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ITERATIVE ALGORITHM FOR A CONVEX

FEASIBILITY PROBLEM

Yu Li

Abstract

The purpose of this paper is to study convex feasibility problems

in the setting of a real Hilbert space. The approximation of common

elements of solution set of variational inequality problems and fixed

point set of nonexpansive mappings is considered. Strong convergence

theorems are established in the framework of Hilbert spaces.

1 Introduction and Preliminaries

Recently, many authors studied the following convex feasibility problem (CFP):

finding a p ∈
r
⋂

i=1

Ci, (1.1)

where r ≥ 1 is an integer and each Ci is a nonempty closed and convex subset
of a real Hilbert space H. There is a considerable investigation on CFP in the
setting of Hilbert spaces which captures applications in various disciplines such
as image restoration [9,12], computer tomography [19] and radiation therapy
treatment planning [10].

In this paper, we always assume that H is a real Hilbert space, whose inner
product and norm are denoted by 〈·, ·〉 and ‖ · ‖. Let C be a nonempty closed
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and convex subset of H. Recall that a mapping A is said to be α-inverse-
strongly monotone if there exists a real number α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

Recall that the classical variational inequality problem, denoted by V I(C,A),
is to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.2)

Given z ∈ H,u ∈ C, the following inequality holds

〈u− z, v − u〉 ≥ 0, ∀v ∈ C,

if and only if u = PCz. It is known that the projection PC is firmly nonexpan-
sive. That is,

‖PCx− PCy‖
2 ≤ 〈x− y, PCx− PCy〉, ∀x, y ∈ H.

One can see that the variational inequality problem (1.2) is equivalent to
a fixed point problem. It is easy to see that an element u ∈ C is a solution
of the variational inequality (1.2) if and only if u ∈ C is a fixed point of the
mapping PC(I−λA), where λ > 0 is a constant and I is the identity mapping,
that is,

u ∈ V I(C,A) ⇐⇒ u = PC(I − λA)u.

In [11], Iiduka and Takahashi showed that if A is α-inverse-strongly monotone
and λ ≤ 2α, then the mapping I − λA is nonexpansive. This implies that
PC(I−λA) is also nonexpansive. In [1], Browder showed that if C is a bounded
closed and convex subset of H, then nonexpansive mapping on C has a unique
fixed point. Moreover, the fixe point set if closed and convex, see also [2] and
[13].

In this paper, we shall consider the case that Ci is the set of solutions of
the variational inequality problem (1.2). That is, Ci = V I(C,Ai) for each
1 ≤ i ≤ r. Let S : C → C be a mapping. In this paper, we use F (S) to stand
for the set of fixed points of the mapping S. Recall that the mapping S is said
to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Recently, iterative algorithms for the classical variational inequality (1.2)
and fixed point problem of nonexpansive mappings have received rapid devel-
opment, see, for example, [5-8,11-17,20,21,23] and the references therein. Re-
cently, Iiduka and Takahashi [11] constructed an iterative algorithm to study
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the problem of finding a common element of the set of solution of a varia-
tional inequality for an inverse-strongly monotone mapping and of the set of
fixed points of a nonexpansive mapping. To be more precise, they proved the
following theorem:
Theorem IT. Let C be a closed convex subset of a real Hilbert space H.

Let A be an α-inverse-strongly monotone mapping of C into H and let S be a

nonexpansive mapping of C into itself such that F (S)∩V I(C,A) 6= ∅. Suppose
x1 = x ∈ C and {xn} is given by

xn+1 = αnx+ (1− αn)SPC(xn − λnAxn), (1.3)

for every n = 1, 2, . . . , where {αn} is a sequence in [0, 1) and {λn} is a sequence

in [a, b]. If {αn} and {λn} are chosen so that {λn} ∈ [a, b] for some a, b with

0 < a < b < 2α,

lim
n→∞

αn = 0,

∞
∑

n=1

αn = ∞,

∞
∑

n=1

|αn+1 − αn| < ∞ and

∞
∑

n=1

|λn+1 − λn| < ∞,

then {xn} converges strongly to PF (S)∩V I(C,A)x.

Recently, Y. Yao and J.C. Yao [23] further studied the approximation com-
mon elements of solution set of the variational inequality (1.1) and of the fixed
point set of a nonexpansive mapping by considering the following iterative al-
gorithm:











x1 = u ∈ C,

yn = PC(xn − λnAxn),

xn+1 = αnu+ βnxn + γnSPC(yn − λnAyn), n ≥ 1,

(1.4)

where {αn}, {βn} and {γn} are sequence in (0, 1) such that αn+βn+γn = 1 for
each n ≥ 1, A is an α-inverse-strongly monotone mapping of C into H and S is
a nonexpansive mapping of C into itself such that F (S)∩V I(C,A) 6= ∅. They
proved that the sequence {xn} generated by the algorithm (1.4) converges
strongly to x∗ = PF (S)∩V I(C,A)u.

Quite recently, Ceng, Wang and Yao [5] considered the problem for a pair
of inverse-strongly monotone mappings by the following iterative algorithm:











x1 = u ∈ C,

yn = PC(xn − µBxn),

xn+1 = αnu+ βnxn + γnSPC(yn − λAyn), n ≥ 1,

(1.5)

where {αn}, {βn} and {γn} are sequence in (0, 1) such that αn + βn + γn = 1
for each n ≥ 1, A and B are two inverse-strongly monotone mappings and S
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is a nonexpansive mapping. They also obtained a strong convergence theorem
of the iterative algorithm (1.5).

In this paper, motivated by Ceng et al. [5], Iiduka and Takahashi [11],
Y. Yao and J.C. Yao [23], we study the convex feasibility problem (1.1) by
considering a family of inverse-strongly monotone mappings and a single non-
expansive mapping. The results presented in this paper improve and extend
the corresponding results announced by many others.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 (Suzuki [18]). Let {xn} and {yn} be bounded sequences in a

Banach space E and let {βn} be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 1.2 (Bruck [4]). Let C be a closed convex subset of a strictly convex

Banach space E. Let {Ti : 1 ≤ i ≤ r} be a sequence of nonexpansive mappings

on C. Suppose ∩r
i=1F (Ti) is nonempty. Let {µi} be a sequence of positive

numbers with
∑r

i=1 µi = 1. Then a mapping S on C defined by

Sx =

r
∑

i=1

µiTix

for x ∈ C is well defined, nonexpansive and F (S) = ∩∞
i=1F (Ti) holds.

Recall that a mapping S : C → C is closed at zero if {xn} is a sequence
in C converging strongly to x ∈ C and Sxn converges strongly to zero, then
Sx = 0.

Recall that a mapping S : C → C is demiclosed at zero if {xn} is a sequence
in C converging weakly to x ∈ C and Sxn converges strongly to zero, then
Sx = 0.

Lemma 1.3 (Browder [3]). Let H be a real Hilbert space, C be a nonempty

closed convex subset of H and S : C → C be a nonexpansive mapping. Then

I − S is demiclosed at zero.

Lemma 1.4 (Xu [22]). Assume that {αn} is a sequence of nonnegative real

numbers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
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(i) limn→∞ γn = 0 and
∑∞

n=1 γn = ∞;

(ii) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞ αn = 0.

2 Main results

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert

space H. Let Ai : C → H be a µi-inverse-strongly monotone mapping for each

1 ≤ i ≤ r, where r is some positive integer. Let S : C → C be a nonexpansive

mapping with a fixed point. Assume that F := ∩r
i=1V I(C,Ai)∩F (S) 6= ∅. Let

{xn} be a sequence defined by the following manner:

x1 ∈ C, xn+1 = αnu+ βnxn + γnS

r
∑

i=1

ηiPC(xn − λiAixn), n ≥ 1, (2.1)

where u ∈ C is a fixed point, λ1, λ2, . . . and λr are real numbers such that λi ∈
(0, 2µi) for each 1 ≤ i ≤ r, and {αn}, {βn} and {γn} are sequences in (0, 1).
Assume that the above control sequences satisfies the following conditions:

(i) αn + βn + γn =
∑r

i=1 ηi = 1, ∀n ≥ 1;

(ii) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} generated in the iterative algorithm (2.1) converges

strongly to p = PFu.

Proof. The proof is split into five steps.

Step 1. Show that the sequence {xn} is bounded.

Note that the mapping I−λiAi is nonexpansive for each i. Indeed, for any
x, y ∈ C, we see that

‖(I − λiAi)x− (I − λiAi)y‖
2

= ‖x− y‖2 − 2λi〈Aix−Aiy, x− y〉+ λ2
i ‖Aix−Aiy‖

2

≤ ‖x− y‖2 − λi(2µi − λi)‖Aix−Aiy‖
2.

Since, for each 1 ≤ i ≤ r, λi ∈ (0, 2µi), we see that I − λiAi is nonexpansive.
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Put yn =
∑r

i=1 ηiPC(xn − λiAixn) for each n ≥ 1. For any x∗ ∈ F , we have

‖xn+1 − x∗‖ = ‖αnu+ βnxn + γnSyn − x∗‖

≤ αn‖u− x∗‖+ βn‖xn − x∗‖+ γn‖Syn − x∗‖

≤ αn‖u− x∗‖+ βn‖xn − x∗‖+ γn

r
∑

i=1

ηi‖PC(xn − λiAixn)− x∗‖

≤ αn‖u− x∗‖+ βn‖xn − x∗‖+ γn‖xn − x∗‖

= αn‖u− x∗‖+ (1− αn)‖xn − x∗‖.

By mathematical inductions, we can obtain that

‖xn − x∗‖ ≤ {‖x1 − x∗‖, ‖u− x∗‖}, ∀n ≥ 1.

This shows that the sequence {xn} is bounded. since I−λiAi is nonexpansive
for each i, we obtain that

‖yn − x∗‖ = ‖
r

∑

i=1

ηiPC(xn − λiAixn)−
r

∑

i=1

ηix
∗‖

≤
r

∑

i=1

ηi‖PC(xn − λiAixn)− x∗‖

≤ ‖xn − x∗‖.

This shows that {yn} is also bounded.
Step 2. Show that xn+1 − xn → 0 as n → ∞.
Note that

‖yn+1 − yn‖ = ‖
r

∑

i=1

ηiPC(xn+1 − λiAixn+1)−
r

∑

i=1

ηiPC(xn − λiAixn)‖

≤ ‖xn+1 − xn‖.
(2.2)

Put ln = xn+1−βnxn

1−βn
, for all n ≥ 1. That is,

xn+1 = (1− βn)ln + βnxn, ∀n ≥ 1. (2.3)

Note that

ln+1 − ln

=
αn+1u+ γn+1Syn+1

1− βn+1
−

αnu+ γnSyn
1− βn

=
αn+1

1− βn+1
u+

1− βn+1 − αn+1

1− βn+1
Syn+1 −

αn

1− βn

u−
1− βn − αn

1− βn

Syn

=
αn+1

1− βn+1

(

u− Syn+1

)

+
αn

1− βn

(

Syn − u
)

+ Syn+1 − Syn.
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It follows that

‖ln+1 − ln‖ ≤
αn+1

1− βn+1
‖u− Syn+1‖+

αn

1− βn

‖Syn − u‖+ ‖Syn+1 − Syn‖

≤
αn+1

1− βn+1
‖u− Syn+1‖+

αn

1− βn

‖Syn − u‖+ ‖yn+1 − yn‖.

By virtue of (2.2), we arrive at

‖ln+1 − ln‖ − ‖xn+1 − xn‖ ≤
αn+1

1− βn+1
‖u− Syn+1‖+

αn

1− βn

‖Syn − u‖.

It follows from the conditions (ii) and (iii) that

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn+1‖) ≤ 0.

Thanks to Lemma 1.1, we obtain that

lim
n→∞

‖ln − xn‖ = 0.

In view of (2.3), we have

xn+1 − xn = (1− βn)(ln − xn).

This implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.4)

Step 3. Show that Sxn − xn → 0 as n → ∞.

Note that

‖xn+1 − x∗‖2 = ‖αnu+ βnxn + γnSyn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖S
r

∑

i=1

ηiPC(xn − λiAixn)− x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖
r

∑

i=1

ηiPC(xn − λiAixn)− x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn

r
∑

i=1

ηi‖PC(xn − λiAixn)− x∗‖2.

(2.5)
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This implies that

‖xn+1 − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2

+ γn

r
∑

i=1

ηi‖xn − x∗ − λi(Aixn −Aix
∗)‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn

r
∑

i=1

ηi(‖xn − x∗‖2

− 2λi〈Aixn −Aix
∗, xn − x∗〉+ λ2

i ‖Aixn −Aix
∗‖2)

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − γn

r
∑

i=1

ηiλi(2µi − λi)‖Aixn −Aix
∗‖2.

It follows that

γn

r
∑

i=1

ηiλi(2µi − λi)‖Aixn −Aix
∗‖2

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

≤ αn‖u− x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖.

Thanks to conditions (ii) and (iii), one obtains that

lim
n→∞

‖Aixn −Aix
∗‖ = 0, ∀1 ≤ i ≤ r. (2.6)

On the other hand, one has

‖PC(I − λiAi)xn − x∗‖2

= ‖PC(I − λiAi)xn − PC(I − λiAi)x
∗‖2

≤ 〈(I − λiAi)xn − (I − λiAi)x
∗, PC(I − λiAi)xn − x∗〉

=
1

2

(

‖(I − λiAi)xn − (I − λiAi)x
∗‖2 + ‖PC(I − λiAi)xn − x∗‖2

− ‖(I − λiAi)xn − (I − λiAi)x
∗ − (PC(I − λiAi)xn − x∗)‖2

)

≤
1

2

(

‖xn − x∗‖2 + ‖PC(I − λiAi)xn − x∗‖2

− ‖xn − PC(I − λiAi)xn − λi(Aixn −Aix
∗)‖2

)

=
1

2

(

‖xn − x∗‖2 + ‖PC(I − λiAi)xn − x∗‖2 − ‖xn − PC(I − λiAi)xn‖
2

+ 2λi〈Aixn −Aix
∗, xn − PC(I − λiAi)xn〉 − λ2

i ‖Aixn −Aix
∗‖2

)

.



ITERATIVE ALGORITHM FOR A CONVEX FEASIBILITY PROBLEM 213

It follows that

‖PC(I−λiAi)xn−x∗‖2 ≤ ‖xn−x∗‖2−‖xn−PC(I−λiAi)xn‖
2+Mi‖Aixn−Aix

∗‖,
(2.7)

where Mi is given by

Mi = sup{2λi‖xn − PC(I − λiAi)xn‖ : ∀n ≥ 1}.

On the other hand, we have

‖yn − xn‖
2 = ‖

r
∑

i=1

ηiPC(I −λiAi)xn − xn‖
2 ≤

r
∑

i=1

ηi‖PC(I −λiAi)xn − xn‖
2,

which combines with (2.7) yields that

r
∑

i=1

ηi‖PC(I−λiAi)xn−x∗‖2 ≤ ‖xn−x∗‖2−‖yn−xn‖
2+

r
∑

i=1

ηiMi‖Aixn−Aix
∗‖.

From (2.5), we see that

‖xn+1−x∗‖2 ≤ αn‖u−x∗‖2+‖xn−x∗‖2+γn

r
∑

i=1

ηiMi‖Aixn−Aix
∗‖−γn‖yn−xn‖

2,

from which it follows that

γn‖yn − xn‖
2 ≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2+

+ γn

r
∑

i=1

ηiMi‖Aixn −Aix
∗‖

≤ αn‖u− x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖

+ γn

r
∑

i=1

ηiMi‖Aixn −Aix
∗‖.

It follows from (2.4), (2.6) and the conditions (ii) and (iii) that

lim
n→∞

‖yn − xn‖ = 0. (2.8)

Note that

Syn − xn =
(xn+1 − xn)− αn(u− xn)

γn
.

Combining this with the condition (ii) and (iii) gives that

lim
n→∞

‖Syn − xn‖ = 0. (2.9)
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Observe that

‖Sxn − xn‖ ≤ ‖xn − Syn‖+ ‖Syn − Sxn‖

≤ ‖xn − Syn‖+ ‖yn − xn‖.

It follows from (2.8) and (2.9) that

lim
n→∞

‖Sxn − xn‖ = 0. (2.10)

Step 4. Show that

lim sup
n→∞

〈u− p, xn − p〉 ≤ 0,

where p = PFu.
To show it, we can choose a sequence {xni

} of {xn} such that

lim sup
n→∞

〈u− p, xn − p〉 = lim
i→∞

〈u− p, xni
− p〉. (2.11)

Since {xni
} is bounded, there exists a subsequence {xnij

} of {xni
} which

converges weakly to f . Without loss of generality, we can assume that xni
⇀ f .

Define a mapping W : C → C by

Wx =
r

∑

i=1

ηiPC(I − λiAi)x, ∀x ∈ C.

From Lemma 1.2, we see that W is nonexpansive such that

F (W ) = ∩r
i=1F (PC(I − λiAi)) = ∩r

i=1V I(C,Ai).

From (2.8), we see that

lim
n→∞

‖xn −Wxn‖ = 0. (2.12)

From Lemma 1.3, we can obtain that f ∈ F (W ). In view of (2.10) and Lemma
1.3, we see that f ∈ F (S). This proves that

f ∈ F (W ) ∩ F (S) = ∩r
i=1V I(C,Ai) ∩ F (S).

It follows from (2.11) that

lim sup
n→∞

〈u− p, xn − p〉 ≤ 0.

Step 5. Show that xn → p as n → ∞.
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Note that

‖xn+1 − p‖2

= 〈αnu+ βnxn + γnSyn − p, xn+1 − p〉

= αn〈u− p, xn+1 − p〉+ βn〈xn − p, xn+1 − p〉

+ γn〈Syn − p, xn+1 − p〉

≤ αn〈u− p, xn+1 − p〉+ βn‖xn − p‖‖xn+1 − p‖+ γn‖Syn − p‖‖xn+1 − p‖

≤ αn〈u− p, xn+1 − p〉+ βn‖xn − p‖‖xn+1 − p‖+ γn‖yn − p‖‖xn+1 − p‖

≤ αn〈u− p, xn+1 − p〉+ (1− αn)‖xn − p‖‖xn+1 − p|

≤ αn〈u− p, xn+1 − p〉+
1− αn

2
‖xn − p‖2 +

1

2
‖xn+1 − p‖2,

(2.13)
which implies that

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + 2αn〈u− p, xn+1 − p〉.

Applying Lemma 1.4 to (2.13), we obtain that

lim
n→∞

‖xn − p‖ = 0.

This completes the proof.

Putting S = I, the identity mapping, we have the following result.

Corollary 2.2. Let C be a nonempty closed convex subset of a real Hilbert

space H. Let Ai : C → H be a µi-inverse-strongly monotone mapping for each

1 ≤ i ≤ r, where r is some positive integer. Assume that F := ∩r
i=1V I(C,Ai) 6=

∅. Let {xn} be a sequence defined by the following manner:

x1 ∈ C, xn+1 = αnu+ βnxn + γn

r
∑

i=1

ηiPC(xn − λiAixn), n ≥ 1,

where u ∈ C is a fixed point, λ1, λ2, . . . and λr are real numbers such that λi ∈
(0, 2µi) for each 1 ≤ i ≤ r, and {αn}, {βn} and {γn} are sequences in (0, 1).
Assume that the above control sequences satisfies the following conditions:

(i) αn + βn + γn =
∑r

i=1 ηi = 1, ∀n ≥ 1;

(ii) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} converges strongly to p = PFu.
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Next, we give a special case of Theorem 2.1 on a pair of inverse-strongly
monotone mappings.

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert

space H. Let A : C → H be a µ1-inverse-strongly monotone mapping and

B : C → H a µ2-inverse-strongly monotone mapping, respectively. Let S :
C → C be a nonexpansive mapping with a fixed point. Assume that F :=
V I(C,A) ∩ V I(C,B) ∩ F (S) 6= ∅. Let {xn} be a sequence defined by the

following manner:










x1 ∈ C, chosen arbitrarily

yn = ηPC(xn − λAxn) + (1− η)PC(xn − ρBxn),

xn+1 = αnu+ βnxn + γnSyn, n ≥ 1,

where u ∈ C is a fixed point, η is a real number in (0, 1), λ and ρ are real

numbers such that λ ∈ (0, 2µ1) and ρ ∈ (0, 2µ2), respectively, and {αn}, {βn}
and {γn} are sequences in (0, 1). Assume that the above control sequences

satisfy the following conditions:

(i) αn + βn + γn = 1, ∀n ≥ 1;

(ii) limn→∞ αn = 0,
∑∞

n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} converges strongly to p = PFu.
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