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ON THE SINGULAR DECOMPOSITION OF

MATRICES

Alina PETRESCU-NIŢǍ

Abstract

This paper is an original presentation of the algorithm of the singu-
lar decomposition (and implicitly, of the calculus of the pseudoinverse) of
any matrix with real coefficients. In the same time, we give a geometric
interpretation of that decomposition. In the last section, we present an
application of the singular decomposition in a problem of Pattern Recog-
nition.

1 Introduction

Let A ∈ Mm,n(R) be a matrix; for any column vector X ∈ R
n ≃ Mn,1 (R), define

fA : Rn → R
m, fA (X) = AX.

One may associate to A four remarkable vector spaces:

I(A) = Im(fA), N(A) = Ker(fA),

I(AT ) and N(AT ) =
{

Y |ATY = 0
}

.

I(A) is the vector subspace of Rm, generated by the columns of the matrix
A, whereas I(AT ) is the subspace of Rn, generated by the rows of A. If the rank
of matrix A is ρ (A) = r, then dim I(A) = r, dimN(A) = n − r, dim I(AT ) =
r, dimN(AT ) = m− r.

By convention, any vector x ∈ R
n, x = (x1, x2, ..., xn), can be identified

with the corresponding column vector X; for any x, y ∈ R
n, the Euclidian scalar

product is defined by 〈x, y〉 = XTY .
The following properties are well-known:

1) The subspace N(A) is orthogonal to I(AT ) and N(AT ) is orthogonal to I(A).
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2) The following orthogonal decompositions hold:

R
n = N(A)⊕ I(AT ), Rm = N(AT )⊕ I(A).

3) The square matrix ATA of order n is symmetric and non-negatively defined
(i.e. XT (ATA)X ≥ 0, for any column vector X).

4) For any matrix A ∈ Mm,n (R) of rank r, the number of positive eigenvectors
of the matrix ATA is equal to r.

5) We suppose thatm ≥ n. Let λ1, λ2, ..., λr be the positive eigenvalues of matrix
ATA and σk =

√
λk, 1 ≤ k ≤ r singular numbers of the matrix A. These

are called singular numbers of the matrix A. There exists an orthonormal
basis {v1 , v2, ..., vn} of Rn formed by the unitary eigenvectors of ATA, such
that ATAvi = σ2

i vi, 1 ≤ i ≤ r, and ATAvj = 0, r+1 ≤ j ≤ n. If we denote
ui =

1
σi
Avi, 1 ≤ i ≤ r, it follows that the vectors v1, v2, ..., vr form an or-

thonormal basis for I(AT ) and vr+1, vr+2, ..., vn form an orthonormal basis
for N(A). Further, u1, u2, ..., ur form an orthonormal basis for I(A), which
can be extended to an orthonormal basis u1, u2, ..., ur, ur+1, ur+2, ..., um

of Rm; the added vectors ur+1, ur+2, ..., um form an orthonormal basis for
N(AT ).

6) The orthogonal matrices U = (u1|u2|...|um), V = (v1|v2|...|vn) are invertible
(the inverse is just the transposed matrix). We have:

AV = (Av1|Av2|...|Avn) = (σ1u1|σ2u2|...|σrur|0|...|0),

σi 6= 0, i = 1, 2, ..., r

and if we denote

S = diag(σ1, σ2, ..., σr) and Σ =

(

S 0
0 0

)

being an a m × n - matrix, it

follows that AV = UΣ and following relation holds:

A = UΣV T . (1)

This is the singular decomposition of matrix A.

If A = 0, then Σ = 0.

7) Until now we have supposed that m ≥ n. If A ∈ Mm,n (R) and m < n, then
we may consider the n×m - matrix B = AT . According to the properties
5) and 6), we have the singular decomposition B = U1Σ1V

T
1 and it follows

A = BT = V1Σ1U
T
1 . (1′)
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The main application of the singular decomposition is the explicit way to
compute of the pseudoinverse A† of an arbitrary non-null matrix A ∈ Mm,n (R),
namely, if A = UΣV T (according to (1), then A† = V Σ†UT , where

Σ† =

(

S−1 0
0 0

)

∈ Mn,m (R) and S−1 = diag

(

1

σ1
,
1

σ2
, ...,

1

σr

)

NOTE. One knows that for any A ∈ Mm,n (R), there is A+ ∈ Mn,m(R),
called the pseudoinverse of A, such that for any y ∈ R

m, the minimum of the
euclidian norm ||Ax− y|| is attained iff x ∈ A+y.

2 The Singular Decomposition Algorithm

One knows that any rectangular matrix (or a square matrix, invertible or not)
admits a singular decomposition given by (1) or (1′).

Suppose now that the matrix A ∈ Mm,n (R) is given, and m ≥ n. If m < n,
then the algorithm applies to the matrix AT .
Step 1. Compute the symmetric matrix ATA ∈ Mn (R) and determine the
nonzero eigenvalues λ1, λ2, ..., λr, as well as the singular numbers σ1 =

√
λ1, σ2 =√

λ2, ..., σr =
√
λr, where ρ(A) = r.

Step 2. Determine an orthonormal basis {v1 , v2, ..., vn} of Rn, formed by the
unitary eigenvectors of ATA and denote by V ∈ Mn (R) the orthogonal matrix
whose columns are formed by the vectors v1, v2, ..., vn.
Step 3. Compute the column unitary vectors ui = 1

σi
Avi for 1 ≤ i ≤ r and

complete them to an orthonormal basis {u1, u2, ..., ur , ur+1, ur+2, ..., um} of Rm.
Denote by U ∈ Mm (R) the orthogonal matrix formed by the column vectors

u1, u2, ..., ur, ur+1, ur+2, ..., um.

Step 4. Taking S = diag(σ1, σ2, ..., σr) and defining the m×n - matrix Σ having
S in the left upper corner, that is

Σ =

(

S 0
0 0

)

,

one obtains the singular decomposition (1).

Example 1 Take A =

(

1 2
1 2

)

hence m = 2, n = 2, r = 1.

The matrix ATA has the eigenvalues λ1 = 10, λ2 = 0, with the unitary
eigenversors v1 = 1√

5
(1, 2)

T
; v2 = 1√

5
(−2, 1)

T
. Then u1 = 1√

10
Av1 = 1√

2
(1, 1)

and take u2 = 1√
2
(1,−1). So,

U =
1√
2

(

1 1
1 −1

)

, V =
1√
5

(

1 −2
2 1

)

,Σ =

( √
10 0
0 0

)

and finally, A = UΣV T .



258 Alina PETRESCU-NIŢǍ

Example 2 For B =

(

1 1 0
0 1 1

)

and A = BT , ATA =

(

2 1
1 2

)

; λ1 =

3, λ2 = 1 and the singular numbers of A are σ1 =
√
3, σ2 = 1 (r = 2). Hence, the

unitary eigenvectors for ATA are:

v1 =
(

1√
2
, 1√

2

)T

and v2 =
(

1√
2
,− 1√

2

)T

. Take u1 = 1√
3
Av1 =

(

1√
6
, 2√

6
, 1√

6

)T

, u2 = Av2 =
(

1√
2
, 0,− 1√

2

)T

and we complete u1, u2 to an or-

thonormal basis of R3. We take u3 = (a, b, c)T with unknown components and
impose the condition u3⊥u1, u3⊥u2 and a2 + b2 + c2 = 1. It follows u3 =
(

1√
3
,− 1√

3
, 1√

3

)T

and denote:

U =























1√
6

1√
2

1√
3

2√
6

0 − 1√
3

1√
6

− 1√
2

1√
3























,

V =











1√
2

1√
2

1√
2

− 1√
2











and Σ =





√
3 0
0 1
0 0





finally, the singular decomposition A = UΣV T and B = V
∑T

UT .

3 Geometric Interpretation of Singular

Decomposition

From geometrical point of view, any orthogonal matrix U ∈ Mm (R) corresponds
to a rotation of space R

m. For m = 2, an orthogonal matrix U ∈ M2 (R) has the
form

U =

(

cos θ − sin θ
sin θ cos θ

)

, θ ∈ R

and the application fU : R2 → R
2, fU (x, y) = (x′, y′) becomes x′ = x cos θ −

y sin θ, y′ = x sin θ + y cos θ. This is the plane rotation formulae with the angle
θ, around centered in the origin. This fact is generalized for upper dimensions.

Any matrix of type S (or Σ) corresponds, from a geometrical point of view,

to a scale change. For instance, if n = 2 and S =

(

σ1 0
0 σ2

)

, the application

fS : R2 → R
2, fS(x, y) = (x′, y′), becomes x′ = σ1x and y′ = σ2y, and we get the

plane scale change formulae.



ON THE SINGULAR DECOMPOSITION OF MATRICES 259

Proposition Any linear application f : Rn → R
n is a composition of a rotation

with a scale change, followed by another rotation.

Proof. Let A be the associated matrix of the linear application f with respect
to the canonical basis. According to 1, the singular decomposition of the matrix
A has the form A = UΣV T , with U and V orthogonal matrices and Σ a diagonal
matrix.

Then

f = fA = fU ◦ fΣ ◦ fV . (2)

The maps fU and fV correspond to orthogonal matrices and they represent
rotations, whereas fΣ is a scale change, namely

fΣ (x1, x2, ..., xn) = (σ1x1, ..., σrxr, 0, ..., 0) .

Figure 1. The image of the unit sphere Sn on fA

Relation (2) correspond to the statement of the proposition.
Let A ∈ Mn (R) be a nonsingular square matrix (hence m = n = r) and

fA : Rn → R
n be a linear application associated to A in the canonical basis of

R
n. Through the application fA, the unit sphere Sn = {x ∈ R

n | ‖x‖ = 1} is
transformed into an n-dimensional ellipsoid En = fA (Sn) .

Indeed, if y = fA(x), it follows that Y = AX, X = A−1Y hence

1 = ‖X‖2 =
∥

∥A−1Y
∥

∥

2
=
〈

A−1Y,A−1Y
〉

= Y T
(

A−1
)T

A−1Y,

and the matrix C =
(

A−1
)T

A−1 is positively by defined, hence the set En =
{Y = AX/X ∈ Sn} defines an ellipsoid.

The recursive construction of the orthonormal bases v1, v2, ..., vn and u1, ..., un

has also a geometric interpretation, which is presented in the sequel. Let w be
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a radial vector of maximal length in the ellipsoid and v = A−1w. If we denote
by H the tangent hyperplane at v to the unitary sphere Sn and H ′ = fA (H),
then it follows that the hyperplane H ′ is tangent at w to the ellipsoid En (see
the figure 1).

Indeed, we have w ∈ H ′and H ′ has just one common point with the ellipsoid
En (otherwise, since the application fA is bijective, it would follow that H is not
tangent to the sphere).

Moreover, w⊥H ′. We take v1 = v, u1 = w
‖w‖ . Considering the restriction g of

the linear application fA to H, we obtain a linear application g : H → H ′, for
which we can do the previous construction. This geometric interpretation leads
to the singular decomposition (1) without appealing the study of matrix ATA.

4 An application of the Singular Decomposition

to the Classification of 2D Images

Let A ∈ Mm,n (R) be the gray levels matrix of a 2D black-white image (for
example: a photography, a map, a black-white TV image, etc.). Such a matrix
can be obtained by splitting the image with a rectangular network, and associate
to each node (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, the gray level expressed as an integer
number in the range between 0 and 63, where, for example, 0 stands for “absolute
white” and 63 stands for “absolute black”.

Let us consider the singular decomposition

A = UΣV T =

r
∑

i=1

λiuiv
T
i , r = ρ (A) ,

where λ1 > λ2 > ... > λr > 0 and λ2
1, λ

2
2, ..., λ

2
r are the nonzero eigenvalues of

matrix AAT . If A = (aij), 1 ≤ i ≤ m, 1 ≤ j ≤ n, then the Frobenius norm

‖A‖F =
(

∑

i,j a
2
ij

)1/2
can be called the energy of the considered image.

If the “small” eigenvalues are eliminated, we obtain and approximation

A′ =
k
∑

i=1

λiuiv
T
i , (k << r) and ‖A−A′‖F =

(

r
∑

i=k+1

λ2
i

)1/2

.

If B ∈ Mm,n (R) is another matrix, then matrix B = U ΣV T =
∑r

i=1 λ̄iuiv
T
i

can be called the projective image of B on A, B = U.Σ.V T =
∑r

i=1 λiuiv
T
i ,

where Σ =
(

λ1, ..., λr, 0, ..., 0
)

and λi = uT
i Bvi, 1 ≤ i ≤ ρ. We have:

∥

∥B −B
∥

∥

F
≤ ‖A−B‖F +

(

r
∑

i=1

(

λi − λi

)2

)1/2

.

For similar 2D images of the same class, the distance between the associ-
ated matrices (i.e. the Frobenius norm of difference of the matrices ) is also
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“small”; passing to the projective images, these are smaller because
∥

∥B − C
∥

∥

F
≤

‖B − C‖F for any two matrices B,C ∈ Mm,n (R).
Let us suppose that, for an image class ω we have the learning sample

A1, A2, ..., AN ∈ Mm,n (R). The average is given by µ = 1
N
(A1 + ...+AN ) and

like above, the singular decomposition of average is µ = UΣV T =
∑r

i=1 λiuiv
T
i .

Similarly we get the projective imagesA1, ..., AN on µ, henceAi =
∑r

j=1 x
(i)
j ujv

T
j ,

1 ≤ i ≤ N , where x
(i)
j = uT

j Aivj , 1 ≤ j ≤ r.

The vector Xi =
(

x
(i)
1 , ..., x

(i)
r

)

can be interpreted as the coordinates vector

of the projective image on µ of matrices Ai, 1 ≤ i ≤ N .

The algorithm of supervised classification of images

Let ω1, ω2, ..., ωM be M classes of images (already existing classes). We
suppose that each class wi is represented by Ni matrices of learning samples

A
(i)
1 , A

(i)
2 , ..., A

(i)
Ni

belonging to Mm,n (R).

Step1. Compute the average µi = 1
Ni

(

A(i)
1

+ ...+A(i)
Ni

)

and the singular de-

composition of this matrix, hence the set of matrices

u
(i)
j , v

(i)
j , 1 ≤ j ≤ k, k ≤ min(m,n), 1 ≤ i ≤ M.

Step2. Compute the vectors of the coordinates of the projective image on µi,

i.e. X
(i)
j =

(

x
(i)
j1
, ..., x

(i)
jr

)

, where:

x
(i)
jp

=
(

u(i)
p

)T

A
(i)
j v(i)p , 1 ≤ p ≤ k, 1 ≤ j ≤ Ni, 1 ≤ i ≤ M.

Step3. Compute the “center” of the classes ωi by X
(i)
C = 1

Ni

∑Ni

j=1 X
(i)
j .

Step4. (the recognition step) For any unclassified new 2D image F ∈ Mm,n (R),
compute the projective images of F on µi, 1 ≤ i ≤ M , and the corresponding

coordinates vectors Y1, ..., YM . If we denote z
(i)
p =

(

u
(i)
p

)T

Fv
(i)
p , 1 ≤ p ≤ k, we

have Yi =
(

z
(i)
1 , ..., z

(i)
k

)

, 1 ≤ i ≤ M .

If min
1≤i≤M

∥

∥

∥Yi −X
(i)
C

∥

∥

∥

F
is reached for an index i = i0, (not necessary unique) then

image F is places in class ωi0 .
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