CHEN INEQUALITIES FOR SUBMANIFOLDS OF A LOCALLY CONFORMAL ALMOST COSYMPLECTIC MANIFOLD WITH A SEMI-SYMMETRIC METRIC CONNECTION

Cihan ÖZGÜR and Cengizhan MURATHAN

Abstract

In this paper we prove Chen inequalities for submanifolds of a locally conformal almost cosymplectic manifold $N^{2 m+1}(c)$ of constant φ sectional curvature c endowed with a semi-symmetric metric connection, i.e., relations between the mean curvature associated with the semi-symmetric metric connection, scalar and sectional curvatures, Ricci curvatures and the sectional curvature of the ambient space.

1 Introduction

In [10], Friedmann and Schoutenn introduced the notion of a semi-symmetric linear connection on a differentiable manifold. Later in [11], H. A. Hayden defined a semi-symmetric metric connection on a Riemannian manifold. In [23], K. Yano studied some properties of a Riemannian manifold endowed with a semi-symmetric metric connection. In the case of hypersurfaces, in [12] and [13], T. Imai found some properties of a Riemannian manifold and a hypersurface of a Riemannian manifold with a semi-symmetric metric connection. In [19], Z. Nakao studied submanifolds of a Riemannian manifold with a semi-symmetric metric connection.

[^0]To establish simple relationships between the main intrinsic invariants and the main extrinsic invariants of a submanifold is one of the most fundamental problems in submanifold theory as recalled by B.-Y. Chen [6]. The main intrinsic invariants include Chen's δ-invariant, scalar curvature, Ricci curvature and k-Ricci curvature. The main extrinsic invariants are squared mean curvature and shape operator. There are also other important modern intrinsic invariants of submanifolds introduced by B.-Y. Chen [9]. Many famous results in differential geometry can be regarded as results in this respect.

Following B.-Y. Chen, many geometers have studied similar problems for different submanifolds in various ambient spaces, for example see [2], [3], [15], [16] and [20].

In [4], [14], [22] and [24], submanifolds of locally conformal almost cosymplectic manifolds of pointwise constant φ-sectional curvature c satisfying Chen's inequalities were studied.

Recently, in [17] and [18], the first author and A. Mihai proved Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection and Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi-symmetric metric connections, respectively.

Motivated by the studies of the above authors, in this study, we consider Chen inequalities for submanifolds in a locally conformal almost cosymplectic manifold $N^{2 m+1}(c)$ of pointwise constant φ-sectional curvature c endowed with a semi-symmetric metric connection.

2 Semi-symmetric metric connection

Let N^{n+p} be an $(n+p)$-dimensional Riemannian manifold and $\widetilde{\nabla}$ a linear connection on N^{n+p}. If the torsion tensor \widetilde{T} of $\widetilde{\nabla}$, defined by

$$
\widetilde{T}(\widetilde{X}, \widetilde{Y})=\widetilde{\nabla}_{\tilde{X}} \widetilde{Y}-\widetilde{\nabla}_{\widetilde{Y}} \widetilde{X}-[\widetilde{X}, \widetilde{Y}],
$$

for any vector fields \widetilde{X} and \widetilde{Y} on N^{n+p}, satisfies

$$
\widetilde{T}(\tilde{X}, \tilde{Y})=\omega(\widetilde{Y}) \widetilde{X}-\omega(\tilde{X}) \widetilde{Y}
$$

for a 1-form ω, then the connection $\widetilde{\nabla}$ is called a semi-symmetric connection.
Let g be a Riemannian metric on N^{n+p}. If $\widetilde{\nabla} g=0$, then $\widetilde{\nabla}$ is called a semi-symmetric metric connection on N^{n+p}.

A semi-symmetric metric connection $\widetilde{\nabla}$ on N^{n+p} is given by

$$
\widetilde{\nabla}_{\tilde{X}} \tilde{Y}=\stackrel{\rightharpoonup}{\nabla}_{\tilde{X}} \tilde{Y}+\omega(\widetilde{Y}) \widetilde{X}-g(\widetilde{X}, \tilde{Y}) U
$$

for any vector fields \widetilde{X} and \widetilde{Y} on N^{n+p}, where $\stackrel{\stackrel{\sim}{\nabla}}{ }$ denotes the Levi-Civita connection with respect to the Riemannian metric g and U is a vector field defined by $g(U, \widetilde{X})=\omega(\widetilde{X})$, for any vector field $\widetilde{X}[23]$.

We will consider a Riemannian manifold N^{n+p} endowed with a semisymmetric metric connection $\widetilde{\nabla}$ and the Levi-Civita connection denoted by $\stackrel{\circ}{\nabla}$.

Let M^{n} be an n-dimensional submanifold of an $(n+p)$-dimensional Riemannian manifold N^{n+p}. On the submanifold M^{n} we consider the induced semi-symmetric metric connection denoted by ∇ and the induced Levi-Civita connection denoted by $\stackrel{\circ}{\nabla}$.

Let \widetilde{R} be the curvature tensor of N^{n+p} with respect to $\widetilde{\nabla}$ and $\stackrel{\circ}{R}$ the curvature tensor of N^{n+p} with respect to $\stackrel{\circ}{\nabla}$. We also denote by R and $\stackrel{\circ}{R}$ the curvature tensors of ∇ and $\stackrel{\circ}{\nabla}$, respectively, on M^{n}.

The Gauss formulas with respect to ∇, respectively $\stackrel{\circ}{\nabla}$ can be written as:

$$
\begin{aligned}
& \widetilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad X, Y \in \chi(M), \\
& \stackrel{\circ}{\nabla}_{X} Y=\stackrel{\circ}{\nabla}_{X} Y+\stackrel{\circ}{h}(X, Y), \quad X, Y \in \chi(M),
\end{aligned}
$$

where $\stackrel{\circ}{h}$ is the second fundamental form of M^{n} in N^{n+p} and h is a (0,2)-tensor on M^{n}. According to the formula (7) from [19] h is also symmetric. The Gauss equation for the submanifold M^{n} into an $(n+p)$-dimensional Riemannian manifold N^{n+p} is

$$
\begin{equation*}
\stackrel{\circ}{\widetilde{R}}(X, Y, Z, W)=\stackrel{\circ}{R}(X, Y, Z, W)+g(\stackrel{\circ}{h}(X, Z), \stackrel{\circ}{h}(Y, W))-g(\stackrel{\circ}{h}(X, W), \stackrel{\circ}{h}(Y, Z)) . \tag{1}
\end{equation*}
$$

One denotes by $\stackrel{\circ}{H}$ the mean curvature vector of M^{n} in N^{n+p}.
Then the curvature tensor \widetilde{R} with respect to the semi-symmetric metric connection $\widetilde{\nabla}$ on N^{n+p} can be written as (see [13])

$$
\begin{align*}
\widetilde{R}(X, Y, Z, W)= & \stackrel{\circ}{R}(X, Y, Z, W)-\alpha(Y, Z) g(X, W)+\alpha(X, Z) g(Y, W)- \tag{2}\\
& -\alpha(X, W) g(Y, Z)+\alpha(Y, W) g(X, Z)
\end{align*}
$$

for any vector fields $X, Y, Z, W \in \chi\left(M^{n}\right)$, where α is a (0,2)-tensor field defined by

$$
\alpha(X, Y)=\left(\stackrel{\circ}{\nabla}_{X} \omega\right) Y-\omega(X) \omega(Y)+\frac{1}{2} \omega(P) g(X, Y), \quad \forall X, Y \in \chi(M) .
$$

Denote by λ the trace of α.
Let $\pi \subset T_{x} M^{n}, x \in M^{n}$, be a 2 -plane section. Denote by $K(\pi)$ the sectional curvature of M^{n} with respect to the induced semi-symmetric metric connection ∇. For any orthonormal basis $\left\{e_{1}, \ldots, e_{m}\right\}$ of the tangent space $T_{x} M^{n}$, the scalar curvature τ at x is defined by

$$
\tau(x)=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right) .
$$

Recall that the Chen first invariant is given by

$$
\delta_{M}(x)=\tau(x)-\inf \left\{K(\pi) \mid \pi \subset T_{x} M^{n}, x \in M^{n}, \operatorname{dim} \pi=2\right\},
$$

(see for example [9]), where M^{n} is a Riemannian manifold, $K(\pi)$ is the sectional curvature of M^{n} associated with a 2-plane section, $\pi \subset T_{x} M^{n}, x \in M^{n}$ and τ is the scalar curvature at x.

The following algebraic Lemma is well-known.
Lemma 2.1. [6] Let $a_{1}, a_{2}, \ldots, a_{n}, b$ be $(n+1)(n \geq 2)$ real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right)
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}=\ldots=a_{n}$.

Let M^{n} be an n-dimensional Riemannian manifold, L a k-plane section of $T_{x} M^{n}, x \in M^{n}$, and X a unit vector in L.

We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{k}\right\}$ of L such that $e_{1}=X$.
One defines [8] the Ricci curvature (or k-Ricci curvature) of L at X by

$$
\operatorname{Ric}_{L}(X)=K_{12}+K_{13}+\ldots+K_{1 k}
$$

where $K_{i j}$ denotes, as usual, the sectional curvature of the 2-plane section spanned by e_{i}, e_{j}. For each integer $k, 2 \leq k \leq n$, the Riemannian invariant Θ_{k} on M^{n} is defined by:

$$
\Theta_{k}(x)=\frac{1}{k-1} \inf _{L, X} \operatorname{Ric}_{L}(X), \quad x \in M^{n}
$$

where L runs over all k-plane sections in $T_{x} M^{n}$ and X runs over all unit vectors in L.

3 Chen first inequality for submanifolds of locally conformal almost cosymplectic manifolds

Let $N^{2 m+1}$ be a $(2 m+1)$-dimensional almost contact manifold endowed with an almost contact structure (φ, ξ, η), that is, φ is a $(1,1)$-tensor field, ξ is a vector field and η is 1 -form such that $\varphi^{2} X=-X+\eta(X) \xi, \eta(\xi)=1$. Then, $\varphi \xi=0$ and $\eta \circ \varphi=0$. The almost contact structure is said to be normal if the induced almost complex structure J on the product manifold $N \times \mathbb{R}$ defined by $J\left(X, a \frac{d}{d t}\right)=\left(\varphi X-a \xi, \eta(X) \frac{d}{d t}\right)$ is integrable, where X is tangent to N, t the coordinate of \mathbb{R} and a a smooth function on $N \times \mathbb{R}$. The condition for being normal is equivalent to vanishing of the torsion tensor $[\varphi, \varphi]+2 d \eta \otimes \xi$, where $[\varphi, \varphi]$ is the Nijenhuis tensor of φ.

Let g be a compatible Riemannian metric with (φ, ξ, η), that is, $g(\varphi X, \varphi Y)=$ $g(X, Y)-\eta(X) \eta(Y)$ or equivalently, $\Phi(X, Y)=g(X, \varphi Y)=-g(\varphi X, Y)$ and $g(X, \xi)=\eta(X)$ for all $X, Y \in T N$. Then N becomes an almost contact metric manifold equipped with an almost contact metric structure (φ, ξ, η, g) [5].

If the fundamental 2-form Φ and 1-form η are closed then N is said to be an almost cosymplectic manifold. A normal almost cosymplectic manifold is cosymplectic. N is called a locally conformal almost cosymplectic manifold if there exist a 1 -form ω such that $d \Phi=2 w \wedge \Phi, d \eta=w \wedge \eta$ and $d w=0$ [21].

A necessary and sufficient condition for a structure to be normal locally conformal almost cosymplectic is

$$
\begin{equation*}
\left(\stackrel{\circ}{\nabla}_{X} \varphi\right) Y=f(g(X, \varphi Y) \xi-\eta(Y) \varphi X), \tag{3}
\end{equation*}
$$

where $\stackrel{\circ}{\nabla}$ is the Levi-Civita connection of the Riemannian metric g and $\omega=f \eta$. From formula (3) it follows that

$$
\stackrel{\circ}{\nabla}_{X} \xi=f(X-\eta(X) \xi)
$$

(see [21]).
A locally conformal almost cosymplectic manifold $N^{2 m+1}$ of dimension ≥ 5 is of pointwise constant φ-sectional curvature c if and only if its Riemannian curvature tensor $\stackrel{\circ}{\widetilde{R}}$ is of the form

$$
\begin{gathered}
\stackrel{\circ}{R}(X, Y, Z, W)=\frac{c-3 f^{2}}{4}[g(X, W) g(Y, Z)-g(X, Z) g(Y, W)]+ \\
+\frac{c+f^{2}}{4}[g(X, \varphi W) g(Y, \varphi Z)-g(X, \varphi Z) g(Y, \varphi W)-2 g(X, \varphi Y) g(Z, \varphi W)]
\end{gathered}
$$

$$
\begin{gather*}
-\left(\frac{c+f^{2}}{4}+f^{\prime}\right)[\eta(Y) \eta(Z) g(X, W)-\eta(Y) \eta(W) g(X, Z)+ \tag{4}\\
+\eta(X) \eta(W) g(Y, Z)-\eta(X) \eta(Z) g(Y, W)]
\end{gather*}
$$

where f is the function such that $\omega=f \eta, f^{\prime}=\xi f$ [21].
If $N^{2 m+1}(c)$ is a $(2 m+1)$-dimensional locally conformal almost cosymplectic manifold of pointwise constant φ-sectional curvature c endowed with a semi-symmetric metric connection $\widetilde{\nabla}$, from (2) and (4) it follows that the curvature tensor \widetilde{R} of $N^{2 m+1}(c)$ can be expressed as

$$
\begin{gather*}
\widetilde{R}(X, Y, Z, W)=\frac{c-3 f^{2}}{4}[g(X, W) g(Y, Z)-g(X, Z) g(Y, W)]+ \\
+\frac{c+f^{2}}{4}[g(X, \varphi W) g(Y, \varphi Z)-g(X, \varphi Z) g(Y, \varphi W)-2 g(X, \varphi Y) g(Z, \varphi W)] \tag{5}\\
-\left(\frac{c+f^{2}}{4}+f^{\prime}\right)[\eta(Y) \eta(Z) g(X, W)-\eta(Y) \eta(W) g(X, Z)+ \\
+\eta(X) \eta(W) g(Y, Z)-\eta(X) \eta(Z) g(Y, W)] \\
-\alpha(Y, Z) g(X, W)+\alpha(X, Z) g(Y, W)-\alpha(X, W) g(Y, Z)+\alpha(Y, W) g(X, Z) .
\end{gather*}
$$

Let $M^{n}, n \geq 3$, be an n-dimensional submanifold of an ($2 m+1$)-dimensional locally conformal almost cosymplectic manifold $N^{n+p}(c)$ of constant φ-sectional curvature c. For any tangent vector field X to M^{n}, we put

$$
\varphi X=P X+F X
$$

where $P X$ and $F X$ are tangential and normal components of φX, respectively and we decompose

$$
\xi=\xi^{\top}+\xi^{\perp}
$$

where ξ^{\top} and ξ^{\perp} denotes the tangential and normal parts of ξ.
Denote by $\Theta^{2}(\pi)=g^{2}\left(P e_{1}, e_{2}\right)$, where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis of a 2 -plane section π, is a real number in [0,1], independent of the choice of e_{1}, e_{2} (see [1]).

For submanifolds of locally conformal almost cosymplectic manifold $N^{2 m+1}(c)$ of constant φ-sectional curvature c endowed with a semi-symmetric metric connection we establish the following optimal inequality.

Theorem 3.1. Let $M^{n}, n \geq 3$, be an n-dimensional submanifold of an $(2 m+$ 1)-dimensional locally conformal almost cosymplectic manifold of pointwise constant φ-sectional curvature $N^{2 m+1}(c)$ endowed with a semi-symmetric metric connection $\widetilde{\nabla}$. We have:

$$
\begin{align*}
& \tau(x)-K(\pi) \leq(n-2) {\left[\frac{n^{2}}{2(n-1)}\|H\|^{2}+(n+1) \frac{c-3 f^{2}}{8}-\lambda\right]+} \tag{6}\\
&+\frac{3\left(c+f^{2}\right)}{4}\left(\frac{1}{2}\|P\|^{2}-\Theta^{2}(\pi)\right)+\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left[-(n-1)\left\|\xi^{\top}\right\|^{2}+\left\|\xi_{\pi}\right\|^{2}\right]- \\
& \quad \text { trace }\left(\alpha_{\left.\right|_{\pi^{\perp}}}\right),
\end{align*}
$$

where π is a 2-plane section of $T_{x} M^{n}, x \in M^{n}$.
Proof. From [19], the Gauss equation with respect to the semi-symmetric metric connection is
$\widetilde{R}(X, Y, Z, W)=R(X, Y, Z, W)+g(h(X, Z), h(Y, W))-g(h(Y, Z), h(X, W))$.
Let $x \in M^{n}$ and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{e_{n+1}, \ldots, e_{2 m+1}\right\}$ be orthonormal basis of $T_{x} M^{n}$ and $T_{x}^{\perp} M^{n}$, respectively. For $X=W=e_{i}, Y=Z=e_{j}, i \neq j$, from the equation (5) it follows that:

$$
\begin{gather*}
\tilde{R}\left(e_{i}, e_{j}, e_{j}, e_{i}\right)=\frac{c-3 f^{2}}{4}+\frac{3\left(c+f^{2}\right)}{4} g^{2}\left(P e_{j}, e_{i}\right)- \tag{8}\\
-\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left\{\eta\left(e_{i}\right)^{2}+\eta\left(e_{j}\right)^{2}\right\}-\alpha\left(e_{i}, e_{i}\right)-\alpha\left(e_{j}, e_{j}\right)
\end{gather*}
$$

From (7) and (8) we get

$$
\begin{gathered}
\frac{c-3 f^{2}}{4}+\frac{3\left(c+f^{2}\right)}{4} g^{2}\left(P e_{j}, e_{i}\right)-\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left\{\eta\left(e_{i}\right)^{2}+\eta\left(e_{j}\right)^{2}\right\}-\alpha\left(e_{i}, e_{i}\right)- \\
-\alpha\left(e_{j}, e_{j}\right)=R\left(e_{i}, e_{j}, e_{j}, e_{i}\right)+g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)-g\left(h\left(e_{i}, e_{i}\right), h\left(e_{j}, e_{j}\right)\right)
\end{gathered}
$$

By summation after $1 \leq i, j \leq n$, it follows from the previous relation that

$$
\begin{aligned}
2 \tau+\|h\|^{2}-n^{2}\|H\|^{2}= & -2(n-1) \lambda+\left(n^{2}-n\right)\left(\frac{c-3 f^{2}}{4}\right)+\frac{3\left(c+f^{2}\right)}{4}\|P\|^{2}-(9) \\
& -2\left(\frac{c+f^{2}}{4}+f^{\prime}\right)(n-1)\left\|\xi^{\top}\right\|^{2}
\end{aligned}
$$

We take

$$
\begin{align*}
\varepsilon=2 \tau & -\frac{n^{2}(n-2)}{n-1}\|H\|^{2}+2(n-1) \lambda-\left(n^{2}-n\right)\left(\frac{c-3 f^{2}}{4}\right)- \tag{10}\\
& -\frac{3\left(c+f^{2}\right)}{4}\|P\|^{2}+2\left(\frac{c+f^{2}}{4}+f^{\prime}\right)(n-1)\left\|\xi^{\top}\right\|^{2}
\end{align*}
$$

Then, from (9) and (10) we get

$$
\begin{equation*}
n^{2}\|H\|^{2}=(n-1)\left(\|h\|^{2}+\varepsilon\right) \tag{11}
\end{equation*}
$$

Let $x \in M^{n}, \pi \subset T_{x} M^{n}, \operatorname{dim} \pi=2, \pi=\operatorname{sp}\left\{e_{1}, e_{2}\right\}$. We define $e_{n+1}=\frac{H}{\|H\|}$ and from the relation (11) we obtain:

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left(\sum_{i, j=1}^{n} \sum_{r=n+1}^{2 m+1}\left(h_{i j}^{r}\right)^{2}+\varepsilon\right)
$$

or equivalently,

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left[\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{i, j=1}^{n} \sum_{r=n+2}^{2 m+1}\left(h_{i j}^{r}\right)^{2}+\varepsilon\right]
$$

By using the algebraic Lemma we have from the previous relation

$$
2 h_{11}^{n+1} h_{22}^{n+1} \geq \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{i, j=1}^{n} \sum_{r=n+2}^{2 m+1}\left(h_{i j}^{r}\right)^{2}+\varepsilon
$$

If we denote by $\xi_{\pi}=p r_{\pi} \xi$ we can write (see [18])

$$
\eta\left(e_{1}\right)^{2}+\eta\left(e_{2}\right)^{2}=\left\|\xi_{\pi}\right\|^{2}
$$

The Gauss equation for $X=W=e_{1}, Y=Z=e_{2}$ gives

$$
\begin{aligned}
& K(\pi)=R\left(e_{1}, e_{2}, e_{2}, e_{1}\right)=\frac{c-3 f^{2}}{4}+\frac{3\left(c+f^{2}\right)}{4} g^{2}\left(P e_{1}, e_{2}\right)-\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left\|\xi_{\pi}\right\|^{2}- \\
& -\alpha\left(e_{1}, e_{1}\right)-\alpha\left(e_{2}, e_{2}\right)+\sum_{r=n+1}^{2 m+1}\left[h_{11}^{r} h_{22}^{r}-\left(h_{12}^{r}\right)^{2}\right] \geq \\
& \geq \frac{c-3 f^{2}}{4}+\frac{3\left(c+f^{2}\right)}{4} g^{2}\left(P e_{1}, e_{2}\right)-\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left\|\xi_{\pi}\right\|^{2}-\alpha\left(e_{1}, e_{1}\right)-\alpha\left(e_{2}, e_{2}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2}\left[\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{i, j=1}^{n} \sum_{r=n+2}^{2 m+1}\left(h_{i j}^{r}\right)^{2}+\varepsilon\right]+\sum_{r=n+2}^{2 m+1} h_{11}^{r} h_{22}^{r}-\sum_{r=n+1}^{2 m+1}\left(h_{12}^{r}\right)^{2}= \\
= & \frac{c-3 f^{2}}{4}+\frac{3\left(c+f^{2}\right)}{4} g^{2}\left(P e_{1}, e_{2}\right)-\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left\|\xi_{\pi}\right\|^{2}-\alpha\left(e_{1}, e_{1}\right)-\alpha\left(e_{2}, e_{2}\right)+ \\
& +\frac{1}{2} \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{i, j=1}^{n} \sum_{r=n+2}^{2 m+1}\left(h_{i j}^{r}\right)^{2}+\frac{1}{2} \varepsilon+\sum_{r=n+2}^{2 m+1} h_{11}^{r} h_{22}^{r}-\sum_{r=n+1}^{2 m+1}\left(h_{12}^{r}\right)^{2}= \\
= & \frac{c-3 f^{2}}{4}+\frac{3\left(c+f^{2}\right)}{4} g^{2}\left(P e_{1}, e_{2}\right)-\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left\|\xi_{\pi}\right\|^{2}-\alpha\left(e_{1}, e_{1}\right)-\alpha\left(e_{2}, e_{2}\right)+ \\
+ & \frac{1}{2} \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i, j>2}\left(h_{i j}^{r}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{11}^{r}+h_{22}^{r}\right)^{2}+\sum_{j>2}\left[\left(h_{1 j}^{n+1}\right)^{2}+\left(h_{2 j}^{n+1}\right)^{2}\right]+\frac{1}{2} \varepsilon \geq \\
\geq & \frac{c-3 f^{2}}{4}+\frac{3\left(c+f^{2}\right)}{4} g^{2}\left(P e_{1}, e_{2}\right)-\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left\|\xi_{\pi}\right\|^{2}-\alpha\left(e_{1}, e_{1}\right)-\alpha\left(e_{2}, e_{2}\right)+\frac{\varepsilon}{2}
\end{aligned}
$$

which implies
$K(\pi) \geq \frac{c-3 f^{2}}{4}+\frac{3\left(c+f^{2}\right)}{4} g^{2}\left(P e_{1}, e_{2}\right)-\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left\|\xi_{\pi}\right\|^{2}-\alpha\left(e_{1}, e_{1}\right)-\alpha\left(e_{2}, e_{2}\right)+\frac{\varepsilon}{2}$.
Denote by

$$
\alpha\left(e_{1}, e_{1}\right)+\alpha\left(e_{2}, e_{2}\right)=\lambda-\operatorname{trace}\left(\alpha_{\left.\right|_{\pi \perp}}\right)
$$

(see [18]). From (10) it follows

$$
\begin{gathered}
K(\pi) \geq \tau-(n-2)\left[\frac{n^{2}}{2(n-1)}\|H\|^{2}+(n+1) \frac{c-3 f^{2}}{8}-\lambda\right]+ \\
+\frac{3\left(c+f^{2}\right)}{4}\left(\Theta^{2}(\pi)-\frac{1}{2}\|P\|^{2}\right)+\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left[(n-1)\left\|\xi^{\top}\right\|^{2}-\left\|\xi_{\pi}\right\|^{2}\right]+\operatorname{trace}\left(\alpha_{\left.\right|_{\pi \perp}}\right)
\end{gathered}
$$

which represents the inequality to prove.
Corollary 3.2. Under the same assumptions as in Theorem 3.1 if ξ is tangent to M^{n}, we have

$$
\begin{gathered}
\tau(x)-K(\pi) \leq(n-2)\left[\frac{n^{2}}{2(n-1)}\|H\|^{2}+(n+1) \frac{c-3 f^{2}}{8}-\lambda\right]+ \\
+\frac{3\left(c+f^{2}\right)}{4}\left(\frac{1}{2}\|P\|^{2}-\Theta^{2}(\pi)\right)+\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left[-(n-1)+\left\|\xi_{\pi}\right\|^{2}\right]-\operatorname{trace}\left(\alpha_{\left.\right|_{\pi} \perp}\right)
\end{gathered}
$$

If ξ is normal to M^{n}, we have

$$
\begin{aligned}
\tau(x)-K(\pi) \leq & (n-2)\left[\frac{n^{2}}{2(n-1)}\|H\|^{2}+(n+1) \frac{c-3 f^{2}}{8}-\lambda\right]+ \\
& +\frac{3\left(c+f^{2}\right)}{4}\left(\frac{1}{2}\|P\|^{2}-\Theta^{2}(\pi)\right)-\operatorname{trace}\left(\alpha_{\left.\right|_{\pi^{\perp}}}\right)
\end{aligned}
$$

Recall the following important result (Proposition 1.2) from [12].
Proposition 3.3. The mean curvature H of M^{n} with respect to the semisymmetric metric connection coincides with the mean curvature $\stackrel{\circ}{H}$ of M^{n} with respect to the Levi-Civita connection if and only if the vector field U is tangent to M^{n}.

Remark 3.4. According to the formula (7) from [19] (see also Proposition 3.3), it follows that $h=\stackrel{\circ}{h}$ if U is tangent to M^{n}. In this case inequality (6) becomes

$$
\begin{aligned}
& \tau(x)-K(\pi) \leq(n-2) {\left[\frac{n^{2}}{2(n-1)}\|\stackrel{\circ}{H}\|^{2}+(n+1) \frac{c-3 f^{2}}{8}-\lambda\right]+} \\
&+\frac{3\left(c+f^{2}\right)}{4}\left(\frac{1}{2}\|P\|^{2}-\Theta^{2}(\pi)\right)+\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left[\left\|\xi_{\pi}\right\|^{2}-(n-1)\right]- \\
&-\operatorname{trace}\left(\alpha_{\left.\right|_{\pi^{\perp}}}\right) .
\end{aligned}
$$

Theorem 3.5. If the vector field U is tangent to M^{n}, then the equality case of inequality (6) holds at a point $x \in M^{n}$ if and only if there exists an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $T_{x} M^{n}$ and an orthonormal basis $\left\{e_{n+1}, \ldots, e_{n+p}\right\}$ of $T_{x}^{\perp} M^{n}$ such that the shape operators of M^{n} in $N^{2 m+1}(c)$ at x have the following forms:

$$
\begin{gathered}
A_{e_{n+1}}=\left(\begin{array}{ccccc}
a & 0 & 0 & \cdots & 0 \\
0 & b & 0 & \cdots & 0 \\
0 & 0 & \mu & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mu
\end{array}\right), \quad a+b=\mu \\
A_{e_{r}}=\left(\begin{array}{ccccc}
h_{11}^{r} & h_{12}^{r} & 0 & \cdots & 0 \\
h_{12}^{r} & -h_{11}^{r} & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), \quad n+2 \leq i \leq 2 m+1,
\end{gathered}
$$

where we denote by $h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), 1 \leq i, j \leq n$ and $n+2 \leq r \leq 2 m+1$.
Proof. The equality case holds at a point $x \in M^{n}$ if and only if it achieves the equality in all the previous inequalities and we have the equality in the Lemma.

$$
\begin{gathered}
h_{i j}^{n+1}=0, \forall i \neq j, i, j>2, \\
h_{i j}^{r}=0, \forall i \neq j, i, j>2, r=n+1, \ldots, 2 m+1, \\
h_{11}^{r}+h_{22}^{r}=0, \forall r=n+2, \ldots, 2 m+1, \\
h_{1 j}^{n+1}=h_{2 j}^{n+1}=0, \forall j>2, \\
h_{11}^{n+1}+h_{22}^{n+1}=h_{33}^{n+1}=\ldots=h_{n n}^{n+1} .
\end{gathered}
$$

We may chose $\left\{e_{1}, e_{2}\right\}$ such that $h_{12}^{n+1}=0$ and we denote by $a=h_{11}^{r}, b=$ $h_{22}^{r}, \mu=h_{33}^{n+1}=\ldots=h_{n n}^{n+1}$.

It follows that the shape operators take the desired forms.

4 Ricci curvature for submanifolds of locally conformal almost cosymplectic manifolds

We first state a relationship between the sectional curvature of a submanifold M^{n} of a locally conformal almost cosymplectic manifold $N^{2 m+1}(c)$ of constant φ-sectional curvature c endowed with a semi-symmetric metric connection $\widetilde{\nabla}$ and the squared mean curvature $\|H\|^{2}$. Using this inequality, we prove a relationship between the k-Ricci curvature of M^{n} (intrinsic invariant) and the squared mean curvature $\|H\|^{2}$ (extrinsic invariant), as another answer of the basic problem in submanifold theory which we have mentioned in the introduction.

In this section we suppose that the vector field U is tangent to M^{n}.
Theorem 4.1. Let $M^{n}, n \geq 3$, be an n-dimensional submanifold of an $(2 m+$ 1)-dimensional locally conformal almost cosymplectic manifold $N^{2 m+1}(c)$ of pointwise constant φ-sectional curvature c endowed with a semi-symmetric metric connection $\widetilde{\nabla}$ such that the vector field U is tangent to M^{n}. Then we have

$$
\begin{align*}
\|H\|^{2} \geq \frac{2 \tau}{n(n-1)} & +\frac{2}{n} \lambda-\frac{c-3 f^{2}}{4}-\frac{3}{4 n(n-1)}\left(c+f^{2}\right)\|P\|^{2}+ \\
& +\frac{2}{n}\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left\|\xi^{\top}\right\|^{2} \tag{12}
\end{align*}
$$

Proof. Let $x \in M^{n}$ and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and orthonormal basis of $T_{x} M^{n}$. The relation (9) is equivalent with

$$
\begin{aligned}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2} & +2(n-1) \lambda-\left(n^{2}-n\right)\left(\frac{c-3 f^{2}}{4}\right)-\frac{3\left(c+f^{2}\right)}{4}\|P\|^{2}+(13 \\
& +2\left(\frac{c+f^{2}}{4}+f^{\prime}\right)(n-1)\left\|\xi^{\top}\right\|^{2} .
\end{aligned}
$$

We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+p}\right\}$ at x such that e_{n+1} is parallel to the mean curvature vector $H(x)$ and e_{1}, \ldots, e_{n} diagonalize the shape operator $A_{e_{n+1}}$. Then the shape operators take the forms

$$
\begin{gathered}
A_{e_{n+1}}\left(\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \\
0 & a_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n}
\end{array}\right), \\
A_{e_{r}}=\left(h_{i j}^{r}\right), i, j=1, \ldots, n ; r=n+2, \ldots, 2 m+1, \operatorname{trace} A_{e_{r}}=0 .
\end{gathered}
$$

From (13), we get

$$
\begin{gather*}
n^{2}\|H\|^{2}=2 \tau+\sum_{i=1}^{n} a_{i}^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+2(n-1) \lambda- \tag{14}\\
-\left(n^{2}-n\right)\left(\frac{c-3 f^{2}}{4}\right)-\frac{3\left(c+f^{2}\right)}{4}\|P\|^{2}+2\left(\frac{c+f^{2}}{4}+f^{\prime}\right)(n-1)\left\|\xi^{\top}\right\|^{2}
\end{gather*}
$$

Since

$$
\sum_{i=1}^{n} a_{i}^{2} \geq n\|H\|^{2}
$$

hence we obtain

$$
\begin{aligned}
n^{2}\|H\|^{2} \geq & 2 \tau+n\|H\|^{2}+2(n-1) \lambda-\left(n^{2}-n\right)\left(\frac{c-3 f^{2}}{4}\right) \\
& -\frac{3\left(c+f^{2}\right)}{4}\|P\|^{2}+2\left(\frac{c+f^{2}}{4}+f^{\prime}\right)(n-1)\left\|\xi^{\top}\right\|^{2}
\end{aligned}
$$

Last inequality represents (12).
Using Theorem 4.1, we obtain the following

Theorem 4.2. Let $M^{n}, n \geq 3$, be an n-dimensional submanifold of an $(2 m+$ 1)-dimensional locally conformal almost cosymplectic manifold $N^{2 m+1}(c)$ of pointwise constant φ-sectional curvature c endowed with a semi-symmetric metric connection $\widetilde{\nabla}$, such that the vector field U is tangent to M^{n}. Then, for any integer $k, 2 \leq k \leq n$, and any point $x \in M^{n}$, we have

$$
\begin{align*}
\|H\|^{2}(x) \geq \Theta_{k}(x) & +\frac{2}{n} \lambda-\frac{c-3 f^{2}}{4}-\frac{3}{4 n(n-1)}\left(c+f^{2}\right)\|P\|^{2}+ \\
& +\frac{2}{n}\left(\frac{c+f^{2}}{4}+f^{\prime}\right)\left\|\xi^{\top}\right\|^{2} \tag{15}
\end{align*}
$$

Proof. Let $\left\{e_{1}, \ldots e_{n}\right\}$ be an orthonormal basis of $T_{x} M$. Denote by $L_{i_{1} \ldots i_{k}}$ the k-plane section spanned by $e_{i_{1}}, \ldots, e_{i_{k}}$. By the definitions, one has

$$
\begin{gather*}
\tau\left(L_{i_{1} \ldots i_{k}}\right)=\frac{1}{2} \sum_{i \in\left\{i_{1}, \ldots, i_{k}\right\}} \operatorname{Ric}_{L_{i_{1} \ldots i_{k}}}\left(e_{i}\right), \tag{16}\\
\tau(x)=\frac{1}{C_{n-2}^{k-2}} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \tau\left(L_{i_{1} \ldots i_{k}}\right) . \tag{17}
\end{gather*}
$$

From (12), (16) and (17), one derives

$$
\tau(x) \geq \frac{n(n-1)}{2} \Theta_{k}(x)
$$

which implies (15).

References

[1] P. Alegre, A. Carriazo, Y. H. Kim, D. W. Yoon, B. Y. Chen's inequality for submanifolds of generalized space forms, Indian J. Pure Appl. Math., 38 (2007), no. 3, 185-201.
[2] K. Arslan, R. Ezentaş, I. Mihai, C. Murathan and C. Özgür, B. Y. Chen inequalities for submanifolds in locally conformal almost cosymplectic manifolds, Bull. Inst. Math., Acad. Sin., 29 (2001), 231-242.
[3] K. Arslan, R. Ezentaş, I. Mihai, C. Murathan and C. Özgür, Certain inequalities for submanifolds in (k, μ)-contact space forms, Bull. Aust. Math. Soc., 64 (2001), 201-212.
[4] K. Arslan, R. Ezentaş, I. Mihai, C. Murathan and C. Özgür, Ricci curvature of submanifolds in locally conformal almost cosymplectic manifolds, Math. J. Toyama Univ., 26 (2003), 13-24.
[5] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, Berlin-New York, 1976.
[6] B-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel), 60 (1993), no. 6, 568-578.
[7] B-Y. Chen, Strings of Riemannian invariants, inequalities, ideal immersions and their applications, The Third Pacific Rim Geometry Conference (Seoul, 1996), 7-60, Monogr. Geom. Topology, 25, Int. Press, Cambridge, MA, 1998.
[8] B-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J., 41 (1999), no. 1, 33-41.
[9] B-Y. Chen, δ-invariants, Inequalities of Submanifolds and Their Applications, in Topics in Differential Geometry, Eds. A. Mihai, I. Mihai, R. Miron, Editura Academiei Romane, Bucuresti, 2008, 29-156.
[10] A. Friedmann and J. A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Math. Z., 21 (1924), no. 1, 211-223.
[11] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27-50.
[12] T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection, Tensor (N.S.), 23 (1972), 300-306.
[13] T. Imai, Notes on semi-symmetric metric connections, Vol. I. Tensor (N.S.), 24 (1972), 293-296.
[14] J-S. Kim, M. M. Tripathi and J. Choi, Ricci curvature of submanifolds in locally conformal almost cosymplectic manifolds, Indian J. Pure Appl. Math., 35 (2004), no. 3, 259-271
[15] K. Matsumoto, I. Mihai and A. Oiaga, Ricci curvature of submanifolds in complex space forms, Rev. Roumaine Math. Pures Appl., 46 (2001), no. 6, 775-782.
[16] A. Mihai, Modern Topics in Submanifold Theory, Editura Universitatii Bucuresti, Bucharest, 2006.
[17] A. Mihai and C. Özgür, Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection, Taiwanese J. Math., to appear.
[18] A. Mihai and C. Özgür, Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi-symmetric metric connections, to appear in Rocky Mountain J. Math.
[19] Z. Nakao, Submanifolds of a Riemannian manifold with semisymmetric metric connections, Proc. Amer. Math. Soc., 54 (1976), 261-266.
[20] A. Oiaga and I. Mihai, B. Y. Chen inequalities for slant submanifolds in complex space forms, Demonstratio Math., 32 (1999), no. 4, 835-846.
[21] Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math., 57 (1989), no. 1, 73-87.
[22] M. M. Tripathi, J-S. Kim, S-B. Kim, A basic inequality for submanifolds in locally conformal almost cosymplectic manifolds, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), no. 3, 415-423.
[23] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl., 15 (1970), 1579-1586.
[24] D. W. Yoon, Certain inequalities for submanifolds in locally conformal almost cosymplectic manifolds, Bull. Inst. Math. Acad. Sinica, 32 (2004), no. 4, 263-283.

Cihan ÖZGÜR,
Balıkesir University,
Department of Mathematics,
10145, Çağış, Balıkesir, Turkey
e-mail: cozgur@balikesir.edu.tr
Cengizhan MURATHAN,
Uludag University,
Department of Mathematics,
16059, Görükle, Bursa, Turkey
e-mail: cengiz@uludag.edu.tr

[^0]: Key Words: Semi-symmetric metric connection, Chen inequality, Kenmotsu space form, Ricci curvature.

 Mathematics Subject Classification: 53C40, 53B05, 53B15.
 Received: August, 2009
 Accepted: January, 2010

