FIXED POINT RESULTS FOR φ -CONTRACTIONS ON A SET WITH TWO SEPARATING GAUGE STRUCTURES

Tünde Petra Petru

Abstract

The purpose of this article is to present some fixed point theorems for Ćirić-type generalized φ -contractions on a set with two separating gauge structures. Fixed point theorems and a homotopy result are given in Section 2. Then, as applications, some existence results for a multivalued Cauchy problem and a Volterra-type integral inclusion are presented in Section 3. Our theorems extend and generalize some previous results in the literature, such as: [1], [3], [7], [10], [11], [13].

1 Introduction

Throughout this paper X will denote a gauge space endowed with a separating gauge structure $\mathcal{P} = \{p_{\alpha}\}_{\alpha \in A}$, where A is a directed set (see [8] for definitions).

Key Words: gauge space, separating gauge structures, multivalued operator, fixed point. Mathematics Subject Classification: 47H04, 47H10, 54H25, 54C60. Received: May, 2009

Accepted: January, 2010

²⁶³

A sequence (x_n) of elements in X is said to be Cauchy if for every $\varepsilon > 0$ and $\alpha \in A$, there is an N with $p_{\alpha}(x_n, x_{n+p}) \leq \varepsilon$ for all $n \geq N$ and $p \in \mathbb{N}$. The sequence (x_n) is called convergent if there exists an $x_0 \in X$ such that for every $\varepsilon > 0$ and $\alpha \in A$, there is an N with $p_{\alpha}(x_0, x_n) \leq \varepsilon$ for all $n \geq N$.

A gauge space is called sequentially complete if any Cauchy sequence is convergent. A subset of X is said to be sequentially closed if it contains the limit of any convergent sequence of its elements.

If $\mathcal{P} = \{p_{\alpha}\}_{\alpha \in A}$ and $\mathcal{Q} = \{q_{\beta}\}_{\beta \in B}$ are two separating gauge structures (A, B are directed sets), then for $r = \{r_{\beta}\}_{\beta \in B} \in (0, \infty)^B$ and $x_0 \in X$ we will denote by $\overline{B}_q^p(x_0, r)$ the closure of $B_q(x_0, r)$ in (X, \mathcal{P}) , where

$$B_q(x_0, r) = \{ x \in X | q_\beta(x, x_0) < r_\beta \text{ for all } \beta \in B \}.$$

Let $P((X, \mathcal{P}))$ be the set of all nonempty subsets of X regarding to the separating gauge structure \mathcal{P} . We will use the following symbols where is no place to confusion:

$$P(X) := \{ Y \in \mathcal{P}(X) | Y \neq \emptyset \}; P_b(X) := \{ Y \in P(X) | Y \text{ is bounded } \};$$

$$P_{cl}(X) := \{ Y \in P(X) | Y \text{ is closed } \}.$$

Let us define the gap functional between Y and Z in the (X, \mathcal{P}) gauge space

$$D_{\alpha}: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \ D_{\alpha}(Y,Z) = \inf\{p_{\alpha}(y,z) \mid y \in Y, \ z \in Z\}$$

(in particular, if $x_0 \in X$ then $D_{\alpha}(x_0, Z) := D_{\alpha}(\{x_0\}, Z)$) and the (generalized) Pompeiu-Hausdorff functional

$$H_{\alpha}: P(X) \times P(X) \to \mathbb{R}_{+} \cup \{+\infty\}, H_{\alpha}(Y, Z) = \max\{\sup_{y \in Y} D_{\alpha}(y, Z), \sup_{z \in Z} D_{\alpha}(Y, z)\}$$

If $F : X \to P(X)$ is a multivalued operator, then $x \in X$ is called fixed point for F if and only if $x \in F(x)$. The set $FixF := \{x \in X | x \in F(x)\}$ is called the fixed point set of F. The multivalued operator F is said to be closed if $GraphF := \{(x, y) \in X \times X | y \in F(x)\}$ is closed in $X \times X$.

The aim of this paper is to give some (local and global) fixed point theorems for multivalued operators on a set endowed with two separating gauge structures. As a consequence we also obtain a homotopy result. Then, as applications, some existence results for a multivalued Cauchy problem and a Volterra-type integral inclusion are presented in Section 3. Our theorems extend and generalize some previous results (in metric spaces as well as in gauge spaces) given by: R.P. Agarwal, J. Dshalalow, D. O'Regan [1], L.B. Ćirić [7], M. Frigon [10], [11], T. Lazăr, D. O'Regan, A. Petruşel [13], R.P. Agarwal, D. O'Regan, M. Sambandham [3].

2 The main results

Ćirić ([7]) proved that if (X, d) is a complete metric space, $F: X \to P_{cl}(X)$ is a multivalued operator and there exists $\alpha \in [0, 1]$ such that $H(F(x), F(y)) \leq \alpha \cdot M_d^F(x, y)$, for every $x, y \in X$ (where $M_d^F(x, y) = \max\{d(x, y), D(x, F(x)), D(y, F(y)), \frac{1}{2}[D(x, F(y)) + D(y, F(x))]\}$). Then $FixF \neq \emptyset$ and for every $x \in X$ and $y \in F(x)$ there exists a sequence $(x_n)_{n \in \mathbb{N}}$ such that

- (1) $x_0 = x, x_1 = y;$
- (2) $x_{n+1} \in F(x_n), n \in \mathbb{N};$
- (3) $x_n \stackrel{d}{\to} x^* \in F(x^*)$, for every $n \to \infty$.

V.G. Angelov [4] introduced the notion of generalized φ -contractive singlevalued map in gauge spaces in 1987, meanwhile the concept for multivalued operators was given in 1998 (see V.G. Angelov [5]). In what follows we will give a local version of Ćirić's theorem ([7]) for generalized φ -contractions on a set with two separating gauge structures. **Theorem 2.1.** Let X be a nonempty set endowed with two separating gauge structures $\mathcal{P} = \{p_{\alpha}\}_{\alpha \in A}, \ \mathcal{Q} = \{q_{\beta}\}_{\beta \in B}$ (A, B are directed sets), $r = \{r_{\beta}\}_{\beta \in B} \in (0, \infty)^{B}, x_{0} \in X \text{ and } F : \overline{B}_{q}^{p}(x_{0}, r) \to P(X).$ We suppose that:

- (i) (X, \mathcal{P}) is a sequentially complete gauge space;
- (ii) there exists a function $\psi: A \to B$ and $c = \{c_{\alpha}\}_{\alpha \in A} \in (0, \infty)^A$ such that

 $p_{\alpha}(x,y) \leq c_{\alpha} \cdot q_{\psi(\alpha)}(x,y), \text{ for every } \alpha \in A \text{ and } x, y \in \overline{B}_{q}^{p}(x_{0},r).$

- (iii) $F: \overline{B}_q^p(x_0, r) \to P(X)$ has closed graph;
- (iv) Suppose that for each $\beta \in B$ there exists a continuous function φ_{β} : $[0,\infty) \to [0,\infty)$, with $\varphi_{\beta}(t) < t$, for every t > 0 and φ_{β} is strictly increasing on $(0,r_{\beta}]$ such that for $x, y \in \overline{B}_{q}^{p}(x_{0},r)$ we have $H_{\beta}(F(x),F(y)) \leq \varphi_{\beta}(M_{\beta}^{F}(x,y)),$

where $M_{\beta}^{F}(x,y) = \max\{q_{\beta}(x,y), D_{\beta}(x,F(x)), D_{\beta}(y,F(y)), \frac{1}{2}[D_{\beta}(x,F(y)) + D_{\beta}(y,F(x))]\}.$

In addition assume for each $\beta \in B$ that

 Φ_{β} is strictly increasing on $[0, \infty)$, where $\Phi_{\beta}(x) = x - \varphi_{\beta}(x)$, (2.1)

$$\sum_{i=1}^{\infty} \varphi_{\beta}^{i}(t) < \infty, \text{for } t \in (0, r_{\beta} - \varphi(r_{\beta})]$$
(2.2)

and

$$\sum_{i=1}^{\infty} \varphi_{\beta}^{i}(r_{\beta} - \varphi_{\beta}(r_{\beta})) \le \varphi_{\beta}(r_{\beta})$$
(2.3)

hold. Finally suppose the following two conditions are satisfied:

(i) For each
$$\beta \in B$$
, we have: $D_{\beta}(x_0, F(x_0)) < r_{\beta} - \varphi_{\beta}(r_{\beta})$ (2.4)
and

(ii) For every
$$x \in \overline{B}_q^p(x_0, r)$$
 and every $\varepsilon = \{\varepsilon_\beta\}_{\beta \in B} \in (0, \infty)^B$, (2.5)

there exists $y \in F(x)$ with $q_{\beta}(x, y) \leq D_{\beta}(x, F(x)) + \varepsilon_{\beta}$, for every $\beta \in B$.

Then F has a fixed point.

Proof. From (2.4) we may choose $x_1 \in F(x_0)$ with

$$q_{\beta}(x_0, x_1) < r_{\beta} - \varphi_{\beta}(r_{\beta}), \text{ for every } \beta \in B.$$
(2.6)

Then $x_1 \in \overline{B}_q^p(x_0, r)$.

For $\beta \in B$ choose $\varepsilon_{\beta} > 0$ with $\Phi_{\beta}^{-1}(\varepsilon_{\beta}) < r_{\beta}$ so that

$$\varphi_{\beta}(q_{\beta}(x_0, x_1) + \varepsilon_{\beta}) + \varepsilon_{\beta} + \varphi_{\beta}(\Phi_{\beta}^{-1}(\varepsilon_{\beta})) < \varphi_{\beta}(r_{\beta} - \varphi_{\beta}(r_{\beta})).$$
(2.7)

This is possible from (2.6) and the fact that φ_{β} is strictly increasing on $(0, r_{\beta}]$.

From (2.16) we can choose $x_2 \in F(x_1)$ so that for every $\beta \in B$ we have

$$q_{\beta}(x_1, x_2) \le D_{\beta}(x_1, F(x_1)) + \varepsilon_{\beta} \le H_{\beta}(F(x_0), F(x_1)) + \varepsilon_{\beta}.$$
(2.8)

We want to see if

$$q_{\beta}(x_1, x_2) \le \varphi_{\beta}(q_{\beta}(x_0, x_1) + \varepsilon_{\beta}) + \varepsilon_{\beta} + \varphi_{\beta}(\Phi_{\beta}^{-1}(\varepsilon_{\beta})).$$
(2.9)

We can notice that

$$H_{\beta}(F(x_0), F(x_1)) + \varepsilon_{\beta} \le \varphi_{\beta}(M_{\beta}(x_0, x_1)) + \varepsilon_{\beta}.$$
 (2.10)

Let us consider $\gamma_{\beta} = \max\{q_{\beta}(x_0, x_1), D_{\beta}(x_0, F(x_0)), D_{\beta}(x_1, F(x_1)), \frac{1}{2}[D_{\beta}(x_0, F(x_1)) + D_{\beta}(x_1, F(x_0))]\}.$

If $\gamma_{\beta} = q_{\beta}(x_0, x_1)$ then from (2.8) and (2.10) we have

$$q_{\beta}(x_{1}, x_{2}) \leq H_{\beta}(F(x_{0}), F(x_{1})) + \varepsilon_{\beta} \leq \varphi_{\beta}(q_{\beta}(x_{0}, x_{1})) + \varepsilon_{\beta} \leq \\ \leq \varphi_{\beta}(q_{\beta}(x_{0}, x_{1}) + \varepsilon_{\beta}) + \varepsilon_{\beta} + \varphi_{\beta}(\Phi_{\beta}^{-1}(\varepsilon_{\beta})).$$

So (2.9) is true.

If $\gamma_{\beta} = D_{\beta}(x_0, F(x_0))$ then $\gamma_{\beta} \leq q_{\beta}(x_0, x_1)$ so (2.9) is true again. If $\gamma_{\beta} = D_{\beta}(x_1, F(x_1))$ then (2.8) implies

$$D_{\beta}(x_1, F(x_1)) \leq q_{\beta}(x_1, x_2) \leq H_{\beta}(F(x_0), F(x_1)) + \varepsilon_{\beta} \leq \\ \leq \varphi_{\beta}(D_{\beta}(x_1, F(x_1))) + \varepsilon_{\beta},$$

from where we have $D_{\beta}(x_1, F(x_1)) - \varphi_{\beta}(D_{\beta}(x_1, F(x_1))) \leq \varepsilon_{\beta}$, so

$$D_{\beta}(x_1, F(x_1)) \le \Phi_{\beta}^{-1}(\varepsilon_{\beta}).$$

Thus, $q_{\beta}(x_1, x_2) \leq \varphi_{\beta}(\Phi_{\beta}^{-1}(\varepsilon_{\beta})) + \varepsilon_{\beta}$ and (2.9) is true.

If $\gamma_{\beta} = \frac{1}{2} [D_{\beta}(x_0, F(x_1)) + D_{\beta}(x_1, F(x_0))]$ then

$$q_{\beta}(x_{1}, x_{2}) \leq \frac{1}{2} [D_{\beta}(x_{0}, F(x_{1})) + D_{\beta}(x_{1}, F(x_{0}))] + \varepsilon_{\beta} \leq \frac{1}{2} [q_{\beta}(x_{0}, x_{1}) + q_{\beta}(x_{1}, x_{2})] + \varepsilon_{\beta},$$

from where $\frac{1}{2}q_{\beta}(x_1, x_2) \leq \frac{1}{2}q_{\beta}(x_0, x_1) + \varepsilon_{\beta}$. So

$$q_{\beta}(x_{1}, x_{2}) \leq \varphi_{\beta}(\frac{1}{2}[D_{\beta}(x_{0}, F(x_{1})) + D_{\beta}(x_{1}, F(x_{0}))]) + \varepsilon_{\beta} \leq \\ \leq \varphi_{\beta}(\frac{1}{2}[q_{\beta}(x_{0}, x_{1}) + q_{\beta}(x_{1}, x_{2})]) + \varepsilon_{\beta} \leq \\ \leq \varphi_{\beta}(q_{\beta}(x_{0}, x_{1}) + \varepsilon_{\beta}) + \varepsilon_{\beta}.$$

Thus, (2.9) is true again, which means that it holds in all cases. We now have from (2.7) that

$$q_{\beta}(x_1, x_2) < \varphi_{\beta}(r_{\beta} - \varphi_{\beta}(r_{\beta})).$$
(2.11)

Also we can point out that

$$q_{\beta}(x_{0}, x_{2}) \leq q_{\beta}(x_{0}, x_{1}) + q_{\beta}(x_{1}, x_{2}) <$$

$$< [r_{\beta} - \varphi_{\beta}(r_{\beta})] + \varphi_{\beta}(r_{\beta} - \varphi_{\beta}(r_{\beta})) \leq$$

$$\leq r_{\beta} - \varphi_{\beta}(r_{\beta}) + \varphi_{\beta}(r_{\beta}) = r_{\beta},$$

Thus, $x_2 \in \overline{B}_q^p(x_0, r)$.

Next, for $\beta \in B$, we choose $\delta_{\beta} > 0$, with $\Phi_{\beta}^{-1}(\delta_{\beta}) < r_{\beta}$ so that

$$\varphi_{\beta}(q_{\beta}(x_1, x_2) + \delta_{\beta}) + \delta_{\beta} + \varphi(\Phi_{\beta}^{-1}) < \varphi_{\beta}^2(r_{\beta} - \varphi_{\beta}(r_{\beta})).$$
(2.12)

This is possible from (2.11).

From (2.16) we can choose $x_3 \in F(x_2)$ so that for every $\beta \in B$ we have

$$q_{\beta}(x_2, x_3) \le D_{\beta}(x_2, F(x_2)) + \delta_{\beta} \le H_{\beta}(F(x_1), F(x_2)) + \delta_{\beta}.$$

As above, we can easily prove that

$$q_{\beta}(x_2, x_3) \le \varphi_{\beta}(q_{\beta}(x_2, x_3) + \delta_{\beta}) + \delta_{\beta} + \varphi_{\beta}(\Phi_{\beta}^{-1}(\delta_{\beta})).$$
(2.13)

From (2.12) and (2.13) we have that $q_{\beta}(x_2, x_3) < \varphi_{\beta}^2(r_{\beta} - \varphi_{\beta}(r_{\beta})).$

For $\beta \in B$ we have

$$q_{\beta}(x_{0}, x_{3}) \leq q_{\beta}(x_{0}, x_{1}) + q_{\beta}(x_{1}, x_{2}) + q_{\beta}(x_{2}, x_{3}) \leq \\ \leq [r_{\beta} - \varphi_{\beta}(r_{\beta})] + \varphi_{\beta}(r_{\beta} - \varphi(r_{\beta})) + \varphi_{\beta}^{2}(r_{\beta} - \varphi_{\beta}r_{\beta}) \leq \\ \leq r_{\beta} + \left[\sum_{i=1}^{\infty} \varphi_{\beta}^{i}(r_{\beta} - \varphi_{\beta}(r_{\beta})) - \varphi_{\beta}(r_{\beta})\right] \leq r_{\beta}.$$

Proceeding in the same way, we obtain $x_{n+1} \in F(x_n)$, for $n \in \{3, 4, ...\}$, with $x_{n+1} \in \overline{B}_q^p(x_0, r)$ and

$$q_{\beta}(x_n, x_{n+1}) < \varphi_{\beta}^n(r_{\beta} - \varphi_{\beta}(r_{\beta})), \text{ for every } \beta \in B.$$

From (2.2) it is immediate that $\{x_n\}$ is a Cauchy sequence with respect to q_β , for each $\beta \in B$. (ii) implies that $\{x_n\}$ is also \mathcal{P} -Cauchy, hence it is \mathcal{P} -convergent to some $x \in \overline{B}_q^p(x_0, r)$. It only remains to show that $x \in F(x)$.

$$D_{\beta}(x, F(x)) \leq q_{\beta}(x, x_{n}) + D_{\beta}(x_{n}, F(x)) \leq \\ \leq q_{\beta}(x, x_{n}) + H_{\beta}(F(x_{n-1}), F(x)) \leq \\ \leq q_{\beta}(x, x_{n}) + \varphi_{\beta}(\max\{q_{\beta}(x_{n-1}, x), D_{\beta}(x_{n-1}, F(x_{n-1})), D_{\beta}(x, F(x)), \\ \frac{1}{2}[D_{\beta}(x_{n-1}, F(x)) + D_{\beta}(x, F(x_{n-1}))]\}).$$

Since $D_{\beta}(x, F(x_{n-1})) \leq q_{\beta}(x, x_n) \rightarrow 0$, $D_{\beta}(x_{n-1}, F(x_{n-1})) \leq q_{\beta}(x_{n-1}, x_n) \rightarrow 0$ and $|D_{\beta}(x_{n-1}, F(x)) - D_{\beta}(x, F(x))| \leq q_{\beta}(x_{n-1}, x) \rightarrow 0$, then, letting $n \rightarrow \infty$, we obtain:

$$D_{\beta}(x, F(x)) \le 0 + \varphi_{\beta}(\{0, 0, D_{\beta}(x, F(x)), \frac{1}{2}D_{\beta}(x, F(x))\}).$$

(2.15)

Thus, $D_{\beta}(x, F(x)) = 0$, so $x \in F(x)$.

We continue with a global version of Ćirić's theorem ([7]) for generalized φ -contractions on a set with two separating gauge structures.

Theorem 2.2. Let X be a nonempty set endowed with two separating gauge structures $\mathcal{P} = \{p_{\alpha}\}_{\alpha \in A}, \ \mathcal{Q} = \{q_{\beta}\}_{\beta \in B}$ (A, B are directed sets), $x_0 \in X$ and $F : (X, \mathcal{P}) \to P((X, \mathcal{P}))$ be a multivalued operator with closed graph. We suppose that:

- (i) (X, \mathcal{P}) is a sequentially complete gauge space;
- (ii) there exists a function $\psi: A \to B$ and $c = \{c_{\alpha}\}_{\alpha \in A} \in (0, \infty)^{A}$ such that

$$p_{\alpha}(x,y) \leq c_{\alpha} \cdot q_{\psi(\alpha)}(x,y), \text{ for every } \alpha \in A \text{ and } x, y \in X;$$

(iii) suppose for each $\beta \in B$, there exists a continuous function $\varphi_{\beta} : [0, \infty) \to [0, \infty)$, with $\varphi_{\beta}(t) < t$, for every t > 0 and φ_{β} is strictly increasing such that for $x, y \in X$ we have

$$H_{\beta}(F(x), F(y)) \le \varphi_{\beta}(M_{\beta}^{F}(x, y)),$$

where

 $M_{\beta}^{F}(x,y) = \max\{q_{\beta}(x,y), D_{\beta}(x,F(x)), D_{\beta}(y,F(y)), \frac{1}{2}[D_{\beta}(x,F(y)) + D_{\beta}(y,F(x))]\}.$ In addition assume for each $\beta \in B$ that

$$\Phi_{\beta}$$
 is strictly increasing $[0,\infty)$, where $\Phi_{\beta}(x) = x - \varphi_{\beta}(x)$, (2.14)

 $\sum_{i=1}^{\infty} \varphi_{\beta}^{i}(t) < \infty, \text{for } t > 0$

and

for every
$$x \in X$$
 and every $\varepsilon = \{\varepsilon_{\beta}\}_{\beta \in B} \in (0, \infty)^{B}$ there (2.16)

exists $y \in F(x)$, with $q_{\beta}(x, y) \leq D_{\beta}(x, F(x)) + \varepsilon_{\beta}$, for every $\beta \in B$.

Then F has a fixed point.

Proof. Let $r = \{r_{\beta}\}_{\beta \in B} \in (0, \infty)^B$. We claim that we can choose $x_0 \in X$ and $x_1 \in F(x_0)$ such that

$$q_{\beta}(x_1, x_0) < r_{\beta} - \varphi(r_{\beta}). \tag{2.17}$$

271

If (2.17) is true then as in Theorem 2.1 we can choose $x_{n+1} \in F(x_n)$, for $n \in \{1, 2, ...\}$, with

$$q_{\beta}(x_n, x_{n+1}) < \varphi_{\beta}^n(r_{\beta} - \varphi_{\beta}(r_{\beta})), \text{ for every } \beta \in B.$$

The same reasonings guarantees that $\{x_n\}$ is a \mathcal{P} -Cauchy sequence to some $x \in X$, hence it is \mathcal{P} -convergent to some $x \in X$. So as in Theorem 2.1, we have $D_{\beta}(x, F(x)) = 0$, thus $x \in F(x)$.

It remains to show (2.17).

We can observe that (2.17) is immediate if we could show that for any $\beta \in B$ we have

$$\inf_{x \in X} D_{\beta}(x, F(x)) = 0.$$
(2.18)

Assuming that (2.18) is true there exists $x \in X$ with $D_{\beta}(x, F(x)) < r_{\beta} - \varphi(r_{\beta})$, so there exists $y \in F(x)$, with $q_{\beta}(x, y) < r_{\beta} - \varphi(r_{\beta})$.

Suppose that (2.18) is false, i.e. suppose that there exists $\beta \in B$ such that

$$\inf_{x \in X} D_{\beta}(x, F(x)) = \delta_{\beta}.$$
(2.19)

Since $\varphi_{\beta}(\delta_{\beta}) < \delta_{\beta}$ and φ_{β} is continuous, we have that there exists $\varepsilon_{\beta} > 0$ such that

$$\varphi_{\beta}(t) < \delta_{\beta}, \text{ for } t \in [\delta_{\beta}, \delta_{\beta} + \varepsilon_{\beta}).$$
 (2.20)

We can choose $v \in X$ such that

$$\delta_{\beta} \le D_{\beta}(v, F(v)) < \delta_{\beta} + \varepsilon_{\beta}.$$
(2.21)

Then there exists $y \in F(v)$ such that

$$\delta_{\beta} \le q_{\beta}(v, y) < \delta_{\beta} + \varepsilon_{\beta}. \tag{2.22}$$

Thus,

$$D_{\beta}(y, F(y)) \leq H_{\beta}(F(v), F(y)) \leq$$

$$\leq \varphi_{\beta}(\max\{q_{\beta}(v, y), D_{\beta}(v, F(v)), D_{\beta}(y, F(y)), \frac{1}{2}[D_{\beta}(v, F(y)) + D_{\beta}(y, F(v))]\})$$

Let

$$\begin{split} \gamma &= & \max\{q_{\beta}(v,y), D_{\beta}(v,F(v)), D_{\beta}(y,F(y)), \\ & & \frac{1}{2}[D_{\beta}(v,F(y)) + D_{\beta}(y,F(v))]\}. \end{split}$$

If $\gamma = q_{\beta}(v, y)$ then (2.20) and (2.22) yields

$$D_{\beta}(y, F(y)) \le \varphi_{\beta}(q_{\beta}(v, y)) < \delta_{\beta}.$$

If $\gamma = D_{\beta}(v, F(v))$ then (2.20) and (2.21) yields

$$D_{\beta}(y, F(y)) \le \varphi_{\beta}(D_{\beta}(v, F(v))) < \delta_{\beta}$$

If $\gamma = D_{\beta}(y, F(y))$ then $\gamma = 0$, since $\gamma \neq 0$ results the following inequality

$$D_{\beta}(y, F(y)) \le \varphi_{\beta}(D_{\beta}(y, F(y))) < D_{\beta}(y, F(y))$$

which is a contradiction.

If
$$\gamma = \frac{1}{2}[D_{\beta}(v, F(y)) + D_{\beta}(y, F(v))]$$
 and $\gamma \neq 0$ then
 $D_{\beta}(y, F(y)) \leq \varphi_{\beta}(\gamma) < \gamma = \frac{1}{2}[D_{\beta}(v, F(y)) + D_{\beta}(y, F(v))] \leq \frac{1}{2}[q_{\beta}(v, y) + D_{\beta}(y, F(y)) + 0],$

so $\frac{1}{2}D_{\beta}(y,F(y)) \leq \frac{1}{2}q_{\beta}(v,y)$. Thus, $\gamma = \frac{1}{2}[D_{\beta}(v,F(y)) + D_{\beta}(y,F(v))] \leq \frac{1}{2}[q_{\beta}(v,y) + D_{\beta}(y,F(y))] < \frac{1}{2}q_{\beta}(v,y) + \frac{1}{2}q_{\beta}(v,y) = q_{\beta}(v,y)$, which contradicts the definition of γ . So we have proved that in this case $\gamma = 0$, which implies $D_{\beta}(y,F(y)) \leq \varphi_{\beta}(\gamma) = \varphi(0) = 0$.

We can notice that in all cases we have $D_{\beta}(y, F(y)) < \delta_{\beta}$, which contradicts (2.19), thus, (2.18) is true, so (2.17) is immediate and the proof is complete.

In what follows we will present a homotopy result for Ćirić-type generalized φ -contractions on a set with two separating gauge structures.

Theorem 2.3. Let X be a nonempty set endowed with two separating gauge structures $\mathcal{P} = \{p_{\alpha}\}_{\alpha \in A}, \ \mathcal{Q} = \{q_{\beta}\}_{\beta \in B}$ (A, B are directed sets), (X, \mathcal{P}) is a sequentially complete gauge space, there exists a function $\psi : A \to B$ and $c = \{c_{\alpha}\}_{\alpha \in A} \in (0, \infty)^{A}$ such that $p_{\alpha}(x, y) \leq c_{\alpha} \cdot q_{\psi(\alpha)}(x, y)$ for every $\alpha \in A$ and $x, y \in X$. Let U be an open subset of (X, \mathcal{Q}) . Let $G : \overline{U} \times [0, 1] \to P(X, \mathcal{P})$ be a multivalued operator such that the following assumptions are satisfied:

- (i) $x \notin G(x,t)$, for each $x \in \partial U$ and each $t \in [0,1]$;
- (ii) suppose for each β ∈ B there exists a continuous and strictly increasing function φ_β : [0,∞) → [0,∞), with φ_β(t) < t, for every t > 0, such that for x, y ∈ X we have

$$H_{\beta}(G(x,t),G(y,t)) \le \varphi_{\beta}(M_{\beta}^{G(\cdot,t)}(x,y)),$$

where

$$M_{\beta}^{G(\cdot,t)}(x,y) = \max\{q_{\beta}(x,y), D_{\beta}(x,G(x,t)), D_{\beta}(y,G(y,t)), \frac{1}{2}[D_{\beta}(x,G(y,t)) + D_{\beta}(y,G(x,t))]\};$$

(iii) there exists a continuous increasing function $\gamma: [0,1] \to \mathbb{R}$ such that

$$H_{\beta}(G(x,t),G(x,s)) \leq |\gamma(t) - \gamma(s)|, \text{ for all } t,s \in [0,1] \text{ and each } x \in \overline{U};$$

(iv) $G: (\overline{U}, \mathfrak{P}) \times [0, 1] \to P(X, \mathfrak{P})$ has closed graph;

(v) Φ_{β} is strictly increasing on $[0, \infty)$ for each $\beta \in B$, where $\Phi_{\beta}(x) = x - \varphi_{\beta}(x)$;

(vi)
$$\sum_{i=1}^{\infty} \varphi^i(t) < \infty$$
, for $t > 0$,

(vii) for every $x \in X$ and every $\varepsilon = \{\varepsilon_{\beta}\}_{\beta \in B} \in (0, \infty)^{B}$ there exists $y \in F(x)$ with $q_{\beta}(x, y) \leq D_{\beta}(x, F(x)) + \varepsilon_{\beta}$, for every $\beta \in B$.

Then $G(\cdot, 0)$ has a fixed point if and only if $G(\cdot, 1)$ has a fixed point.

Proof. Suppose that $z \in FixG(\cdot, 0)$. From (i) we have that $z \in U$. We will define the following set:

$$E := \{ (x,t) \in U \times [0,1] | x \in G(x,t) \}.$$

Since $(z,0) \in E$, we have that $E \neq \emptyset$. We introduce a partial order defined on E

$$(x,t) \leq (y,s)$$
 if and only if $t \leq s$ and $q_{\beta}(x,y) \leq \Phi_{\beta}^{-1}(2[\gamma(s) - \gamma(t)]).$

Let M be a totally ordered subset of E, $t^* := \sup\{t \mid (x,t) \in M\}$ and $(x_n, t_n)_{n \in \mathbb{N}^*} \subset M$ be a sequence such that $(x_n, t_n) \leq (x_{n+1}, t_{n+1})$ and $t_n \to t^*$, as $n \to \infty$. Then

$$q_{\beta}(x_m, x_n) \leq \Phi_{\beta}^{-1}(2[\gamma(t_m) - \gamma(t_n)]), \text{ for each } m, n \in \mathbb{N}^*, \ m > n_{\beta}$$

from where we can conclude that $q_{\beta}(x_m, x_n) - \varphi_{\beta}(q_{\beta}(x_m, x_n)) \leq 2[\gamma(t_m) - \gamma(t_n)].$

Letting $m, n \to +\infty$, we obtain that $q_{\beta}(x_m, x_n) - \varphi_{\beta}(q_{\beta}(x_m, x_n)) \to 0$, so $\varphi_{\beta}(q_{\beta}(x_m, x_n)) \to q_{\beta}(x_m, x_n)$, as $m, n \to +\infty$. Therefore $q_{\beta}(x_m, x_n) \to 0$, as $m, n \to +\infty$. Thus, $(x_n)_{n \in \mathbb{N}^*}$ is Q-Cauchy, so is \mathcal{P} -Cauchy too. Denote by $x^* \in (X, \mathcal{P})$ its limit. We know that $x_n \in G(x_n, t_n)$, $n \in \mathbb{N}^*$ and G is \mathcal{P} -closed. Therefore we have that $x^* \in G(x^*, t^*)$. From (i) we can notice that $x^* \in U$. So $(x^*, t^*) \in E$.

From the fact that M is totally ordered we have that $(x,t) \leq (x^*,t^*)$, for each $(x,t) \in M$. Thus, (x^*,t^*) is an upper bound of M. We can apply Zorn's Lemma, so E admits a maximal element $(x_0,t_0) \in E$. We want to prove that $t_0 = 1$.

Suppose that $t_0 < 1$. Let $r = \{r_\beta\}_{\beta \in B} \in (0, \infty)^B$ and $t \in]t_0, 1]$ such that $B_q(x_0, r_\beta) \subset U$ and $r_\beta := \Phi_\beta^{-1}(2[\gamma(t) - \gamma(t_0)])$, for every $\beta \in B$. Then for each $\beta \in B$ we have

$$\begin{aligned} D_{\beta}(x_{0},G(x_{0},t)) &\leq D_{\beta}(x_{0},G(x_{0},t_{0})) + H_{\beta}(G(x_{0},t_{0}),G(x_{0},t)) \leq \\ &\leq \gamma(t) - \gamma(t_{0}) = \frac{\Phi_{\beta}(r_{\beta})}{2} = \frac{r_{\beta} - \varphi_{\beta}(r_{\beta})}{2} < r_{\beta} - \varphi_{\beta}(r_{\beta}). \end{aligned}$$

Since $\overline{B}_q^p(x_0, r_\beta) \subset U \subset \overline{U}$, the closed multivalued operator $G(\cdot, t) : \overline{B}_q^p(x_0, r_\beta) \to P(X, \mathcal{P})$ satisfies the assumptions of Theorem 2.1, for all $t \in [0, 1]$. Hence there exists $x \in \overline{B}_q^p(x_0, r_\beta)$ such that $x \in G(x, t)$. Thus, $(x, t) \in E$. But we know that

$$q_{\beta}(x_0, x) \le r_{\beta} = \Phi_{\beta}^{-1}(2[\gamma(t) - \gamma(t_0)]),$$

so we have that $(x_0, t_0,) \leq (x, t)$, which is a contradiction with the maximality of (x_0, t_0) . Thus, $t_0 = 1$ and the proof is complete.

3 Applications

The following result is a particular case of Theorem 2.2, namely the case where the complete gauge space is endowed with one separating gauge structure and the multivalued operator is a φ -contraction.

Theorem 3.1. Let X be a sequentially complete gauge space endowed with a separating gauge structure and let $F : X \to P(X)$ be a φ -contraction with closed graph, i.e. for each $\alpha \in A$ (A is a directed set) there exists a continuous strict comparison function $\varphi_{\alpha} : [0, \infty) \to [0, \infty)$ such that for $x, y \in X$ we have

$$H_{\alpha}(F(x), F(y)) \le \varphi_{\alpha}(d_{\alpha}(x, y)).$$

We assume that for every $x \in X$ and every $\varepsilon \in (0, \infty)^A$ there exists $y \in F(x)$ such that

$$d_{\alpha}(x,y) \leq D_{\alpha}(x,F(x)) + \varepsilon_{\alpha}, \text{ for every } \alpha \in A.$$

Then F has a fixed point.

Remark 3.1. Some well-known examples of continuous strict comparison functions are:

a) $\varphi(t) = at$, with $a \in [0, 1)$; b) $\varphi(t) = \frac{t}{1+t}, t \in [0, \infty)$.

Definition 3.1. Let E be a Hilbert space. The multivalued operator F: $[0,\infty) \times E \to P_{b,cl}(E)$ is said to be locally Carathéodory if

- (i) $t \mapsto F(t, x)$ is measurable, for all $x \in E$;
- (ii) $x \mapsto F(t, x)$ is continuous, for a.e. $t \in [0, \infty)$;
- (iii) for all R > 0, there exists a function $h_R \in L^1_{loc}[0,\infty)$ such that for a.e. $t \in [0,\infty)$ and for every $x \in E$, with $||x|| \leq R$, we have $H(\{0\}, F(t,x)) \leq h_R(t)$.

Throughout E is a Hilbert space. As usual, $L^1([a, b], E)$ denotes the Banach space of measurable functions $u : [a, b] \to E$ such that |u| is Lebesgue integrable with $||u||_1 = \int_a^b |u(t)| dt$. We define the Sobolev class $W^{1,1}([a, b], E)$ as follows: a function $u \in W^{1,1}([a, b], E)$ if it is continuous and there exists $v \in L^1[a, b]$ such that $u(t) - u(a) = \int_a^t v(s) ds$, for all $t \in [a, b]$. Notice that if $u \in W^{1,1}([a, b], E)$ then u is differentiable almost everywhere on [a, b], $u' \in L^1([a, b], E)$ and $u(t) - u(a) = \int_a^t u'(s) ds$, for almost every $t \in [a, b]$.

Let us consider the following Cauchy-problem

$$\begin{cases} x'(t) \in F(t, x(t)) \text{ a.e } t \in [0, \infty], \\ x(0) = 0 \in E, \end{cases}$$
(3.23)

where E is also a Hilbert space and the locally Carathéodory multivalued operator F is a φ -contraction.

Theorem 3.2. Let $(E, \|\cdot\|)$ be a Hilbert space and $F : [0, \infty) \times E \to P_{b,cl}(E)$ be a locally Carathéodory multivalued operator. We suppose that

(a) for every R > 0, there exists $l_R \in L^1_{loc}[0,\infty)$ and a continuous, strict comparison function $\varphi_R \in L^1_{loc}[0,\infty)$, with $\varphi_R(at) \leq a \cdot \varphi(t)$, for every a > 1, such that for a.e. $t \geq 0$ and for every $x, y \in E$, with $||x||, ||y|| \leq R$, we have

$$H(F(t,x),F(t,y)) \le l_R(t) \cdot \varphi_R(||x-y||);$$

- (b) there exists $\theta \in L^1_{loc}[0,\infty)$ and $\psi : [0,\infty) \to [0,\infty)$ an increasing and Borel measurable function such that
 - (b1) $H(\{0\}, F(t, v)) \leq \theta(t) \cdot \psi(||v||)$, for a.e. $t \in [0, \infty)$ and every $v \in E$ such that $1/\psi \in L^1_{loc}[0, \infty)$;

(b2)
$$\int_{0} \frac{dz}{\psi(z)} > \|\theta\|_{L^{1}[0,r]}, \text{ for all } r > 0.$$

Then (3.23) has a solution in $W_{loc}^{1,1}([0,\infty), E)$.

Proof. For the proof of our theorem let $M : [0, \infty) \to [0, \infty)$ be a continuous and increasing function such that

$$\int_{0}^{\infty} \frac{ds}{\psi(s)} > \int_{0}^{M(t)} \frac{ds}{\psi(s)} \ge \|\theta\|_{L^{1}[0,t]},$$

which is possible by assumption (b2). Let $\widetilde{F} : [0,\infty) \times E \to P_{b,cl}(E)$ be defined by

$$\widetilde{F}(t,u) = \begin{cases}
F(t,u), \|u\| \le M(t), \\
F(t, \frac{M(t)u}{\|u\|}), \|u\| > M(t).
\end{cases}$$
(3.24)

Define $T: C([0,\infty), E) \to P(C([0,\infty), E)), T(x)(t) := \int_{0}^{t} \widetilde{F}(s, x(s)) ds$. Suppose x is a fixed point for T, thus, x is continuous and $x \in T(x)$, which means that $x(t) \in T(x)(t)$, for every $t \in [0,\infty)$, so $x(t) \in \int_{0}^{t} \widetilde{F}(s, x(s)) ds$, for every $t \in [0,\infty)$. Since

$$\int_{0}^{t} \widetilde{F}(s, x(s)) ds := \left\{ \int_{0}^{t} v_x(s) ds \mid v_x(s) \in \widetilde{F}(s, x(s)), \forall s \in [0, t], v_x \in L^1([0, t], E) \right\},$$

it follows that there exists $v_x \in L^1([0,t], E)$ such that $x(t) := \int_0^t v_x ds$, for every $t \in [0,\infty)$, with $v_x(s) \in \widetilde{F}(s,x(s))$, for every $s \in [0,t]$. Hence we obtain that there exist $x'(t) = v_x(t)$ for a.e. $t \in [0,\infty)$ and $x \in W^{1,1}([0,\infty), E)$. Thus, $x'(t) \in \widetilde{F}(t,x(t))$, for a.e. $t \in [0,\infty)$ and x(0) = 0.

We will show that $x'(t) \in F(t, x(t))$, for a.e. $t \in [0, \infty)$.

Suppose that there exists t > 0 such that ||x(t)|| > M(t). Then we have that $x'(t) \in F\left(t, \frac{M(t)x'(t)}{||x'(t)||}\right)$. By assumption (b1) we have

$$\begin{aligned} \|x'(t)\| &\leq \theta(t) \cdot \psi\left(\left\|\frac{M(t) \cdot x'(t)}{\|x'(t)\|}\right\|\right) &= \theta(t) \cdot \psi(M(t)) \\ &\leq \theta(t) \cdot \psi(\|x(t)\|). \end{aligned}$$

Thus,

$$\frac{\|x'(t)\|}{\psi(\|x(t)\|)} \le \theta(t),$$

which means that

$$\frac{\|x(t)\|'}{\psi(\|x(t)\|)} \le \theta(t).$$

Integrating from 0 to t and via change of variables theorem (v = ||x(s)||) we obtain

$$\int_{0}^{\|x(t)\|} \frac{dv}{\psi(v)} \le \|\theta\|_{L^{1}[0,t]} \le \int_{0}^{M(t)} \frac{ds}{\psi(s)},$$

thus $||x(t)|| \leq M(t)$, which is a contradiction.

Hence $||x(t)|| \leq M(t)$, for a.e. $t \in [0, \infty)$ and thus

$$\begin{cases} x'(t) \in F(t, x(t)) \text{ a.e } t \in [0, \infty], \\ x(0) = 0, \end{cases}$$

so x is a solution for (3.23).

Let $l_R(t) = l_{M(n)}(t)$ in assumption (a), for $t \in [0, n]$, $n \in \mathbb{N}^*$. Define on $C([0, \infty), E)$ the Bielecki-type semi-norm:

$$|x|_{n} = \sup_{t \in [0,n]} \left\{ e^{-\int_{0}^{t} l_{M(n)}(s)ds} \cdot \|x(t)\| \right\}.$$

Then T is an admissible φ -contraction if:

- (i) $H_{M(n)}(T(x), T(y)) \le \varphi_{M(n)}(|x-y|_n)$, for every $x, y \in C([0, \infty), E)$;
- (ii) for every $x \in C([0,\infty), E)$ and for every $\varepsilon \in (0,\infty)^{\mathbb{N}^*}$ there exists $y \in T(x)$ such that $|x y|_n \leq D_n(x, T(x)) + \varepsilon_n$.

For (i) let $t \in [0, n]$, $x, y \in C([0, n], E)$ and $u_1 \in T(x)$ such that $||x(t)|| \le M(t)$, $||y(t)|| \le M(t)$. Then there exists $v_{u_1} \in F(s, x(s))$, $s \in [0, t]$, such that $v_{u_1} \in L^1([0, n], E)$ and $u_1(t) = \int_0^t v_{u_1}(s) ds$. From the inequality below

$$H(F(t,x), F(t,y)) \le l_{M(n)}(t) \cdot \varphi_{M(n)}(||x-y||),$$

it follows that there exists $w \in F(t, y(s)), s \in [0, t], w \in L^1([0, n], E)$ such that

$$||v_{u_1} - w|| \le l_{M(n)}(s) \cdot \varphi_{M(n)}(||x - y||).$$

Thus, the multivalued operator G defined by

$$G(t) = F(s, y(s)) \cap \left\{ w \mid \|v_{u_1} - w\| \le l_{M(n)}(s) \cdot \varphi_{M(n)}(\|x - y\|) \right\}$$

has nonempty values and is measurable. By Kuratowski and Ryll Nardzewski's selection theorem (see [12]) there exists $v_{u_2}(s)$ a measurable selection for G.

Then $v_{u_2}(s) \in F(s, y(s)), s \in [0, t], v_{u_2} \in L^1([0, n], E)$. Define $u_2(t) = \int_0^t v_{u_2}(s) ds \in T(y)(t), t \in [0, n]$. We have:

$$\begin{split} \|u_{1}(t) &- u_{2}(t)\| \leq \int_{0}^{t} \|v_{u_{1}}(s) - v_{u_{2}}(s)\| ds \\ &\leq \int_{0}^{t} l_{M(n)}(s) \cdot \varphi_{M(n)}(\|x(s) - y(s)\|) ds \\ &\leq \int_{0}^{t} l_{M(n)}(s) \cdot \varphi_{M(n)}\Big(\|x(s) - y(s)\| \ e^{-\int_{0}^{s} l_{M(n)}(z)dz} \cdot e^{\int_{0}^{s} l_{M(n)}(z)dz}\Big) ds \\ &\leq \int_{0}^{t} l_{M(n)}(s) \cdot e^{\int_{0}^{s} l_{M(n)}(z)dz} \cdot \varphi_{M(n)}\Big(\|x(s) - y(s)\| \ e^{-\int_{0}^{s} l_{M(n)}(z)dz}\Big) ds \\ &\leq \varphi_{M(n)}(|x - y|_{n}) \cdot \int_{0}^{t} l_{M(n)}(s) \cdot e^{\int_{0}^{s} l_{M(n)}(z)dz} ds \\ &\leq \varphi_{M(n)}(|x - y|_{n}) \cdot e^{\int_{0}^{t} l_{M(n)}(s)ds}. \end{split}$$

Thus, we obtained that $|u_1 - u_2|_n \leq \varphi_{M(n)}(|x - y|_n)$, for a.e. $t \in [0, \infty)$. By the analogous relation obtained by interchanging the roles of x and y it follows that

$$H_{M(n)}(T(x), T(y)) \le \varphi_{M(n)}(|x-y|_n).$$

For (ii) we will suppose the contrary, i.e. there exists $\varepsilon \in (0,\infty)^{\mathbb{N}^*}$ and exists $x \in C([0,\infty), E)$ such that for all $y \in T(x)$ we have $|x - y|_n > D_n(x, T(x)) + \varepsilon_n$. It follows that $D_n(x, T(x)) \ge D_n(x, T(x)) + \varepsilon_n$, thus $\varepsilon_n \le 0$, for every $n \in \mathbb{N}^*$. This is a contradiction.

Thus, by Theorem 3.1, the proof is complete.

Definition 3.2. Let (Ω, Σ) , (Φ, Γ) be two measurable spaces and X be a topo-

logical space. Then a mapping $F : \Omega \times \Phi \to P(X)$ is said to be jointly measurable if for every closed subset B of X, $F^{-1}(B) \in \Sigma \bigotimes \Gamma$, where $\Sigma \bigotimes \Gamma$ denotes the smallest σ -algebra on $\Omega \times \Phi$, which contains all the sets $A \times B$ with $A \in \Sigma$ and $B \in \Gamma$.

Let us consider the following Volterra-type inclusion

$$x(t) \in \int_{0}^{t} K(t, s, x(s)) ds + g(t) \text{ a.e. } t \in [0, \infty).$$
(3.25)

Theorem 3.3. Let $K : [0, \infty) \times [0, \infty) \times \mathbb{R}^m \to P_{cl,b}(\mathbb{R}^m)$ be a multivalued operator and $g : [0, \infty) \to \mathbb{R}^m$ be a continuous function such that g(0) = 0. We suppose that

- (i) K is jointly measurable for all $x \in C[0, \infty)$;
- (ii) for almost every $(t,s) \in [0,\infty) \times [0,\infty)$ $K(t,s,\cdot) : \mathbb{R}^m \to P(\mathbb{R}^m)$ is continuous;
- (iii) for every R > 0, there exists $l_R \in L^1_{loc}[0,\infty)$ and a continuous, strict comparison function $\varphi_R \in L^1_{loc}[0,\infty)$ with $\varphi_R(at) \leq a \cdot \varphi_R(t)$, for a > 1, such that

$$H_R(K(t,s,x), K(t,s,y)) \le l_R(s) \cdot \varphi_R(||x-y||),$$

for every $s \leq t$ and every $x, y \in \mathbb{R}^m$, with $||x||, ||y|| \leq R$;

(iv) there exists $\theta \in L^1_{loc}[0,\infty)$ and $\psi : [0,\infty) \to [0,\infty)$ a Borel measurable function such that

$$H(\{0\}, K(t, s, x(s))) \le \theta(s) \cdot \psi(\|x\|),$$

for a.e. $t \in [0,\infty)$ with $s \leq t$ and every $x \in \mathbb{R}^m$, where $1/\psi \in L^1_{loc}[0,\infty)$ and

$$\int_{0}^{\infty} \frac{dz}{\psi(z)} > \|\theta\|_{L^{1}[0,r]}, \text{ for all } r > 0.$$

Then (3.25) has a solution.

Proof. Let $M : [0, \infty) \to [0, \infty)$ be a continuous nondecreasing function such that

$$\int_{0}^{M(t)} \frac{ds}{\psi(s)} \ge \|\theta\|_{L^{1}[0,t]}.$$

Suppose that there exists a solution x such that $||x|| \ge M(t)$, for some $t \in [0, \infty)$. Then there exists $0 \le t_1 < \infty$ such that

$$||x(t_1)|| = M(t_1)$$
 and $0 < ||x(t)|| \le M(t_1)$, for every $t \in (0, t_1)$.

The function $t \mapsto ||x(t)||$ is differentiable on $(0, t_1)$ and

$$\left| \|x(t)\|' \right| = \left\langle \frac{x(t)}{\|x(t)\|}, x'(t) \right\rangle \le \|x'(t)\|$$

From assumption (iv) we have that $H(0, K(t, s, x(s))) \leq \theta(s) \cdot \psi(||x(t)||)$ a.e. $t \in [0, \infty)$ and every $x \in \mathbb{R}^m$. Since $x'(t) \in K(t, s, x(s))$ we have that $||x'(t)|| \leq \theta(t) \cdot \psi(||x||)$. Thus we obtain that $||x(t)||' \leq \theta(t) \cdot \psi(||x||)$, from where we have that

$$\frac{\|x(t)\|'}{\psi(\|x\|)} \le \theta(t).$$

Integrating from 0 to t_1 and via Change of variables Theorem we obtain

$$\int_{0}^{\|x(t_1)\|=M(t_1)} \frac{ds}{\psi(s)} = \int_{0}^{t_1} \frac{\|x(s)\|'}{\psi(\|x\|)} \le \int_{0}^{t_1} \theta(s) ds < \int_{0}^{M(t_1)} \frac{ds}{\psi(s)},$$

which is a contradiction.

Let $l_R(s) = l_{M(n)}(s)$ in assumption (iii). For $n \in \mathbb{N}$ we consider the Bielecki-type semi-norm:

$$|x|_{n} = \sup_{t \in [0,n]} \left\{ e^{-\int_{0}^{t} l_{M(n)}(s)ds} \cdot ||x(t)|| \right\}.$$

Let $X = \{x \in C([0,\infty), \mathbb{R}^m) : \|x(t)\| \le M(t) \text{ for } t \in [0,n]\}.$

We define $F: X \to C([0,\infty), \mathbb{R}^m)$, $F(x)(t) = \int_0^t K(t,s,x(s))ds + g(t)$. We want to show that F is a φ -contraction.

Let $x_1, x_2 \in C([0, n], \mathbb{R}^m)$ and $u_1 \in F(x_1)$. Then $u_1 \in C([0, n], \mathbb{R}^m)$ and $u_1(t) \in \int_0^t K(t, s, x_1(s))ds + g(t)$. Thus, there exists $k_1(t, s) \in K(t, s, x_1(s))$ such that $u_1(t) = \int_0^t k_1(t, s)ds + g(t)$. Since

$$H_{M(n)}(K(t, s, x_1(s)), K(t, s, x_2(s))) \le l_{M(n)}(s) \cdot \varphi_{M(n)}(||x_1 - x_2||),$$

for $s \leq t$ and $||x_1||, ||x_2|| \leq M(n)$, follows that there exists $v \in K(t, s, x_2(s))$ such that

$$||k_1(t,s) - v|| \le l_{M(n)}(s) \cdot \varphi_{M(n)}(||x_1 - x_2||).$$

Thus, the multivalued operator G defined by

$$G(t) = K(t, s, x_2(s)) \cap \left\{ v \mid ||k_1(t, s) - v|| \le l_{M(n)}(s) \cdot \varphi_{M(n)}(||x_1 - x_2||) \right\}$$

has nonempty values and is measurable. By Kuratowski and Ryll Nardzewski's selection theorem (see [12]) there exists $k_2(t,s)$ a measurable selection for G. Then $k_2(t,s) \in K(t,s,x_2(s))$ and

$$||k_1(t,s) - k_2(t,s)|| \le l_{M(n)}(s) \cdot \varphi_{M(n)}(||x_1 - x_2||), \text{ for a.e. } t \in [0,\infty), \ s \le t.$$

Define
$$u_{2}(t) = \int_{0}^{t} k_{2}(t,s)ds + g(t) \in F(x_{2})$$
. We have:
 $||u_{1}(t) - u_{2}(t)|| \leq \int_{0}^{t} ||k_{1}(t,s) - k_{2}(t,s)||ds$
 $\leq \int_{0}^{t} l_{M(n)}(s) \cdot \varphi_{M(n)}(||x_{1} - x_{2}||)ds$
 $\leq \int_{0}^{t} l_{M(n)}(s) \cdot \varphi_{M(n)}(||x_{1} - x_{2}||e^{-\int_{0}^{s} l_{M(n)}(z)dz} \cdot e^{\int_{0}^{s} l_{M(n)}(z)dz})ds$
 $\leq \int_{0}^{t} l_{M(n)}(s) \cdot \varphi_{M(n)}(||x_{1} - x_{2}||e^{-\int_{0}^{s} l_{M(n)}(z)dz}) \cdot e^{\int_{0}^{s} l_{M(n)}(z)dz}ds$
 $\leq \varphi_{M(n)}(|x_{1} - x_{2}|_{n}) \cdot \int_{0}^{t} l_{M(n)}(s) \cdot e^{\int_{0}^{s} l_{M(n)}(z)dz}ds$
 $\leq \varphi_{M(n)}(|x_{1} - x_{2}|_{n}) \cdot e^{\int_{0}^{t} l_{M(n)}(s)ds}$

Thus, we obtained that $|u_1(t) - u_2(t)|_n \leq \varphi(|x_1 - x_2|_n)$, for a.e. $t \in [0, \infty)$. By the analogous relation obtained by interchanging the roles of x_1 and x_2 it follows that

$$H_{M(n)}(F(x_1), F(x_2)) \le \varphi(\|x_1 - x_2\|_n).$$

In order to see if F is an admissible φ -contraction we have to prove that for every $\varepsilon \in (0,\infty)^{\mathbb{N}^*}$ and for every $x \in C([0,\infty), H)$ there exists $y \in F(x)$ such that $|x-y|_n > D_n(x, F(x)) + \varepsilon_n$. We will suppose the contrary, i.e. there exists $\varepsilon \in (0,\infty)^{\mathbb{N}^*}$ and exists $x \in C([0,\infty), H)$ such that for all $y \in F(x)$ we have $|x-y|_n > D_n(x, F(x)) + \varepsilon_n$. It follows that $D_n(x, F(x)) \ge D_n(x, F(x)) + \varepsilon_n$, thus, $\varepsilon_n \le 0$, for every $n \in \mathbb{N}^*$. Which is a contradiction.

Thus, by Theorem 3.1, the proof is complete.

References

- Agarwal R.P., Dshalalow J., O'Regan D., Fixed point and homotopy results for generalized contractive maps of Reich-type, Appl. Anal., 82 (2003), 329–350.
- [2] Agarwal R.P., O'Regan D., Fixed point theorems for multivalued maps with closed values on complete gauge spaces, Applied Math. Lett., 14 (2001), 831–836.
- [3] Agarwal R.P., O'Regan D., Sambandham M., Random and deterministic fixed point theory for generalized contractive maps, Appl. Anal., 83(7) (2004), 711–725.
- [4] Angelov V.G., Fixed point theorems in uniform spaces and applications, Czeholovak Math. J., 37(112) (1987), 19–33.
- [5] Angelov V.G., Fixed points of multi-valued mappingsin uniform spaces, Math. Balkanica, 12 (1998), (Fasc. 1-2), 29-35.
- [6] Chiş A., Precup R., Continuation theory for general contractions in gauge spaces, Fixed Point Theory and Appl., 2004, 2004:3, 173–185.
- [7] Čirić L.B., Fixed points for generalized multi-valued contractions, Mat. Vesnik, 9(24) (1972), 265–272.
- [8] Dugundji J., Topology, Allyn & Bacon, Boston, 1966.
- [9] Espinola R., Petruşel A., Existence and data dependence of fixed points for multivalued operators on gauge spaces, J. Math. Anal. Appl., 309 (2005), 420–432.
- [10] Frigon M., Fixed point results for generelized contractions in gauge spaces and applications, Proc. Amer. Math. Soc., 128(10) (2000), 2957–2965.

- [11] Frigon M., Fixed point results for multivalued contractions in gauge spaces and applications, Set Valued Mappings with Applications in Nonlinear Analysis, Ser. Math. Anal. Appl., 4, 175–181, Taylor & Francis, London, 2002.
- [12] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, Vol. I şi II, Kluwer Acad. Publ., Dordrecht, 1997, 1999.
- [13] Lazăr T., O'Regan D., Petruşel A., Fixed points and homotopy results for *Ćirić* -type multivalued operators on a set with two metrics, Bull. Korean Math. Soc., 45 (2003), 67–73.
- [14] O'Regan D., Agarwal R.P., Jiang D., Fixed point and homotopy results in uniform spaces, Bull. Belg. Math. Soc., 10 (2003), 289–296.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Kogălniceanu 1, 400084, Cluj-Napoca, Romania e-mail: petra.petru@econ.ubbcluj.ro