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CONVERGENCE THEOREMS FOR TOTAL

ASYMPTOTICALLY NONEXPANSIVE

MAPPINGS

Yan Hao

Abstract

In this paper, a demiclosed principle for total asymptotically non-

expansive mappings is established. An implicit iterative method for

the class of total asymptotically nonexpansive mappings is considered.

Weak and strong convergence theorems are established in a real Hilbert

space. As applications of main results, an equilibrium problem is con-

sidered based on implicit iterative process.

1. Introduction and Preliminaries

Throughout this paper, we assume that H is a real Hilbert space, whose
inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖. We also assume that
ψ : [0,∞) → [0,∞) is strictly increasing continuous function with ψ(0) = 0. →
and⇀ are denoted by strong convergence and weak convergence, respectively.
Let C be a nonempty closed and convex subset of H and T : C → C a
mapping. In this paper, we use F (T ) to denote the fixed point set of the
mapping T . Recall that T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C. (1.1)
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T is said to be asymptotically nonexpansive if there exists a positive se-
quence hn ⊂ [1,∞) with limn→∞ hn = 1 such that

‖Tnx− Tny‖ ≤ hn‖x− y‖, ∀x, y ∈ C, n ≥ 1. (1.2)

The class of asymptotically nonexpansive mappings was introduced by Goebel
and Kirk [14] as a generalization of the class of nonexpansive mappings. They
proved that if C is a nonempty closed convex and bounded subset of a real uni-
formly convex Banach space and T is an asymptotically nonexpansive mapping
on C, then T has a fixed point.

T is said to be asymptotically nonexpansive in the intermediate sense if it
is continuous and the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0. (1.3)

Observe that if we define

σn = sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) and νn = max{0, σn},

then νn → 0 as n→ ∞. It follows that (1.3) is reduced to

‖Tnx− Tny‖ ≤ ‖x− y‖+ νn, ∀x, y ∈ C, n ≥ 1. (1.4)

The class of mappings which are asymptotically nonexpansive in the interme-
diate sense was introduced by Bruck, Kuczumow and Reich [2]. It is known
[16] that if C is a nonempty closed convex bounded subset of a uniformly
convex Banach space E and T is asymptotically nonexpansive in the interme-
diate sense, then T has a fixed point. It is worth mentioning that the class
of mappings which are asymptotically nonexpansive in the intermediate sense
contains properly the class of asymptotically nonexpansive mappings.

Recently, Alber, Chidume and Zegeye [1] introduced the concept of to-
tal asymptotically nonexpansive mappings. Recall that T is said to be total
asymptotically nonexpansive if

‖Tnx− Tny‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn, ∀x, y ∈ C, (1.5)

where {µn} and {νn} are nonnegative real sequences such that µn → 0 and
νn → 0 as n→ ∞. From the definition, we see that the class of total asymptot-
ically nonexpansive mappings include the class of asymptotically nonexpansive
mappings as a special case; see also [13] for more details.

Recently, weak convergence problems of implicit (or non-implicit) iterative
processes to a common fixed point for a finite family of nonexpansive mappings
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and asymptotically nonexpansive mappings have been considered by a number
of authors (see, for example, [1],[8],[9],[12],[15],[19],[21],[23],[24],[27]-[32],[34]-
[36],[38]).

In 2001, Xu and Ori [34] introduced the following implicit iteration process
for a finite family of nonexpansive mappings {T1, T2, . . . , TN}, with {αn} a real
sequence in (0, 1), and an initial point x0 ∈ C:

x1 = α1x0 + (1− α1)T1x1,

x2 = α2x1 + (1− α2)T2x2,

...

xN = αNxN−1 + (1− αN )TNxN ,

xN+1 = αN+1xN + (1− αN+1)T1xN+1,

...

which can be re-written in the following compact form:

xn = αnxn−1 + (1− αn)Tnxn, ∀n ≥ 1, (1.6)

where Tn = Tn(modN) (here the mod N function takes values in {1, 2, . . . , N}).
They obtained the following results in a real Hilbert space.

Theorem XO. Let H be a real Hilbert space, C be a nonempty closed convex
subset of H, and T : C → C be a finite family of nonexpansive self-mappings
on C such that F = ∩N

i=1F (Ti) 6= ∅. Let {xn} be defined by (1.6). If {αn} is
chosen so that αn → 0, as n → ∞, then {xn} converges weakly to a common
fixed point of the family of {Ti}

N
i=1.

In 2006, Chang et al. [9] improved the results of Xu and Ori [34] from the
class of nonexpansive mappings to the class of asymptotically nonexpansive
mappings which is defined on a nonempty closed and convex subset C of H
such that C + C ⊂ C. To be more precise, they considered the following
implicit iterative process for a finite family of asymptotically nonexpansive
mappings {T1, T2, . . . , TN}, with {αn} a real sequence in (0, 1), {un} a bounded
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sequence in C, and an initial point x0 ∈ C:

x1 = α1x0 + (1− α1)T1x1 + u1,

x2 = α2x1 + (1− α2)T2x2 + u2,

...

xN = αNxN−1 + (1− αN )TNxN + uN ,

xN+1 = αN+1xN + (1− αN+1)T1xN+1 + uN+1,

...

x2N = α2Nx2N−1 + (1− α2N )T 2
Nx2N + u2N ,

x2N+1 = α2N+1x2N + (1− α2N+1)T
3
1 x2N+1 + u2N+1,

...

Since for each n ≥ 1, it can be written as n = (k − 1)N + i, where i = i(n) ∈
{1, 2, . . . , N}, k = k(n) ≥ 1 is a positive integer and k(n) → ∞ as n → ∞.
Hence the above table can be rewritten in the following compact form:

xn = αnxn−1 + (1− αn)T
k(n)
i(n) xn + un, ∀n ≥ 1. (1.7)

They obtained weak convergence theorems of the implicit iterative scheme
(1.7) for a finite family of asymptotically nonexpansive mappings {T1, T2, . . . , TN};
see [9] for more details.

The purpose of this paper is to establish weak and strong convergence
theorems of the implicit iteration process (1.7) for a finite family of uniformly
Lipschitz total asymptotically nonexpansive mappings in a real Hilbert space.

Next, we recall some well-known concepts.

Recall that a space X is said to satisfy Opial’s condition [18] if for each
sequence {xn} in X, the condition that the sequence xn → x weakly implies
that

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

for all y ∈ E and y 6= x.

Recall that a mapping T : C → C is semicompact if any sequence {xn} in
C satisfying limn→∞ ‖xn − Txn‖ = 0 has a convergent subsequence.

Recall that the mapping T is said to be demiclosed at the origin if for each
sequence {xn} in C, the condition xn → x0 weakly and Txn → 0 strongly
implies Tx0 = 0.
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Next, we show that the process (1.7) is well-defined if the control sequence
satisfies 0 < L−1

L
< αn < 1, where L = max1≤i≤N{Li}. Indeed, define a

mapping

Wnx = αnxn−1 + (1− αn)T
k(n)
i(n) x+ un, ∀n ≥ 1, ∀x ∈ C.

It follows that

‖Wnx−Wny‖ ≤ (1− αn)L‖x− y‖, ∀x, y ∈ C.

Since (1 − αn)L < 1, it follows that Wn is a contractive mapping and hence
has a unique fixed point xn in C. This is, the process (1.7) is well-defined.

In order to prove our main results, we also need the following lemmas.

Lemma 1.1 ([30]). Let {an}, {bn} and {cn} be three nonnegative sequences
satisfying the following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0,

where n0 is some nonnegative integer,
∑∞

n=0 cn <∞ and
∑∞

n=0 bn <∞. Then
limn→∞ an exists.

Lemma 1.2 ([27]). Let H be a real Hilbert space and 0 < p ≤ tn ≤ q < 1 for
all n ≥ 0. Suppose that {xn} and {yn} are sequences of H such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r

and
lim
n→∞

‖tnxn + (1− tn)yn‖ = r

hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.3. Let C be a nonempty closed convex and bounded subset of a real
Hilbert space H and T be a L-Lipschitz continuous and total asymptotically
nonexpansive mapping with the function ψ and sequences {µn} and {νn} such
that µn → 0 and νn → 0 as n→ ∞. Then I − T is demiclosed at zero.

Proof. Let {xn} be a sequence in C such that xn ⇀ x∗ and xn − Txn → 0
as n → ∞. Next, we show that x∗ ∈ C and x∗ = Tx∗. Since C is closed and
convex, we see that x∗ ∈ C. It is sufficient to show that x∗ = Tx∗. Choose
α ∈ (0, 1

1+L
) and define yα,m = (1 − α)x∗ + αTmx∗ for arbitrary but fixed

m ≥ 1. Note that

‖xn − Tmxn‖ ≤ ‖xn − Txn‖+ ‖Txn − T 2xn‖+ · · ·+ ‖Tm−1xn − Tmxn‖

≤ mL‖xn − Txn‖.
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It follows that
lim

n→∞
‖xn − Tmxn‖ = 0. (1.8)

Note that

〈x∗ − yα,m, yα,m − Tmyα,m〉

= 〈x∗ − xn, yα,m − Tmyα,m〉+ 〈xn − yα,m, yα,m − Tmyα,m〉 =

= 〈x∗ − xn, yα,m − Tmyα,m〉+ 〈xn − yα,m, T
mxn − Tmyα,m〉−

− 〈xn − yα,m, xn − yα,m〉+ 〈xn − yα,m, xn − Tmxn〉

≤ 〈x∗ − xn, yα,m − Tmyα,m〉+

+ ‖xn − yα,m‖(‖xn − yα,m‖+ µnψ(‖xn − yα,m‖) + νm)−

− ‖xn − yα,m‖2 + ‖xn − yα,m‖‖xn − Tmxn‖ ≤

≤ 〈x∗ − xn, yα,m − Tmyα,m〉+ µmMψ(M) + νmM+

+ ‖xn − yα,m‖‖xn − Tmxn‖,

(1.9)

where M = supn≥0{‖xn − yα,m‖}. Since xn ⇀ x∗ and (1.8), we arrive at

〈x∗ − yα,m, yα,m − Tmyα,m〉 ≤ µmMψ(M) + νmM. (1.10)

On the other hand, we have

〈x∗ − yα,m, (x
∗ − Tmx∗)− (yα,m − Tmyα,m)〉 ≤ (1 + L)‖x∗ − yα,m‖2

= (1 + L)α2‖x∗ − Tmx∗‖2.
(1.11)

Note that

‖x∗ − Tmx∗‖2 = 〈x∗ − Tmx∗, x∗ − Tmx∗〉 =

=
1

α
〈x∗ − yα,m, x

∗ − Tmx∗〉 =

=
1

α
〈x∗ − yα,m, (x

∗ − Tmx∗)− (yα,m − Tmyα,m)〉+

+
1

α
〈x∗ − yα,m, yα,m − Tmyα,m〉.

(1.12)

Substituting (1.10) and (1.11) into (1.12), we arrive at

‖x∗ − Tmx∗‖2 ≤ (1 + L)α‖x∗ − Tmx∗‖2 +
µmMψ(M) + νmM

α
.

This implies that

α[1− (1 + L)α]‖x∗ − Tmx∗‖2 ≤ µmMψ(M) + νmM, ∀m ≥ 1. (1.13)
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Letting m → ∞ in (1.13), we see that Tmx∗ → x∗. Since T is uniformly
L-Lipschitz, we obtain that x∗ = Tx∗. This completes the proof.

2. Main results

Theorem 2.1. Let H be a real Hilbert space and C be a nonempty closed
convex and bounded subset of H such that C + C ⊂ C. Let Ti : C → C be
a uniformly Li-Lipschitz total asymptotically nonexpansive mapping with the

function ψi and sequences {µ
(i)
n }, {ν

(i)
n } for each i ∈ {1, 2, . . . , N}. Assume

that
∑∞

n=1 µ
(i)
n < ∞ and

∑∞

n=1 ν
(i)
n < ∞ for each i ∈ {1, 2, . . . , N}. Let {un}

be a bounded sequence in C such that
∑∞

n=1 ‖un‖ < ∞ and {αn} a sequence
in [L−1

L
, a], where L = max1≤i≤N{Li} > 1 and a is some constant in (0, 1).

Assume that F = ∩N
i=1F (Ti) 6= ∅. Let {xn} be a sequence generated by (1.7).

Then the sequence {xn} converges weakly to some point x∗ ∈ F .

Proof. Define the following sequences

µn = max{µ(1)
n , µ(2)

n , . . . , µ(N)
n }

and
νn = max{ν(1)n , ν(2)n , . . . , ν(N)

n }.

It is easy to see that
∑∞

n=1 µn < ∞ and
∑∞

n=1 νn < ∞. Fixing p ∈ F , we
have

‖xn − p‖ ≤ αn‖xn−1 − p‖+ (1− αn)‖T
k(n)
i(n) xn − p‖+ ‖un‖ ≤

≤ αn‖xn−1 − p‖+ (1− αn)
(

‖xn − p‖+ µk(n)ψi(n)(‖xn − p‖) + νk(n)
)

+ ‖un‖ ≤

≤ ‖xn−1 − p‖+ µk(n)ψi(n)((diam C)) + νk(n) + ‖un‖leq

≤ ‖xn−1 − p‖+ µk(n)ψr((diam C)) + νk(n) + ‖un‖,
(2.1)

where

ψr((diam C)) = max{ψ1((diam C)), ψ2((diam C)), . . . , ψN ((diam C))}.

In view of Lemma 1.1, we obtain that the limit of the sequence {‖xn − p‖}
exits. Next, we assume that

d = lim
n→∞

‖xn − p‖, (2.2)

where d > 0 is some constant. It follows that

lim sup
n→∞

‖xn−1 − p− un‖ ≤ lim sup
n→∞

‖xn−1 − p‖+ lim sup
n→∞

‖un‖ = d. (2.3)
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Note that

‖T
k(n)
i(n) xn − p+ un‖ ≤ ‖T

k(n)
i(n) xn − p‖+ ‖un‖ ≤

≤ ‖xn − p‖+ µk(n)ψi(n)(‖xn − p‖) + νk(n) + ‖un‖ ≤

≤ ‖xn − p‖+ µk(n)ψr((diam C)) + νk(n) + ‖un‖.

It follows that
lim sup
n→∞

‖T
k(n)
i(n) xn − p+ un‖ ≤ d. (2.4)

On the other hand, we have

d = lim
n→∞

‖xn − p‖ = lim
n→∞

‖αn(xn−1 − p− un) + (1− αn)(T
k(n)
i(n) xn − p+ un)‖.

(2.5)
Combining (2.3), (2.4) with (2.4) and from Lemma 1.2, we obtain that

lim
n→∞

‖xn−1 − T
k(n)
i(n) xn‖ = 0. (2.6)

Note that

‖xn − xn−1‖ ≤ (1− αn)‖xn−1 − T
k(n)
i(n) xn‖+ ‖un‖.

From (2.6), we arrive at

lim
n→∞

‖xn − xn−1‖ = 0. (2.7)

On the other hand, we have

‖T
k(n)
i(n) xn − xn‖ ≤ ‖T

k(n)
i(n) xn − xn−1‖+ ‖xn−1 − xn‖,

which combined with (2.6) gives that

lim
n→∞

‖T
k(n)
i(n) xn − xn‖ = 0. (2.8)

From (2.7), we also have

lim
n→∞

‖xn − xn+l‖ = 0, ∀l = 1, 2, . . . , N. (2.9)

For any positive n > N , it can be rewritten as n = (k(n) − 1)N + i(n),
i(n) ∈ {1, 2, . . . , N}. Note that

‖xn−1 − Tnxn‖ ≤ ‖xn−1 − T
k(n)
i(n) xn‖+ ‖T

k(n)
i(n) xn − Tnxn‖ ≤

≤ ‖xn−1 − T
k(n)
i(n) xn‖+ L‖T

k(n)−1
i(n) xn − xn‖ ≤

≤ ‖xn−1 − T
k(n)
i(n) xn‖+ L{‖T

k(n)−1
i(n) xn − T

k(n)−1
i(n−N)xn−N‖+

+ ‖T
k(n)−1
i(n−N)xn−N − x(n−N)−1‖+ ‖x(n−N)−1 − xn‖}.

(2.10)
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On the other hand, we have n−N = ((k(n)− 1)− 1)N + i(n) = ((k(n)− 1)−
1)N + i(n−N), i.e.,

k(n−N) = k(n)− 1 and i(n−N) = i(n).

It follows that

‖T
k(n)−1
i(n) xn − T

k(n)−1
i(n−N)xn−N‖ ≤ L‖xn − xn−N‖ (2.11)

and

‖T
k(n)−1
i(n−N)xn−N − x(n−N)−1‖ = ‖T

k(n−N)
i(n−N) xn−N − x(n−N)−1‖. (2.12)

Combining (2.6), (2.9) with (2.10), we see that

lim
n→∞

‖xn−1 − Tnxn‖ = 0. (2.13)

On the other hand, we have that

‖xn − Tnxn‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − Tnxn‖.

From (2.7) and (2.13), we obtain that

lim
n→∞

‖xn − Tnxn‖ = 0. (2.14)

Consequently, for any j = 1, 2, . . . , N , we see that

‖xn − Tn+jxn‖ ≤ ‖xn − xn+j‖+ ‖xn+j − Tn+jxn+j‖+ ‖Tn+jxn+j − Tn+jxn‖ ≤

≤ (1 + L)‖xn − xn+j‖+ ‖xn+j − Tn+jxn+j‖.

From (2.9) and (2.14), we arrive at

lim
n→∞

‖xn − Tn+jxn‖ = 0.

Therefore, for ∀i ∈ {1, 2, . . . , N}, there exists some e ∈ {1, 2, . . . , N} such that
n+ e = i(mod N). It follows that

lim
n→∞

‖xn − Tixn‖ = lim
n→∞

‖xn − Tn+exn‖ = 0. (2.15)

Since {xn} is bounded, we see that there exists a subsequence {xni
} ⊂ {xn}

such that xni
⇀ x∗. From Lemma 1.3, we can obtain that x∗ ∈ F . Next we

prove that {xn} converges weakly to x∗. Suppose the contrary. Then we see
that there exists some subsequence {xnj

} ⊂ {xn} such that {xnj
} converges
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weakly to x̄ ∈ C and x̄ 6= x∗. From Lemma 1.3, we also have x̄ ∈ F . Put
w = limn→∞ ‖xn − x∗‖. Since H is an Opial’s space, we see that

w = lim
ni→∞

‖xni
− x∗‖ < lim

ni→∞
‖xni

− x̄‖ =

= lim
nj→∞

‖xnj
− x̄‖ < lim

nj→∞
‖xnj

− x∗‖ =

= lim
ni→∞

‖xni
− x∗‖ = w.

This derives a contradiction. It follows that x̄ = x∗. This completes the proof.

Remark 2.2. Theorem 2.1 improves Theorem 1 of Chang et al. [9] from
asymptotically nonexpansive mappings to total asymptotically nonexpansive
mappings.

Corollary 2.3. Let H be a real Hilbert space and C be a nonempty closed
convex and bounded subset of H. Let Ti : C → C be a uniformly Li-Lipschitz
total asymptotically nonexpansive mapping with the function ψi and sequences

{µ
(i)
n }, {ν

(i)
n } for each i ∈ {1, 2, . . . , N}. Assume that

∑∞

n=1 µ
(i)
n < ∞ and

∑∞

n=1 ν
(i)
n <∞ for each i ∈ {1, 2, . . . , N}. Let {αn} be a sequence in [L−1

L
, a],

where L = max1≤i≤N{Li} > 1 and a is some constant in (0, 1). Assume
that F = ∩N

i=1F (Ti) 6= ∅. Let {xn} be a sequence generated by the following
manner:

x0 ∈ C, xn = αnxn−1 + (1− αn)T
k(n)
i(n) xn, ∀n ≥ 1. (2.16)

Then the sequence {xn} converges weakly to some point x∗ ∈ F .

Next, we prove a strong convergence theorem under the condition of semi-
compactness.

Theorem 2.4. Let H be a real Hilbert space and C a nonempty closed con-
vex and bounded subset of H such that C + C ⊂ C. Let Ti : C → C be
a uniformly Li-Lipschitz total asymptotically nonexpansive mapping with the

function ψi and sequences {µ
(i)
n }, {ν

(i)
n } for each i ∈ {1, 2, . . . , N}. Assume

that
∑∞

n=1 µ
(i)
n < ∞ and

∑∞

n=1 ν
(i)
n < ∞ for each i ∈ {1, 2, . . . , N}. Let {un}

be a bounded sequence in C such that
∑∞

n=1 ‖un‖ < ∞ and {αn} a sequence
in [L−1

L
, a], where L = max1≤i≤N{Li} > 1 and a is some constant in (0, 1).

Assume that F = ∩N
i=1F (Ti) 6= ∅ and at least there exists a mapping Tr which

is semicompact. Let {xn} be a sequence generated by (1.7). Then the sequence
{xn} converges weakly to some point x∗ ∈ F .

Proof. Without loss of generality, we may assume that T1 is semicompact. It
follows from (2.15) that

lim
n→∞

‖xn − T1xn‖ = 0.
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By the semicompactness of T1, we have there exists a subsequence {xni
} of

{xn} such that xni
→ x ∈ C strongly. From (2.15), we have

lim
ni→∞

‖xni
− Tlxni

‖ = ‖x− Tlx‖ = 0,

for all l = 1, 2, · · · , N. This implies that x ∈ F . From Theorem 2.1, we know
that limn→∞ ‖xn−p‖ exists for each p ∈ F . This shows that limn→∞ ‖xn−x‖
exists. From xni

→ x, we have

lim
n→∞

‖xn − x∗‖ = 0.

This completes the proof of Theorem 2.4.

Corollary 2.5. Let H be a real Hilbert space and C be a nonempty closed
convex bounded subset of H. Let Ti : C → C be a uniformly Li-Lipschitz
total asymptotically nonexpansive mapping with the function ψi and sequences

{µ
(i)
n }, {ν

(i)
n } for each i ∈ {1, 2, . . . , N}. Assume that

∑∞

n=1 µ
(i)
n < ∞ and

∑∞

n=1 ν
(i)
n <∞ for each i ∈ {1, 2, . . . , N}. Let {αn} be a sequence in [L−1

L
, a],

where L = max1≤i≤N{Li} > 1 and a is some constant in (0, 1). Assume
that F = ∩N

i=1F (Ti) 6= ∅ and at least there exists a mapping Tr which is
semicompact. Let {xn} be a sequence generated by (2.16). Then the sequence
{xn} converges weakly to some point x∗ ∈ F .

3. Applications

Let A : C → H be a mapping. Recall that the classical variational inequal-
ity problem is to find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (3.1)

It is known that x ∈ C is a solution to the variational inequality problem
(3.1) if and only if x is a fixed point of the mapping PC(I − ρA), where
PC is the metric projection from H onto C, ρ > 0 is a constant and I is
the identity mapping. This implies that the variational inequality problem
(3.1) is equivalent to a fixed point problem. This alternative formula is very
important form the numerical analysis point of view. Recently, many authors
studied the variational inequality (3.1) by iterative methods.

Let F be a bifunction of C ×C into R, where R is the set of real numbers.
We consider the following equilibrium problem:

Find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C. (3.2)
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In this paper, the set of such x ∈ C is denoted by EP (F ), i.e.,

EP (F ) = {x ∈ C : F (x, y) ≥ 0, ∀y ∈ C}.

Numerous problems in physics, optimization and economics reduce to find a
solution of (1.1); see ([3],[5],[10],[11]). Approximating solutions of the problem
(3.2) based on iterative methods was studied by many authors, see, for exam-
ple, ([4]-[7],[17],[20],[22],[25],[26],[33],[37]) and the reference therein. Putting
F (x, y) = 〈Ax, y − x〉, ∀x, y ∈ C, we see that z ∈ FP (F ) if and only if
〈Az, y − z〉 ≥ 0, ∀y ∈ C. That is, z is a solution to the variational inequality
(3.1). Numerous problems in physics, optimization, and economics reduce to
find a solution of the problem (3.2). To study the problem (3.2), we may
assume that the bifunction F : C × C → R satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and weakly lower semi-continuous.

Next, we consider the convergence of implicit iterative process (1.7) for the
equilibrium problem (3.2). To prove the main results in this section, we need
the following lemma which can be found in [3] and [4].

Lemma 3.1. Let C be a nonempty closed convex subset of H ad let F :
C × C → R be a bifunction satisfying (A1)-(A4). Then, for any r > 0 and
x ∈ H, there exists z ∈ C such that F (z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define a mapping

Trx = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all r > 0 and x ∈ H. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖
2 ≤ 〈Trx− Try, x− y〉;

(3) F (Tr) = EP (F );

(4) EP (F ) is closed and convex.
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Theorem 3.2. Let C be a nonempty closed and convex subset of a real Hilbert
space H. Let F1 be a bifunction from C × C to R satisfying (A1)-(A4) such
that EP (F1) is nonempty. Let {xn} be a sequence generated in the following
manner:











x0 ∈ H, chosen arbitrily

F1(yn, y) +
1
rn
〈y − yn, yn − xn〉 ≥ 0, ∀y ∈ C,

xn = αnxn−1 + (1− αn)yn + un, ∀n ≥ 1.

(3.3)

where {rn} ⊂ (0,∞), {αn} ⊂ (0, 1) and {un} is a bounded sequence. Assume
that the following conditions are satisfied

(1) a ≤ αn ≤ b, where 0 < a < b < 1;

(2) lim infn→∞ rn > 0;

(3)
∑∞

n=1 ‖un‖ <∞.

Then the sequence {xn} generated in (3.3) converges weakly to some point in
EP (F ).

Proof. Putting yn = Trnxn for each n ≥ 1, we from Lemma 3.1 see that
Trn is firmly nonexpansive. Whenever needed, we shall equivalently write the
implicit iteration (3.3) as

x0 ∈ H, xn = αnxn−1 + (1− αn)Trnxn + un, ∀n ≥ 1, (3.4)

Fixing p ∈ EP (F ), we see that

‖xn − p‖ ≤ αn‖xn−1 − p‖+ (1− αn)‖Trnxn − p‖+ ‖un‖

≤ αn‖xn−1 − p‖+ (1− αn)‖xn − p‖+ ‖un‖.

This in turn implies that

‖xn − p‖ ≤ ‖xn−1 − p‖+
‖un‖

a
.

From Lemma 1.1, we obtain that limn→∞ ‖xn − p‖ exits. Next, we assume
that limn→∞ ‖xn − p‖ = r > 0. Note that

lim sup
n→∞

‖xn−1 − p+ un‖ ≤ r (3.5)

and

lim sup
n→∞

‖Trnxn − p+ un‖ ≤ lim sup
n→∞

(‖xn − p‖+ ‖un‖) ≤ r. (3.6)
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On the other hand, we have

lim
n→∞

‖xn−p‖ = lim
n→∞

‖αn(xn−1−p+un)+(1−αn)(Trnxn−p+un)‖ = r. (3.7)

Combining (3.5), (3.6) with (3.7), from Lemma 1.2, we obtain that

lim
n→∞

‖xn−1 − Trnxn‖ = 0. (3.8)

From (3.1), we arrive at

xn − xn−1 = (1− αn)(Trnxn − xn−1) + un.

From the conditions (3) and (3.8), we see that

lim
n→∞

‖xn−1 − xn‖ = 0. (3.9)

Note that
‖xn − Trnxn‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − Trnxn‖.

In view of (3.8) and (3.9), we obtain that

lim
n→∞

‖xn − Trnxn‖ = 0. (3.9)

Since the sequence {xn} is a bounded, we see that there exists a subsequence
{xni

} of {xn} such that xni
⇀ q.

Next, we show that q ∈ EP (T ). Since yn = Trnxn, we have

F (yn, y) +
1

rn
〈y − yn, yn − xn〉 ≥ 0, ∀y ∈ C.

It follows from (A2) that

〈y − yn,
yn − xn

rn
〉 ≥ F (y, yn)

and hence

〈y − yni
,
yni

− xni

rni

〉 ≥ F (y, yni
).

Since
yni

−xni

rni

→ 0, yni
⇀ q and (A4), we have F (y, q) ≤ 0 for all y ∈ C. For

t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)q. Since y ∈ C and q ∈ C, we
have yt ∈ C and hence F (yt, q) ≤ 0. So, from (A1) and (A4), we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, q) ≤ tF (yt, y).
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That is, F (yt, y) ≥ 0. It follows from (A3) that F (q, y) ≥ 0 for all y ∈ C and
hence q ∈ EP (F ). This proves that q ∈ EP (T ).

Finally, we show that the sequence {xn} converges weakly to q. Suppose
the contrary holds. It follows that there exists some subsequence {xnj

} of
{xn} such that xnj

⇀ q̄ and q 6= q̄. By the same method as given above, we
can prove that q̄ ∈ EP (T ). Put

lim
n→∞

‖xn − q‖ = d1 and lim
n→∞

‖xn − q̄‖ = d2,

where d1 and d2 are two nonnegative numbers. In view of Opial’s condition,
we see that

d1 = lim inf
i→∞

‖xni
−q‖ < lim inf

j→∞
‖xni

−q̄‖ = lim inf
j→∞

‖xnj
−q̄‖ < lim inf

j→∞
‖xnj

−q‖ = d1.

This is a contradiction. Hence q̄ = q. This shows that the sequence {xn}
converges weakly to q. The proof is completed.
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