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ON THE SINGULAR DECOMPOSITION OF
MATRICES

Alina PETRESCU-NITA

Abstract

This paper is an original presentation of the algorithm of the singu-
lar decomposition (and implicitly, of the calculus of the pseudoinverse) of
any matrix with real coefficients. In the same time, we give a geometric
interpretation of that decomposition. In the last section, we present an
application of the singular decomposition in a problem of Pattern Recog-
nition.

1 Introduction

Let A € M,, ,(R) be a matrix; for any column vector X € R™ ~ M, ; (R), define
fa:R* > R™ £y (X)=AX.
One may associate to A four remarkable vector spaces:

I(A) = Im(fa), N(A)= Ker(fa),

I(AT) and N(AT)={Y|ATY =0}.

I(A) is the vector subspace of R™, generated by the columns of the matrix
A, whereas I(AT) is the subspace of R®, generated by the rows of A. If the rank
of matrix A is p(A) = r, then dim I(A) = r, dim N(A4) = n —r, dimI(AT) =
r, dim N(AT) =m —r.

By convention, any vector € R™, x = (x1,2,...,2Zn), can be identified
with the corresponding column vector X; for any =,y € R", the Euclidian scalar
product is defined by (z,y) = XTY.

The following properties are well-known:

1) The subspace N (A) is orthogonal to I(AT) and N(AT) is orthogonal to I(A).
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2) The following orthogonal decompositions hold:

R™ = N(A) @ I(AT), R™ = N(AT) @ I(A).

3) The square matrix AT A of order n is symmetric and non-negatively defined
(ie. XT(ATA)X > 0, for any column vector X).

4) For any matrix A € M,, ,, (R) of rank 7, the number of positive eigenvectors
of the matrix AT A is equal to .

5) We suppose that m > n. Let A1, Ag, ..., A, be the positive eigenvalues of matrix
AT A and o, = Vi, 1 < k < r singular numbers of the matrix A. These
are called singular numbers of the matrix A. There exists an orthonormal
basis {v1 ,v2, ..., vn } of R™ formed by the unitary eigenvectors of AT A, such
that AT Av; = a?vi, 1<i<r,and ATAvj =0,r+1<j <n.If we denote
u; = U%Avi, 1 < i < r, it follows that the vectors vy, vg, ..., v, form an or-
thonormal basis for I(AT) and v,4 1, v,-49, ..., v form an orthonormal basis
for N(A). Further, uy, us, ..., u, form an orthonormal basis for I(A), which
can be extended to an orthonormal basis wy,ug, ..., Up, Upp1, Upi2, .oy Um

of R™; the added vectors u,y1,Ury2, ..., Uy, form an orthonormal basis for
N(AT).

6) The orthogonal matrices U = (u1|uz|...]um), V = (v1|vz|...|vn) are invertible
(the inverse is just the transposed matrix). We have:

AV = (Avy|Avs|...|Avy) = (o1u1|o2us]...|oru,|0]...]0),

0 #£0,i=1,2,..,r

and if we denote

S 0
0 0
follows that AV = UX and following relation holds:

S = diag(o1,02,...,0.) and X = being an a m X n - matrix, it

A=UxvT, (1)
This is the singular decomposition of matrix A.

If A=0, then ¥ = 0.

7) Until now we have supposed that m > n. If A € M, ,, (R) and m < n, then
we may consider the n x m - matrix B = A”. According to the properties
5) and 6), we have the singular decomposition B = U; %, V{ and it follows

A=B"=vx,U]. (1)
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The main application of the singular decomposition is the explicit way to
compute of the pseudoinverse AT of an arbitrary non-null matrix A € M,, ,, (R),
namely, if A= UXVT (according to (1), then AT = VXTUT, where

-1 11 1
st— (5 0 ¢ M,.m(R) and S™' = diag [ —, —,..., —
0 0 ' o1 o9 o

NOTE. One knows that for any A € M,,,, (R), there is AT € M, ,,(R),
called the pseudoinverse of A, such that for any y € R™, the minimum of the
euclidian norm [|Az — y|| is attained iff 2 € A%y.

2 The Singular Decomposition Algorithm

One knows that any rectangular matrix (or a square matrix, invertible or not)
admits a singular decomposition given by (1) or (1’).

Suppose now that the matrix A € M,, , (R) is given, and m > n. If m < n,
then the algorithm applies to the matrix AT.
Step 1. Compute the symmetric matrix ATA € M, (R) and determine the
nonzero eigenvalues Ai, Aa, ..., A, as well as the singular numbers o1 = VA1, 09 =
VA2, ey 00 = /A, where p(A) = 7.
Step 2. Determine an orthonormal basis {v; ,va, ..., vn} of R?, formed by the
unitary eigenvectors of AT A and denote by V € M,, (R) the orthogonal matrix
whose columns are formed by the vectors vy, va, ..., Up.
Step 3. Compute the column unitary vectors u; = U%Avi for 1 < i < r and
complete them to an orthonormal basis {u1, ug, ..., Uy, Upi1, Upgo, ooy U | Of R™.
Denote by U € M,, (R) the orthogonal matrix formed by the column vectors

ULy Uy veey Upy Up 415 Up 425 +ony Um -

Step 4. Taking S = diag(o1, 02, ..., 0,-) and defining the m x n - matrix ¥ having
S in the left upper corner, that is

S 0
=(00)

one obtains the singular decomposition (1).

ExamplelTakeA:(i §>hencem:2,n:2,r:1.

The matrix AT A has the eigenvalues A\; = 10, = 0, with the unitary
. T T
eigenversors v; = % (1,2)"; vg = % (—=2,1)". Then uy = \/%Avl = % (1,1)

and take us = % (1,-1). So,

()= )00

and finally, A = UXV7T.
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_ (1 10 _pr oara _ (2 1), _
Example2ForB—(011>andA—B,AA—(12>,)\1—

3,2 = 1 and the singular numbers of A are oy = v/3,05 = 1 (r = 2). Hence, the
unitary eigenvectors for A7 A are:

T T
= (%, %) and vy = (%7—\%) . Take u; = %Avl =
T T
(%, %, %) JUg = Avg = (%,0, f%) and we complete ui,us to an or-
thonormal basis of R3. We take u3z = (a,b,c)” with unknown components and

impose the condition uslui,uslus and a? + b2 + ¢ = 1. It follows us =
T
(%, —%, %) and denote:

Sl

-
|

Sl Sl Sl

Sl

V3

and Y = 0
0

—_ E‘H
e Bl ge e G-

S = O

V2
finally, the singular decomposition A = ULVT and B =V ZT Ur.

3 Geometric Interpretation of Singular
Decomposition

From geometrical point of view, any orthogonal matrix U € M,, (R) corresponds
to a rotation of space R™. For m = 2, an orthogonal matrix U € M, (R) has the

form
cosf) —sinf
U(sin@ cos )’GGR

and the application fy : R? — R2?, fy(z,y) = (z/,y") becomes 2’ = wcosf —
ysinf,y’ = xsinf + ycosf. This is the plane rotation formulae with the angle
f, around centered in the origin. This fact is generalized for upper dimensions.

Any matrix of type S (or X) corresponds, from a geometrical point of view,
01
0
fs:R? = R2 fs(x,y) = (2/,9'), becomes 2’ = o1z and 3y = o2y, and we get the
plane scale change formulae.

to a scale change. For instance, if n = 2 and S = < UO ), the application
2
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Proposition Any linear application f : R™ — R™ is a composition of a rotation
with a scale change, followed by another rotation.

Proof. Let A be the associated matrix of the linear application f with respect
to the canonical basis. According to 1, the singular decomposition of the matrix
A has the form A = UXV7", with U and V orthogonal matrices and ¥ a diagonal
matrix.

Then

f=fa=fvofsofv. (2)
The maps fy and fy correspond to orthogonal matrices and they represent
rotations, whereas fy; is a scale change, namely

fE (Itha axn) = (O—lxla veny OpLp,y 03 ey O) :

| WD,
Pl v

Figure 1. The image of the unit sphere S,, on f4

Relation (2) correspond to the statement of the proposition.

Let A € M, (R) be a nonsingular square matrix (hence m = n = r) and
fa : R™ — R"™ be a linear application associated to A in the canonical basis of
R™. Through the application f4, the unit sphere S, = {x € R" | ||z|| =1} is
transformed into an n-dimensional ellipsoid E,, = fa (Sy,) .

Indeed, if y = fa(z), it follows that Y = AX, X = A~'Y hence

L= X2 =AY = (A, A Y) =vT (a4 ) Ay,

and the matrix C' = (A*I)TA’1 is positively by defined, hence the set E, =
{Y = AX/X € S,,} defines an ellipsoid.

The recursive construction of the orthonormal bases v1, vs, ..., v, and uq, ..., U,
has also a geometric interpretation, which is presented in the sequel. Let w be
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a radial vector of maximal length in the ellipsoid and v = A~ w. If we denote
by H the tangent hyperplane at v to the unitary sphere S,, and H' = f4 (H),
then it follows that the hyperplane H’ is tangent at w to the ellipsoid E,, (see
the figure 1).

Indeed, we have w € H'and H' has just one common point with the ellipsoid
E,, (otherwise, since the application f4 is bijective, it would follow that H is not
tangent to the sphere).

Moreover, w1l H'. We take v = v,u; = ﬁ Considering the restriction g of
the linear application f4 to H, we obtain a linear application g : H — H’, for
which we can do the previous construction. This geometric interpretation leads
to the singular decomposition (1) without appealing the study of matrix A7 A.

4 An application of the Singular Decomposition
to the Classification of 2D Images

Let A € My, (R) be the gray levels matrix of a 2D black-white image (for
example: a photography, a map, a black-white TV image, etc.). Such a matrix
can be obtained by splitting the image with a rectangular network, and associate
to each node (i,7), 1 <i < m,1 < j < n, the gray level expressed as an integer
number in the range between 0 and 63, where, for example, 0 stands for “absolute
white” and 63 stands for “absolute black”.

Let us consider the singular decomposition

A=UxvVT = Z)\iuiviT, r=p(4),
i=1

where Ay > Ao > ... > A\, > 0 and A\, A2 ..., A2 are the nonzero eigenvalues of

matrix AAT. If A = (aij), 1 < i < m,1 < j < n, then the Frobenius norm

i,j g
If the “small” eigenvalues are eliminated, we obtain and approximation

/
Al = (Z a? ) ? can be called the energy of the considered image.

1
k r /2
A’:Z/\iuiviT,(k <<r)and ||[A-A|p= ( Z Af) :

i=1 i=k+1

If B € My, (R) is another matrix, then matrix B=UxV? =37, Niuvl

can be called the projective image of B on A, B =UXVT =57 Nuwwv!,
where ¥ = ()\1, ey Ay 0, ...,0) and \; = ul Bv;,1 <i < p. We have:

r s
|B =B, <A~ B+ (Z (A —Ai)2> :

i=1

For similar 2D images of the same class, the distance between the associ-
ated matrices (i.e. the Frobenius norm of difference of the matrices ) is also
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“small”; passing to the projective images, these are smaller becauseHE — 6“ s
|B — C|| for any two matrices B,C' € My, ,, (R).

Let us suppose that, for an image class w we have the learning sample
Ay, Ay, ..., AN € My, , (R). The average is given by p = % (A1 + ...+ Ay) and
like above, the singular decomposition of average is = USVT = 377 Nuvl.
Similarly we get the projective images Ay, ..., Ay on pu, hence A; = Z;Zl xg»i)ujva,
1 <i < N, where xy) = u?Aivj,l <j<r.

The vector X; = (xgi), e xﬁ“) can be interpreted as the coordinates vector
of the projective image on u of matrices A;, 1 <i < N.

The algorithm of supervised classification of images
Let wy,ws,...,wpr be M classes of images (already existing classes). We
suppose that each class w; is represented by N; matrices of learning samples
Agz), Aél), ey As\l,) belonging to My, » (R).
1

Stepl. Compute the average p; = R~ (Agi) + o+ AE?) and the singular de-

composition of this matrix, hence the set of matrices

u;i),v](-i),l <j<k, k<min(m,n), 1<i< M.
Step2. Compute the vectors of the coordinates of the projective image on pu;,
ie. XJ(-I) = (m(l) . x(l)), where:

Jio g

2V = (u<i>)TA<i)v<i> 1<p<k1<j<N,1<i<M
Jp P g Up =PRSS NG LS M
Step3. Compute the “center” of the classes w; by Xg) =+ Zjvzl Xj(i).

Step4. (the recognition step) For any unclassified new 2D image F' € M,, ,, (R),
compute the projective images of F' on u;,1 < i < M, and the corresponding

. NT
coordinates vectors Y7, ..., Y. If we denote z,(f) = (u,(f)) F v;(f), 1<p<Ek, we
have Y; = (z%i), ...,z](f)) 1 <i< M.

; - (@)
H1£1§nM Y, — X

image F' is places in class w;,.

is reached for an index i = ip, (not necessary unique) then
F
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