta \in B} \in(0, \infty)^{B}$ and $\left.\left.t \in\right] t_{0}, 1\right]$ such that $B_{q}\left(x_{0}, r_{\beta}\right) \subset U$ and $r_{\beta}:=\Phi_{\beta}^{-1}\left(2\left[\gamma(t)-\gamma\left(t_{0}\right)\right]\right)$, for every $\beta \in B$. Then for each $\beta \in B$ we have

$$
\begin{aligned}
D_{\beta}\left(x_{0}, G\left(x_{0}, t\right)\right) & \leq D_{\beta}\left(x_{0}, G\left(x_{0}, t_{0}\right)\right)+H_{\beta}\left(G\left(x_{0}, t_{0}\right), G\left(x_{0}, t\right)\right) \leq \\
& \leq \gamma(t)-\gamma\left(t_{0}\right)=\frac{\Phi_{\beta}\left(r_{\beta}\right)}{2}=\frac{r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)}{2}<r_{\beta}-\varphi_{\beta}\left(r_{\beta}\right)
\end{aligned}
$$

Since $\bar{B}_{q}^{p}\left(x_{0}, r_{\beta}\right) \subset U \subset \bar{U}$, the closed multivalued operator $G(\cdot, t): \bar{B}_{q}^{p}\left(x_{0}, r_{\beta}\right) \rightarrow$ $P(X, \mathcal{P})$ satisfies the assumptions of Theorem 2.1, for all $t \in[0,1]$. Hence there exists $x \in \bar{B}_{q}^{p}\left(x_{0}, r_{\beta}\right)$ such that $x \in G(x, t)$. Thus, $(x, t) \in E$. But we know that

$$
q_{\beta}\left(x_{0}, x\right) \leq r_{\beta}=\Phi_{\beta}^{-1}\left(2\left[\gamma(t)-\gamma\left(t_{0}\right)\right]\right)
$$

so we have that $\left(x_{0}, t_{0},\right) \leq(x, t)$, which is a contradiction with the maximality of $\left(x_{0}, t_{0}\right)$. Thus, $t_{0}=1$ and the proof is complete.

3 Applications

The following result is a particular case of Theorem 2.2, namely the case where the complete gauge space is endowed with one separating gauge structure and the multivalued operator is a φ-contraction.

Theorem 3.1. Let X be a sequentially complete gauge space endowed with a separating gauge structure and let $F: X \rightarrow P(X)$ be a φ-contraction with closed graph, i.e. for each $\alpha \in A$ (A is a directed set) there exists a continuous strict comparison function $\varphi_{\alpha}:[0, \infty) \rightarrow[0, \infty)$ such that for $x, y \in X$ we have

$$
H_{\alpha}(F(x), F(y)) \leq \varphi_{\alpha}\left(d_{\alpha}(x, y)\right)
$$

We assume that for every $x \in X$ and every $\varepsilon \in(0, \infty)^{A}$ there exists $y \in F(x)$ such that

$$
d_{\alpha}(x, y) \leq D_{\alpha}(x, F(x))+\varepsilon_{\alpha}, \text { for every } \alpha \in A
$$

Then F has a fixed point.

Remark 3.1. Some well-known examples of continuous strict comparison functions are:
a) $\varphi(t)=$ at, with $a \in[0,1)$;
b) $\varphi(t)=\frac{t}{1+t}, t \in[0, \infty)$.

Definition 3.1. Let E be a Hilbert space. The multivalued operator F : $[0, \infty) \times E \rightarrow P_{b, c l}(E)$ is said to be locally Carathéodory if
(i) $t \mapsto F(t, x)$ is measurable, for all $x \in E$;
(ii) $x \mapsto F(t, x)$ is continuous, for a.e. $t \in[0, \infty)$;
(iii) for all $R>0$, there exists a function $h_{R} \in L_{\text {loc }}^{1}[0, \infty)$ such that for a.e. $t \in[0, \infty)$ and for every $x \in E$, with $\|x\| \leq R$, we have $H(\{0\}, F(t, x)) \leq$ $h_{R}(t)$.

Throughout E is a Hilbert space. As usual, $L^{1}([a, b], E)$ denotes the Banach space of measurable functions $u:[a, b] \rightarrow E$ such that $|u|$ is Lebesgue integrable with $\|u\|_{1}=\int_{a}^{b}|u(t)| d t$. We define the Sobolev class $W^{1,1}([a, b], E)$ as follows: a function $u \in W^{1,1}([a, b], E)$ if it is continuous and there exists $v \in L^{1}[a, b]$ such that $u(t)-u(a)=\int_{a}^{t} v(s) d s$, for all $t \in[a, b]$. Notice that if $u \in W^{1,1}([a, b], E)$ then u is differentiable almost everywhere on $[a, b]$, $u^{\prime} \in L^{1}([a, b], E)$ and $u(t)-u(a)=\int_{a}^{t} u^{\prime}(s) d s$, for almost every $t \in[a, b]$.

Let us consider the following Cauchy-problem

$$
\left\{\begin{array}{l}
x^{\prime}(t) \in F(t, x(t)) \text { a.e } t \in[0, \infty] \tag{3.23}\\
x(0)=0 \in E
\end{array}\right.
$$

where E is also a Hilbert space and the locally Carathéodory multivalued operator F is a φ-contraction.

Theorem 3.2. Let $(E,\|\cdot\|)$ be a Hilbert space and $F:[0, \infty) \times E \rightarrow P_{b, c l}(E)$ be a locally Carathéodory multivalued operator. We suppose that
(a) for every $R>0$, there exists $l_{R} \in L_{l o c}^{1}[0, \infty)$ and a continuous, strict comparison function $\varphi_{R} \in L_{l o c}^{1}[0, \infty)$, with $\varphi_{R}(a t) \leq a \cdot \varphi(t)$, for every $a>1$, such that for a.e. $t \geq 0$ and for every $x, y \in E$, with $\|x\|,\|y\| \leq R$, we have

$$
H(F(t, x), F(t, y)) \leq l_{R}(t) \cdot \varphi_{R}(\|x-y\|)
$$

(b) there exists $\theta \in L_{l o c}^{1}[0, \infty)$ and $\psi:[0, \infty) \rightarrow[0, \infty)$ an increasing and Borel measurable function such that
(b1) $H(\{0\}, F(t, v)) \leq \theta(t) \cdot \psi(\|v\|)$, for a.e. $t \in[0, \infty)$ and every $v \in E$ such that $1 / \psi \in L_{\text {loc }}^{1}[0, \infty)$;
(b2) $\int_{0}^{\infty} \frac{d z}{\psi(z)}>\|\theta\|_{L^{1}[0, r]}$, for all $r>0$.
Then (3.23) has a solution in $W_{l o c}^{1,1}([0, \infty), E)$.
Proof. For the proof of our theorem let $M:[0, \infty) \rightarrow[0, \infty)$ be a continuous and increasing function such that

$$
\int_{0}^{\infty} \frac{d s}{\psi(s)}>\int_{0}^{M(t)} \frac{d s}{\psi(s)} \geq\|\theta\|_{L^{1}[0, t]}
$$

which is possible by assumption (b2). Let $\widetilde{F}:[0, \infty) \times E \rightarrow P_{b, c l}(E)$ be defined by

$$
\widetilde{F}(t, u)=\left\{\begin{array}{l}
F(t, u),\|u\| \leq M(t) \tag{3.24}\\
F\left(t, \frac{M(t) u}{\|u\|}\right),\|u\|>M(t)
\end{array}\right.
$$

Define $T: C([0, \infty), E) \rightarrow P(C([0, \infty), E)), T(x)(t):=\int_{0}^{t} \tilde{F}(s, x(s)) d s$. Suppose x is a fixed point for T, thus, x is continuous and $x \in T(x)$, which means that $x(t) \in T(x)(t)$, for every $t \in[0, \infty)$, so $x(t) \in \int_{0}^{t} \tilde{F}(s, x(s)) d s$, for every $t \in[0, \infty)$. Since

$$
\int_{0}^{t} \tilde{F}(s, x(s)) d s:=\left\{\int_{0}^{t} v_{x}(s) d s \mid v_{x}(s) \in \tilde{F}(s, x(s)), \forall s \in[0, t], v_{x} \in L^{1}([0, t], E)\right\}
$$

it follows that there exists $v_{x} \in L^{1}([0, t], E)$ such that $x(t):=\int_{0}^{t} v_{x} d s$, for every $t \in[0, \infty)$, with $v_{x}(s) \in \tilde{F}(s, x(s))$, for every $s \in[0, t]$. Hence we obtain that there exist $x^{\prime}(t)=v_{x}(t)$ for a.e. $t \in[0, \infty)$ and $x \in W^{1,1}([0, \infty), E)$. Thus, $x^{\prime}(t) \in \tilde{F}(t, x(t))$, for a.e. $t \in[0, \infty)$ and $x(0)=0$.

We will show that $x^{\prime}(t) \in F(t, x(t))$, for a.e. $t \in[0, \infty)$.
Suppose that there exists $t>0$ such that $\|x(t)\|>M(t)$. Then we have that $x^{\prime}(t) \in F\left(t, \frac{M(t) x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|}\right)$. By assumption (b1) we have

$$
\begin{aligned}
\left\|x^{\prime}(t)\right\| & \leq \theta(t) \cdot \psi\left(\left\|\frac{M(t) \cdot x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|}\right\|\right)=\theta(t) \cdot \psi(M(t)) \\
& \leq \theta(t) \cdot \psi(\|x(t)\|)
\end{aligned}
$$

Thus,

$$
\frac{\left\|x^{\prime}(t)\right\|}{\psi(\|x(t)\|)} \leq \theta(t)
$$

which means that

$$
\frac{\|x(t)\|^{\prime}}{\psi(\|x(t)\|)} \leq \theta(t)
$$

Integrating from 0 to t and via change of variables theorem $(v=\|x(s)\|)$ we obtain

$$
\int_{0}^{\|x(t)\|} \frac{d v}{\psi(v)} \leq\|\theta\|_{L^{1}[0, t]} \leq \int_{0}^{M(t)} \frac{d s}{\psi(s)},
$$

thus $\|x(t)\| \leq M(t)$, which is a contradiction.

Hence $\|x(t)\| \leq M(t)$, for a.e. $t \in[0, \infty)$ and thus

$$
\left\{\begin{array}{l}
x^{\prime}(t) \in F(t, x(t)) \text { a.e } t \in[0, \infty] \\
x(0)=0
\end{array}\right.
$$

so x is a solution for (3.23).
Let $l_{R}(t)=l_{M(n)}(t)$ in assumption (a), for $t \in[0, n], n \in \mathbb{N}^{*}$. Define on $C([0, \infty), E)$ the Bielecki-type semi-norm:

$$
|x|_{n}=\sup _{t \in[0, n]}\left\{e^{-\int_{0}^{t} l_{M(n)}(s) d s} \cdot\|x(t)\|\right\} .
$$

Then T is an admissible φ-contraction if:
(i) $H_{M(n)}(T(x), T(y)) \leq \varphi_{M(n)}\left(|x-y|_{n}\right)$, for every $x, y \in C([0, \infty), E)$;
(ii) for every $x \in C([0, \infty), E)$ and for every $\varepsilon \in(0, \infty)^{\mathbb{N}^{*}}$ there exists $y \in$ $T(x)$ such that $|x-y|_{n} \leq D_{n}(x, T(x))+\varepsilon_{n}$.

For (i) let $t \in[0, n], x, y \in C([0, n], E)$ and $u_{1} \in T(x)$ such that $\|x(t)\| \leq$ $M(t),\|y(t)\| \leq M(t)$. Then there exists $v_{u_{1}} \in F(s, x(s)), s \in[0, t]$, such that $v_{u_{1}} \in L^{1}([0, n], E)$ and $u_{1}(t)=\int_{0}^{t} v_{u_{1}}(s) d s$. From the inequality below

$$
H(F(t, x), F(t, y)) \leq l_{M(n)}(t) \cdot \varphi_{M(n)}(\|x-y\|)
$$

it follows that there exists $w \in F(t, y(s)), s \in[0, t], w \in L^{1}([0, n], E)$ such that

$$
\left\|v_{u_{1}}-w\right\| \leq l_{M(n)}(s) \cdot \varphi_{M(n)}(\|x-y\|)
$$

Thus, the multivalued operator G defined by

$$
G(t)=F(s, y(s)) \cap\left\{w \mid\left\|v_{u_{1}}-w\right\| \leq l_{M(n)}(s) \cdot \varphi_{M(n)}(\|x-y\|)\right\}
$$

has nonempty values and is measurable. By Kuratowski and Ryll Nardzewski's selection theorem (see [12]) there exists $v_{u_{2}}(s)$ a measurable selection for G.

Then $v_{u_{2}}(s) \in F(s, y(s)), s \in[0, t], v_{u_{2}} \in L^{1}([0, n], E)$. Define $u_{2}(t)=$ $\int_{0}^{t} v_{u_{2}}(s) d s \in T(y)(t), t \in[0, n]$. We have:

$$
\begin{aligned}
\| u_{1}(t) & -u_{2}(t)\left\|\leq \int_{0}^{t}\right\| v_{u_{1}}(s)-v_{u_{2}}(s) \| d s \\
& \leq \int_{0}^{t} l_{M(n)}(s) \cdot \varphi_{M(n)}(\|x(s)-y(s)\|) d s \\
& \leq \int_{0}^{t} l_{M(n)}(s) \cdot \varphi_{M(n)}\left(\|x(s)-y(s)\| e^{-\int_{0}^{s} l_{M(n)}(z) d z} \cdot e^{\int_{0}^{s} l_{M(n)}(z) d z}\right) d s \\
& \leq \int_{0}^{t} l_{M(n)}(s) \cdot e^{\iint_{0}^{s} l_{M(n)}(z) d z} \cdot \varphi_{M(n)}\left(\|x(s)-y(s)\| e^{-\int_{0}^{s} l_{M(n)}(z) d z}\right) d s \\
& \leq \varphi_{M(n)}\left(|x-y|_{n}\right) \cdot \int_{0}^{t} l_{M(n)}(s) \cdot e^{\int_{0}^{s} l_{M(n)}(z) d z} d s \\
& \leq \varphi_{M(n)}\left(|x-y|_{n}\right) \cdot e^{\int_{0}^{t} l_{M(n)}(s) d s} .
\end{aligned}
$$

Thus, we obtained that $\left|u_{1}-u_{2}\right|_{n} \leq \varphi_{M(n)}\left(|x-y|_{n}\right)$, for a.e. $t \in[0, \infty)$. By the analogous relation obtained by interchanging the roles of x and y it follows that

$$
H_{M(n)}(T(x), T(y)) \leq \varphi_{M(n)}\left(|x-y|_{n}\right) .
$$

For (ii) we will suppose the contrary, i.e. there exists $\varepsilon \in(0, \infty)^{\mathbb{N}^{*}}$ and exists $x \in C([0, \infty), E)$ such that for all $y \in T(x)$ we have $|x-y|_{n}>$ $D_{n}(x, T(x))+\varepsilon_{n}$. It follows that $D_{n}(x, T(x)) \geq D_{n}(x, T(x))+\varepsilon_{n}$, thus $\varepsilon_{n} \leq 0$, for every $n \in \mathbb{N}^{*}$. This is a contradiction.

Thus, by Theorem 3.1, the proof is complete.

Definition 3.2. Let $(\Omega, \Sigma),(\Phi, \Gamma)$ be two measurable spaces and X be a topo-
logical space. Then a mapping $F: \Omega \times \Phi \rightarrow P(X)$ is said to be jointly measurable if for every closed subset B of $X, F^{-1}(B) \in \Sigma \otimes \Gamma$, where $\Sigma \otimes \Gamma$ denotes the smallest σ-algebra on $\Omega \times \Phi$, which contains all the sets $A \times B$ with $A \in \Sigma$ and $B \in \Gamma$.

Let us consider the following Volterra-type inclusion

$$
\begin{equation*}
x(t) \in \int_{0}^{t} K(t, s, x(s)) d s+g(t) \text { a.e. } t \in[0, \infty) \tag{3.25}
\end{equation*}
$$

Theorem 3.3. Let $K:[0, \infty) \times[0, \infty) \times \mathbb{R}^{m} \rightarrow P_{c l, b}\left(\mathbb{R}^{m}\right)$ be a multivalued operator and $g:[0, \infty) \rightarrow \mathbb{R}^{m}$ be a continuous function such that $g(0)=0$. We suppose that
(i) K is jointly measurable for all $x \in C[0, \infty)$;
(ii) for almost every $(t, s) \in[0, \infty) \times[0, \infty) K(t, s, \cdot): \mathbb{R}^{m} \rightarrow P\left(\mathbb{R}^{m}\right)$ is continuous;
(iii) for every $R>0$, there exists $l_{R} \in L_{\text {loc }}^{1}[0, \infty)$ and a continuous, strict comparison function $\varphi_{R} \in L_{l o c}^{1}[0, \infty)$ with $\varphi_{R}(a t) \leq a \cdot \varphi_{R}(t)$, for $a>1$, such that

$$
H_{R}(K(t, s, x), K(t, s, y)) \leq l_{R}(s) \cdot \varphi_{R}(\|x-y\|)
$$

for every $s \leq t$ and every $x, y \in \mathbb{R}^{m}$, with $\|x\|,\|y\| \leq R$;
(iv) there exists $\theta \in L_{l o c}^{1}[0, \infty)$ and $\psi:[0, \infty) \rightarrow[0, \infty)$ a Borel measurable function such that

$$
H(\{0\}, K(t, s, x(s))) \leq \theta(s) \cdot \psi(\|x\|)
$$

for a.e. $t \in[0, \infty)$ with $s \leq t$ and every $x \in \mathbb{R}^{m}$, where $1 / \psi \in L_{\text {loc }}^{1}[0, \infty)$ and

$$
\int_{0}^{\infty} \frac{d z}{\psi(z)}>\|\theta\|_{L^{1}[0, r]}, \text { for all } r>0
$$

Then (3.25) has a solution.
Proof. Let $M:[0, \infty) \rightarrow[0, \infty)$ be a continuous nondecreasing function such that

$$
\int_{0}^{M(t)} \frac{d s}{\psi(s)} \geq\|\theta\|_{L^{1}[0, t]}
$$

Suppose that there exists a solution x such that $\|x\| \geq M(t)$, for some $t \in[0, \infty)$. Then there exists $0 \leq t_{1}<\infty$ such that

$$
\left\|x\left(t_{1}\right)\right\|=M\left(t_{1}\right) \text { and } 0<\|x(t)\| \leq M\left(t_{1}\right), \text { for every } t \in\left(0, t_{1}\right)
$$

The function $t \mapsto\|x(t)\|$ is differentiable on $\left(0, t_{1}\right)$ and

$$
\left|\|x(t)\|^{\prime}\right|=\left\langle\frac{x(t)}{\|x(t)\|}, x^{\prime}(t)\right\rangle \leq\left\|x^{\prime}(t)\right\| .
$$

From assumption (iv) we have that $H(0, K(t, s, x(s))) \leq \theta(s) \cdot \psi(\|x(t)\|)$ a.e. $t \in[0, \infty)$ and every $x \in \mathbb{R}^{m}$. Since $x^{\prime}(t) \in K(t, s, x(s))$ we have that $\left\|x^{\prime}(t)\right\| \leq$ $\theta(t) \cdot \psi(\|x\|)$. Thus we obtain that $\|x(t)\|^{\prime} \leq \theta(t) \cdot \psi(\|x\|)$, from where we have that

$$
\frac{\|x(t)\|^{\prime}}{\psi(\|x\|)} \leq \theta(t)
$$

Integrating from 0 to t_{1} and via Change of variables Theorem we obtain

$$
\int_{0}^{\left\|x\left(t_{1}\right)\right\|=M\left(t_{1}\right)} \frac{d s}{\psi(s)}=\int_{0}^{t_{1}} \frac{\|x(s)\|^{\prime}}{\psi(\|x\|)} \leq \int_{0}^{t_{1}} \theta(s) d s<\int_{0}^{M\left(t_{1}\right)} \frac{d s}{\psi(s)},
$$

which is a contradiction.
Let $l_{R}(s)=l_{M(n)}(s)$ in assumption (iii). For $n \in \mathbb{N}$ we consider the Bielecki-type semi-norm:

$$
|x|_{n}=\sup _{t \in[0, n]}\left\{e^{-\int_{0}^{t} l_{M(n)}(s) d s} \cdot\|x(t)\|\right\}
$$

Let $X=\left\{x \in C\left([0, \infty), \mathbb{R}^{m}\right):\|x(t)\| \leq M(t)\right.$ for $\left.t \in[0, n]\right\}$.

We define $F: X \rightarrow C\left([0, \infty), \mathbb{R}^{m}\right), F(x)(t)=\int_{0}^{t} K(t, s, x(s)) d s+g(t)$. We want to show that F is a φ-contraction.

Let $x_{1}, x_{2} \in C\left([0, n], \mathbb{R}^{m}\right)$ and $u_{1} \in F\left(x_{1}\right)$. Then $u_{1} \in C\left([0, n], \mathbb{R}^{m}\right)$ and $u_{1}(t) \in \int_{0}^{t} K\left(t, s, x_{1}(s)\right) d s+g(t)$. Thus, there exists $k_{1}(t, s) \in K\left(t, s, x_{1}(s)\right)$ such that $u_{1}(t)=\int_{0}^{t} k_{1}(t, s) d s+g(t)$. Since

$$
H_{M(n)}\left(K\left(t, s, x_{1}(s)\right), K\left(t, s, x_{2}(s)\right)\right) \leq l_{M(n)}(s) \cdot \varphi_{M(n)}\left(\left\|x_{1}-x_{2}\right\|\right),
$$

for $s \leq t$ and $\left\|x_{1}\right\|,\left\|x_{2}\right\| \leq M(n)$, follows that there exists $v \in K\left(t, s, x_{2}(s)\right)$ such that

$$
\left\|k_{1}(t, s)-v\right\| \leq l_{M(n)}(s) \cdot \varphi_{M(n)}\left(\left\|x_{1}-x_{2}\right\|\right)
$$

Thus, the multivalued operator G defined by

$$
G(t)=K\left(t, s, x_{2}(s)\right) \cap\left\{v \mid\left\|k_{1}(t, s)-v\right\| \leq l_{M(n)}(s) \cdot \varphi_{M(n)}\left(\left\|x_{1}-x_{2}\right\|\right)\right\}
$$

has nonempty values and is measurable. By Kuratowski and Ryll Nardzewski's selection theorem (see [12]) there exists $k_{2}(t, s)$ a measurable selection for G. Then $k_{2}(t, s) \in K\left(t, s, x_{2}(s)\right)$ and

$$
\left\|k_{1}(t, s)-k_{2}(t, s)\right\| \leq l_{M(n)}(s) \cdot \varphi_{M(n)}\left(\left\|x_{1}-x_{2}\right\|\right), \text { for a.e. } t \in[0, \infty), s \leq t
$$

Define $u_{2}(t)=\int_{0}^{t} k_{2}(t, s) d s+g(t) \in F\left(x_{2}\right)$. We have:

$$
\begin{aligned}
\| u_{1}(t) & -u_{2}(t)\left\|\leq \int_{0}^{t}\right\| k_{1}(t, s)-k_{2}(t, s) \| d s \\
& \leq \int_{0}^{t} l_{M(n)}(s) \cdot \varphi_{M(n)}\left(\left\|x_{1}-x_{2}\right\|\right) d s \\
& \leq \int_{0}^{t} l_{M(n)}(s) \cdot \varphi_{M(n)}\left(\left\|x_{1}-x_{2}\right\| e^{-\int_{0}^{s} l_{M(n)}(z) d z} \cdot e^{\int_{0}^{s} l_{M(n)}(z) d z}\right) d s \\
& \leq \int_{0}^{t} l_{M(n)}(s) \cdot \varphi_{M(n)}\left(\left\|x_{1}-x_{2}\right\| e^{-\int_{0}^{s} l_{M(n)}(z) d z}\right) \cdot e^{\int_{0}^{s} l_{M(n)}(z) d z} d s \\
& \leq \varphi_{M(n)}\left(\left|x_{1}-x_{2}\right|_{n}\right) \cdot \int_{0}^{t} l_{M(n)}(s) \cdot e^{\int_{0}^{s} l_{M(n)}(z) d z} d s \\
& \leq \varphi_{M(n)}\left(\left|x_{1}-x_{2}\right|_{n}\right) \cdot e^{\int_{0}^{t} l_{M(n)}(s) d s}
\end{aligned}
$$

Thus, we obtained that $\left|u_{1}(t)-u_{2}(t)\right|_{n} \leq \varphi\left(\left|x_{1}-x_{2}\right|_{n}\right)$, for a.e. $t \in[0, \infty)$. By the analogous relation obtained by interchanging the roles of x_{1} and x_{2} it follows that

$$
H_{M(n)}\left(F\left(x_{1}\right), F\left(x_{2}\right)\right) \leq \varphi\left(\left\|x_{1}-x_{2}\right\|_{n}\right) .
$$

In order to see if F is an admissible φ-contraction we have to prove that for every $\varepsilon \in(0, \infty)^{\mathbb{N}^{*}}$ and for every $x \in C([0, \infty), H)$ there exists $y \in F(x)$ such that $|x-y|_{n}>D_{n}(x, F(x))+\varepsilon_{n}$. We will suppose the contrary, i.e. there exists $\varepsilon \in(0, \infty)^{\mathbb{N}^{*}}$ and exists $x \in C([0, \infty), H)$ such that for all $y \in F(x)$ we have $|x-y|_{n}>D_{n}(x, F(x))+\varepsilon_{n}$. It follows that $D_{n}(x, F(x)) \geq D_{n}(x, F(x))+\varepsilon_{n}$, thus, $\varepsilon_{n} \leq 0$, for every $n \in \mathbb{N}^{*}$. Which is a contradiction.

Thus, by Theorem 3.1, the proof is complete.

References

[1] Agarwal R.P., Dshalalow J., O'Regan D., Fixed point and homotopy results for generalized contractive maps of Reich-type, Appl. Anal., 82 (2003), 329-350.
[2] Agarwal R.P., O'Regan D., Fixed point theorems for multivalued maps with closed values on complete gauge spaces, Applied Math. Lett., 14 (2001), 831-836.
[3] Agarwal R.P., O'Regan D., Sambandham M., Random and deterministic fixed point theory for generalized contractive maps, Appl. Anal., 83(7) (2004), 711-725.
[4] Angelov V.G., Fixed point theorems in uniform spaces and applications, Czeholovak Math. J., 37(112) (1987), 19-33.
[5] Angelov V.G., Fixed points of multi-valued mappingsin uniform spaces, Math. Balkanica, 12 (1998), (Fasc. 1-2), 29-35.
[6] Chiş A., Precup R., Continuation theory for general contractions in gauge spaces, Fixed Point Theory and Appl., 2004, 2004:3, 173-185.
[7] Ćirić L.B., Fixed points for generalized multi-valued contractions, Mat. Vesnik, 9(24) (1972), 265-272.
[8] Dugundji J., Topology, Allyn \& Bacon, Boston, 1966.
[9] Espinola R., Petruşel A., Existence and data dependence of fixed points for multivalued operators on gauge spaces, J. Math. Anal. Appl., 309 (2005), 420-432.
[10] Frigon M., Fixed point results for generelized contractions in gauge spaces and applications, Proc. Amer. Math. Soc., 128(10) (2000), 2957-2965.
[11] Frigon M., Fixed point results for multivalued contractions in gauge spaces and applications, Set Valued Mappings with Applications in Nonlinear Analysis, Ser. Math. Anal. Appl., 4, 175-181, Taylor \& Francis, London, 2002.
[12] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, Vol. I şi II, Kluwer Acad. Publ., Dordrecht, 1997, 1999.
[13] Lazăr T., O’Regan D., Petruşel A., Fixed points and homotopy results for Ćirić -type multivalued operators on a set with two metrics, Bull. Korean Math. Soc., 45 (2003), 67-73.
[14] O'Regan D., Agarwal R.P., Jiang D., Fixed point and homotopy results in uniform spaces, Bull. Belg. Math. Soc., 10 (2003), 289-296.

Babeş-Bolyai University,
Faculty of Mathematics and Computer Science,
Kogălniceanu 1, 400084, Cluj-Napoca, Romania
e-mail: petra.petru@econ.ubbcluj.ro

[^0]: Key Words: gauge space, separating gauge structures, multivalued operator, fixed point. Mathematics Subject Classification: 47H04, 47H10, 54H25, 54C60.
 Received: May, 2009
 Accepted: January, 2010

