IMPLICIT AND EXPLICIT ITERATIVE PROCESS WITH ERRORS FOR COMMON FIXED POINTS OF A FINITE FAMILY OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS

Feng Gu

Abstract

In this paper, a necessary and sufficient conditions for the strong convergence to a common fixed point of a finite family of strictly pseudocontractive mappings of Browder-Petryshyn type are proved in an arbitrary real Banach spaces using a implicit iteration scheme with errors. The results presented in this paper not only correct some mistakes appeared in the paper by Y. Su and S. Li [Composite implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl., 320(2006), 882-891] but also improve and extend some recent results by M. O. Osilike [M. O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl., 294(2004), 7381], and F.Gu [The new composite implicit iteration process with errors for common fixed points of a finite of strictly pseudocontractive mappings, J. Math. Anal. Appl., 329 (2007), 766-776]. Moreover, in this paper the methods of proof of main results are also different from that of Osilike, Su and Li.

[^0]
1 Introduction and preliminaries

In this paper we assume that E is a real Banach space and let J denote the normalized duality mapping from E into $2^{E^{*}}$ given by $J(x)=$ $\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2},\|x\|=\|f\|\right\}$, where E^{*} denotes the dual space of E and $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing. If E^{*} is strictly convex, then J is single-valved. In the sequel, we shall denote the single-valved duality mapping by j.

Definition 1.1. Let K be a closed subset of real Banach space E and $T: K \rightarrow K$ be a mapping. T is said to be semi-compact, if for any bounded sequence $\left\{x_{n}\right\}$ in K such that $\left\|x_{n}-T x_{n}\right\| \rightarrow 0(n \rightarrow \infty)$, then there exists a subsequence $\left\{x_{n_{i}}\right\} \subset\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightarrow x^{*} \in K$.

Definition 1.2. A mapping T with domain $D(T)$ and range $R(T)$ in E is called nonexpansive if

$$
\begin{equation*}
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in D(T) \tag{1.1}
\end{equation*}
$$

Definition 1.3. A mapping T with domain $D(T)$ and range $R(T)$ in E is called strictly pseudocontractive in the terminology of Brower and Petryshyn [1], if for all $x, y \in D(T)$, there exists $k \in(0,1)$ and $j(x-y) \in J(x-y)$ such that

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \leq\|x-y\|^{2}-k\|x-y-(T x-T y)\|^{2} \tag{1.2}
\end{equation*}
$$

If I denotes the identity operator, then (1.2) can be written in the form

$$
\begin{equation*}
\langle(I-T) x-(I-T) y, j(x-y)\rangle \geq k \|(I-T) x-(I-T) y) \|^{2} \tag{1.3}
\end{equation*}
$$

It is easy to know that every strictly pseudocontractive mapping is L Lipschitzian and continuous. Indeed, it follows from (1.3) that

$$
\begin{aligned}
& k\|(x-y)-(T x-T y)\|^{2} \leq\|(x-y)-(T x-T y)\| \cdot\|j(x-y)\|, \\
& k(\|T x-T y\|-\|x-y\|) \leq k\|(x-y)-(T x-T y)\| \leq\|x-y\|
\end{aligned}
$$

i.e.,

$$
\|T x-T y\| \leq L\|x-y\|, \quad \text { where } \quad L=\frac{k+1}{k} .
$$

The class of strictly pseudocontractive mappings has been studied by several authors (see, for example, [1, 3-6, 8-12]).

Let K be a nonempty convex subset of E, and let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of nonexpansive self-maps of K. In [13], Xu and Ori introduced the following
implicit iteration process. For any $x_{0} \in K$ and $\left\{\alpha_{n}\right\}_{n=1}^{\infty} \subset(0,1)$, the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is generated as follows:

$$
\left\{\begin{array}{l}
x_{1}=\left(1-\alpha_{1}\right) x_{0}+\alpha_{1} T_{1} x_{1} \\
x_{2}=\left(1-\alpha_{2}\right) x_{1}+\alpha_{2} T_{2} x_{2} \\
\cdots \\
x_{N}=\left(1-\alpha_{N}\right) x_{N-1}+\alpha_{N} T_{N} x_{N} \\
x_{N+1}=\left(1-\alpha_{N+1}\right) x_{N}+\alpha_{N+1} T_{1} x_{N+1} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots
\end{array}\right.
$$

which can be written in the following compact form as follows:

$$
\begin{equation*}
x_{n}=\left(1-\alpha_{n}\right) x_{n-1}+\alpha_{n} T_{n} x_{n}, \quad \forall n \geq 1 \tag{1.4}
\end{equation*}
$$

where $T_{n}=T_{n(\bmod N)}$.
Using this iteration process, they proved the following convergence theorem for nonexpansive mappings in Hilbert spaces.

Theorem XO [13] Let H be a Hilbert space and let K be a nonempty closed convex subset of H. Let $\left\{T_{i}\right\}_{i=1}^{N}: K \rightarrow K$ be N nonexpansive mappings such that $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ (the set of common fixed points of $\left.\left\{T_{i}\right\}_{i=1}^{N}\right)$. Let $x_{0} \in K$ and $\left\{\alpha_{n}\right\}$ be a sequence in $(0,1)$ with $\lim _{n \rightarrow \infty}\left(1-\alpha_{n}\right)=0$. Then the sequence $\left\{x_{n}\right\}$ defined by (1.4) converges weakly to a common fixed point of $\left\{T_{i}\right\}_{i=1}^{N}$.

In [7], M. O. Osilike extended their results from the nonexpansive mappings to strictly pseudocontractive mappings. by this iteration process, he proved the following convergence theorems in Hilbert and Banach spaces.

Theorem MO1[7] Let H be a Hilbert space and let K be a nonempty closed convex subset of H. Let $\left\{T_{i}\right\}_{i=1}^{N}: K \rightarrow K$ be N strictly pseudocontractive mappings such that $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ (the set of common fixed points of $\left\{T_{i}\right\}_{i=1}^{N}$). Let $x_{0} \in K$ and $\left\{\alpha_{n}\right\}$ be a sequence in (0,1) with $\lim _{n \rightarrow \infty}\left(1-\alpha_{n}\right)=0$. Then the sequence $\left\{x_{n}\right\}$ defined by (1.4) converges weakly to a common fixed point of $\left\{T_{i}\right\}_{i=1}^{N}$.
Theorem MO2[7] Let E be a real Banach space and let K be a nonempty closed convex subset of E. Let $\left\{T_{i}\right\}_{i=1}^{N}: K \rightarrow K$ be N strictly pseudocontractive mappings such that $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ (the set of common fixed points of $\left\{T_{i}\right\}_{i=1}^{N}$). Let $x_{0} \in K$ and $\left\{\alpha_{n}\right\}$ be a sequence in $(0,1)$ satisfying the conditions:
(i) $0<\alpha_{n}<1$,
(ii) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$,
(iii) $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$.

Then the sequence $\left\{x_{n}\right\}$ defined by (1.4) converges strongly to a common fixed point of the mappings $\left\{T_{i}\right\}_{i=1}^{N}$ if and only if $\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$.

Recently, Su and Li introduced the following implicit iteration process. For any $x_{0} \in K$, the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is generated as follows:

$$
\left\{\begin{array}{l}
x_{n}=\alpha_{n} x_{n-1}+\left(1-\alpha_{n}\right) T_{n} y_{n}, \tag{1.5}\\
y_{n}=\beta_{n} x_{n-1}+\left(1-\beta_{n}\right) T_{n} x_{n}, \quad \forall n \geqslant 1,
\end{array}\right.
$$

where $T_{n}=T_{n(\bmod N)},\left\{\alpha_{n}\right\}_{n=1}^{\infty},\left\{\beta_{n}\right\}_{n=1}^{\infty}$ be two real sequences in $[0,1]$.
Using this iteration process, they proved the following theorem in real Banach space.
Theorem SL[12]. Let E be a real Banach space and let K be a nonempty closed convex subset of E. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be N strictly pseudocontractive selfmaps of K such that $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$, where $F\left(T_{i}\right)=\left\{x \in K: T_{i} x=\right.$ $x\}$ and let $\left\{\alpha_{n}\right\}_{n=1}^{\infty},\left\{\beta_{n}\right\}_{n=1}^{\infty} \subset[0,1]$ be two real sequences satisfying the conditions:
(i) $\sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)=+\infty$;
(ii) $\sum_{n=1}^{\infty}\left(1-\alpha_{n}\right)^{2}<+\infty$;
(iii) $\sum_{n=}^{\infty}\left(1-\beta_{n}\right)<+\infty$;
(iv) $\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right) L^{2}<1, \forall n \geq 1$, where $L \geq 1$ is common Lipschitz constant of $\left\{T_{i}\right\}_{i=1}^{N}$.
Let $x_{0} \in K$ and let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be defined by (1.5), then
(1) $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for all $p \in F$;
(2) $\liminf _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0$.

Remark 1.1. It should be pointed the Theorem SL generalize and improve the results of Osilike [7] in 2004, but the proof of [12, Theorem 2.1] has some problems.

Motivated and inspired by the above works, in this paper, we introduce a composite implicit iteration process as follows:

$$
\left\{\begin{array}{l}
x_{n}=\left(1-\alpha_{n}-\gamma_{n}\right) x_{n-1}+\alpha_{n} T_{n} y_{n}+\gamma_{n} u_{n}, n \geq 1, \tag{1.6}\\
y_{n}=\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T_{n} x_{n}+\delta_{n} v_{n}, n \geq 1,
\end{array}\right.
$$

where $T_{n}=T_{n(\bmod N)},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\}$ are four real sequences in $[0,1]$ satisfying $\alpha_{n}+\gamma_{n} \leq 1$ and $\beta_{n}+\delta_{n} \leq 1$ for all $n \geq 1,\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are two bounded sequences in K and x_{0} is a given point.

Observe that if K is a nonempty closed convex subset of E and $T_{i}: K \rightarrow K$ is a k_{i}-strictly pseudocontractive mapping, then it is a L_{i} Lpschitzian mapping with $L_{i}=1+\frac{1}{k_{i}}$. If $\alpha_{n} \beta_{n} L^{2}<1$, where $L=\max _{1 \leq i \leq N}\left\{L_{i}\right\}$, then for given $x_{n-1} \in K, \gamma_{n} u_{n} \in K$ and $\delta_{n} v_{n} \in K$, the mapping $S_{n}: K \rightarrow K$ defined by:
$S_{n}(x)=\left(1-\alpha_{n}-\gamma_{n}\right) x_{n-1}+\alpha_{n} T_{n}\left\{\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T_{n} x+\delta_{n} v_{n}\right\}+\gamma_{n} u_{n}$,
for all $n \geq 1$, is a contractive mapping. In fact, we have

$$
\begin{aligned}
\left\|S_{n} x-S_{n} y\right\|= & \alpha_{n} \| T_{n}\left\{\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T_{n} x+\delta_{n} v_{n}\right\} \\
& -T_{n}\left\{\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T_{n} y+\delta_{n} v_{n}\right\} \| \\
\leq & \alpha_{n} L_{n}\left\|\beta_{n}\left(T_{n} x-T_{n} y\right)\right\| \\
\leq & \left.\alpha_{n} \beta_{n} L_{n}^{2} \| x-y\right) \|, \forall x, y \in K .
\end{aligned}
$$

Since $\alpha_{n} \beta_{n} L^{2}<1$, hence $S_{n}: K \rightarrow K$ is a contractive mapping. By Banach contractive mapping principle there exists a unique fixed point $x_{n} \in K$ such that

$$
\left\{\begin{array}{l}
x_{n}=\left(1-\alpha_{n}-\gamma_{n}\right) x_{n-1}+\alpha_{n} T_{n} y_{n}+\gamma_{n} u_{n}, n \geq 1, \\
y_{n}=\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T_{n} x_{n}+\delta_{n} v_{n}, n \geq 1,
\end{array}\right.
$$

Therefore if $\alpha_{n} \beta_{n} L^{2}<1, \forall n \geq 1$, then the iterative sequence (1.6) can be employed for the approximation of common fixed points of an finite family of strictly pseudocontractive mappings

Especially, if $\left\{\alpha_{n}\right\},\left\{\gamma_{n}\right\}$ be two sequences in [0, 1] satisfying $\alpha_{n}+\gamma_{n} \leq 1$ for all $n \geq 1,\left\{u_{n}\right\}$ be a bounded sequence in K and x_{0} is a given point in K, then the sequence $\left\{x_{n}\right\}$ defined by

$$
\begin{equation*}
x_{n}=\left(1-\alpha_{n}-\gamma_{n}\right) x_{n-1}+\alpha_{n} T_{n} x_{n-1}+\gamma_{n} u_{n}, \quad \forall n \geq 1 \tag{1.7}
\end{equation*}
$$

Remark 1.2. As $\gamma_{n}=\delta_{n}=0$ for all $n \geq 1$, the iteration scheme (1.6) reduces (1.5).

The purpose of this paper is to study the convergence of implicit iterative sequence $\left\{x_{n}\right\}$ defined by (1.6) and (1.7) to a common fixed point for a finite family of strictly pseudocontractive mappings of Browder-Petryshyn type in an arbitrary real Banach spaces. The results presented in this paper generalized and extend the corresponding results of F. Gu [3], M. O. Osilike [7] and $\mathrm{Su}-\mathrm{Li}$ [12], even in the case of $\beta_{n}=\delta_{n}=0, \forall n \geq 1$ or $N=1$ are also new. Moreover, in this paper the methods of proof of main results are also different from that of Osilike [7] and Su and Li [12]. At the same time, we also revised the mistake in [12].

In order to prove the main results of this paper, we need the following Lemmas:

Lemma 1.1[2]. Let E be a real Banach space and let J be the normalized duality mapping. Then for any given $x, y \in E$, we have

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \forall j(x+y) \in J(x+y)
$$

Lemma 1.2[8]. Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ be three nonnegative real sequences satisfying the following condition:

$$
a_{n+1} \leq\left(1+b_{n}\right) a_{n}+c_{n}, \quad \forall n \geq n_{0}
$$

where n_{0} is some nonnegative integer, $\sum_{n=0}^{\infty} c_{n}<\infty$ and $\sum_{n=0}^{\infty} b_{n}<\infty$. Then
(1) the limit $\lim _{n \rightarrow \infty} a_{n}$ exists.
(2) In addition, if there exists a subsequence $\left\{a_{n_{i}}\right\} \subset\left\{a_{n}\right\}$ such that $a_{n_{i}} \rightarrow 0$, then $a_{n} \rightarrow 0(n \rightarrow \infty)$.

2 Main results

We are now in a position to prove our main results in this paper.
Theorem 2.1. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}: K \rightarrow K$ be N strictly pseudocontractive mappings with $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ (the set of common fixed points of $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$). Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\}$ are four real sequences in [0,1$]$ satisfying $\alpha_{n}+\gamma_{n} \leq 1$ and $\beta_{n}+\delta_{n} \leq 1$ for all $n \geq 1,\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are two bounded sequences in K satisfying the following conditions:
(i) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$;
(iii) $\sum_{n=1}^{\infty} \alpha_{n} \beta_{n}<\infty$;
(iv) $\sum_{n=1}^{\infty} \alpha_{n} \delta_{n}<\infty$;
(v) $\sum_{n=1}^{\infty} \gamma_{n}<\infty$;
(vi) $\alpha_{n} \beta_{n} L^{2}<1$, where $L=\max _{1 \leq i \leq N}\left\{L_{i}\right\}$.

Suppose further that $x_{0} \in K$ be any given point and $\left\{x_{n}\right\}$ is the implicit iteration sequence defined by (1.6), then the following conclusions hold:
(1) $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for all $p \in F$;
(2) $\liminf _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0$.

Proof. Since each $T_{i}: K \rightarrow K, i \in I=\{1,2, \cdots, N\}$ be strictly pseudocontractive, then we have $\forall x, y \in K$, there exists constants $k_{i} \in(0,1)$ and $L_{i} \geq 1$ such that

$$
\left\langle T_{i} x-T_{i} y, j(x-y)\right\rangle \leq\|x-y\|^{2}-k_{i}\left\|x-T_{i} x-\left(y-T_{i} y\right)\right\|^{2}, \quad \forall i \in I
$$

and

$$
\left\|T_{i} x-T_{i} y\right\| \leq L_{i}\|x-y\|, \quad \forall i \in I
$$

Let $k=\min _{1 \leq i \leq N}\left\{k_{i}\right\}$ and $L=\max _{1 \leq i \leq N}\left\{L_{i}\right\}$, then

$$
\begin{equation*}
\left\langle T_{i} x-T_{i} y, j(x-y)\right\rangle \leq\|x-y\|^{2}-k\left\|x-T_{i} x-\left(y-T_{i} y\right)\right\|^{2}, \quad \forall i \in I \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T_{i} x-T_{i} y\right\| \leq L\|x-y\|, \quad \forall i \in I \tag{2.2}
\end{equation*}
$$

Let $p \in F$, it follows from (1.5), (2.1), (2.2) and Lemma1.1 that

$$
\begin{align*}
\left\|x_{n}-p\right\|^{2}= & \left\|\left(1-\alpha_{n}-\gamma_{n}\right)\left(x_{n-1}-p\right)+\alpha_{n}\left(T_{n} y_{n}-p\right)+\gamma_{n}\left(u_{n}-p\right)\right\|^{2} \\
\leq & \left(1-\alpha_{n}-\gamma_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n}\left\langle T_{n} y_{n}-p, j\left(x_{n}-p\right)\right\rangle \\
& +2 \gamma_{n}\left\langle u_{n}-p, j\left(x_{n}-p\right)\right\rangle \\
= & \left(1-\alpha_{n}-\gamma_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n}\left\langle T_{n} y_{n}-T_{n} x_{n}, j\left(x_{n}-p\right)\right\rangle \\
& +2 \alpha_{n}\left\langle T_{n} x_{n}-p, j\left(x_{n}-p\right)\right\rangle+2 \gamma_{n}\left\langle u_{n}-p, j\left(x_{n}-p\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n}\left\|T_{n} y_{n}-T_{n} x_{n}\right\| \cdot\left\|x_{n}-p\right\|+2 \alpha_{n}\left\|x_{n}-p\right\|^{2} \\
& -2 \alpha_{n} k\left\|x_{n}-T_{n} x_{n}\right\|^{2}+2 \gamma_{n}\left\|u_{n}-p\right\| \cdot\left\|x_{n}-p\right\| \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n} L\left\|y_{n}-x_{n}\right\| \cdot\left\|x_{n}-p\right\|+2 \alpha_{n}\left\|x_{n}-p\right\|^{2} \\
& -2 \alpha_{n} k\left\|x_{n}-T_{n} x_{n}\right\|^{2}+2 \gamma_{n}\left\|u_{n}-p\right\| \cdot\left\|x_{n}-p\right\| . \tag{2.3}
\end{align*}
$$

From (1.6) and (2.2), we also have that

$$
\begin{align*}
\left\|y_{n}-x_{n}\right\|= & \left\|\beta_{n}\left(T_{n} x_{n}-x_{n-1}\right)+\delta_{n}\left(v_{n}-x_{n-1}\right)+\alpha_{n}\left(x_{n-1}-T_{n} y_{n}\right)+\gamma_{n}\left(x_{n-1}-u_{n}\right)\right\| \\
\leq & \beta_{n}\left\|T_{n} x_{n}-x_{n-1}\right\|+\delta_{n}\left\|v_{n}-x_{n-1}\right\|+\alpha_{n}\left\|x_{n-1}-T_{n} y_{n}\right\|+\gamma_{n}\left\|x_{n-1}-u_{n}\right\| \\
\leq & \beta_{n}\left\|T_{n} x_{n}-p\right\|+\beta_{n}\left\|x_{n-1}-p\right\|+\delta_{n}\left\|v_{n}-p\right\|+\delta_{n}\left\|x_{n-1}-p\right\| \\
& +\alpha_{n}\left\|x_{n-1}-p\right\|+\alpha_{n}\left\|T_{n} y_{n}-p\right\|+\gamma_{n}\left\|x_{n-1}-p\right\|+\gamma_{n}\left\|u_{n}-p\right\| \\
\leq & \beta_{n} L\left\|x_{n}-p\right\|+\alpha_{n}\left\|x_{n-1}-p\right\|+\beta_{n}\left\|x_{n-1}-p\right\|+\gamma_{n}\left\|x_{n-1}-p\right\| \\
& +\delta_{n}\left\|x_{n-1}-p\right\|+\alpha_{n} L\left\|y_{n}-p\right\|+\gamma_{n}\left\|u_{n}-p\right\|+\delta_{n}\left\|v_{n}-p\right\| \\
\leq & \beta_{n} L\left\|x_{n}-p\right\|+\left(\alpha_{n}+\beta_{n}+\gamma_{n}+\delta_{n}\right)\left\|x_{n-1}-p\right\| \\
& +\alpha_{n} L\left\|y_{n}-p\right\|+\gamma_{n}\left\|u_{n}-p\right\|+\delta_{n}\left\|v_{n}-p\right\| \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
\left\|y_{n}-p\right\| & =\|\left(1-\beta_{n}-\delta_{n}\right)\left(x_{n-1}-p\right)+\beta_{n}\left(T_{n} x_{n}-p\right)+\delta_{n}\left(v_{n}-p \|\right. \\
& \leq\left(1-\beta_{n}-\delta_{n}\right)\left\|x_{n-1}-p\right\|+\beta_{n}\left\|T_{n} x_{n}-p\right\|+\delta_{n}\left\|v_{n}-p\right\| \\
& \leq\left\|x_{n-1}-p\right\|+\beta_{n} L\left\|x_{n}-p\right\|+\delta_{n}\left\|v_{n}-p\right\| \tag{2.5}
\end{align*}
$$

Setting $M_{1}=\max \left\{\sup \left\{\left\|u_{n}-p\right\|^{2}: n \geq 1\right\}, \sup \left\{\left\|v_{n}-p\right\|^{2}: n \geq 1\right\}\right\}$, substituting (2.4),(2.5) into (2.3), and noticing that $2\left\|x_{n-1}-p\right\| \cdot\left\|x_{n}-p\right\| \leq$ $\left\|x_{n-1}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}, 2\left\|u_{n}-p\right\| \cdot\left\|x_{n}-p\right\| \leq\left\|u_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}$ and
$2\left\|v_{n}-p\right\| \cdot\left\|x_{n}-p\right\| \leq\left\|v_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}$ we obtain that

$$
\begin{align*}
\left\|x_{n}-p\right\|^{2} \leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n} L\left(\beta_{n} L+\alpha_{n} \beta_{n} L^{2}\right)\left\|x_{n}-p\right\|^{2} \\
& +2 \alpha_{n} L\left(\alpha_{n}+\beta_{n}+\gamma_{n}+\delta_{n}+\alpha_{n} L\right)\left\|x_{n-1}-p\right\| \cdot\left\|x_{n}-p\right\| \\
& +2 \alpha_{n} \gamma_{n} L\left\|u_{n}-p\right\| \cdot\left\|x_{n}-p\right\|+2 \alpha_{n} L\left(\delta_{n}+\alpha_{n} \delta_{n} L\right)\left\|v_{n}-p\right\| \cdot\left\|x_{n}-p\right\| \\
& +2 \alpha_{n}\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} k\left\|x_{n}-T_{n} x_{n}\right\|^{2}+2 \gamma_{n}\left\|u_{n}-p\right\| \cdot\left\|x_{n}-p\right\| \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n-1}-p\right\|^{2}+2 \alpha_{n} \beta_{n} L^{2}\left(1+\alpha_{n} L\right)\left\|x_{n}-p\right\|^{2} \\
& +\alpha_{n} L\left[\alpha_{n}(1+L)+\beta_{n}+\gamma_{n}+\delta_{n}\right]\left(\left\|x_{n-1}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right) \\
& +\alpha_{n} \gamma_{n} L\left(\left\|u_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right)+\alpha_{n} \delta_{n} L\left(1+\alpha_{n} L\right)\left(\left\|v_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right) \\
& +2 \alpha_{n}\left\|x_{n}-p\right\|^{2}-2 \alpha_{n} k\left\|x_{n}-T_{n} x_{n}\right\|^{2}+\gamma_{n}\left(\left\|u_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right) \\
= & \left\{\left(1-\alpha_{n}\right)^{2}+\alpha_{n} L\left[\alpha_{n}(1+L)+\beta_{n}+\gamma_{n}+\delta_{n}\right]\right\}\left\|x_{n-1}-p\right\|^{2} \\
& +\left\{2 \alpha_{n} \beta_{n} L^{2}\left(1+\alpha_{n} L\right)+\alpha_{n} L\left[\alpha_{n}(1+L)+\beta_{n}+\gamma_{n}+\delta_{n}\right]\right. \\
& \left.+\alpha_{n} \gamma_{n} L+\alpha_{n} \delta_{n} L\left(1+\alpha_{n} L\right)+2 \alpha_{n}+\gamma_{n}\right\}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left(1+\alpha_{n} L\right) M_{1} \\
& +\alpha_{n} \delta_{n} L\left(1+\alpha_{n} L\right) M_{1}-2 \alpha_{n} k\left\|x_{n}-T_{n} x_{n}\right\|^{2} \\
\leq & \left\{\left(1-\alpha_{n}\right)^{2}+\alpha_{n} L\left[\alpha_{n}(1+L)+\beta_{n}+\gamma_{n}+\delta_{n}\right]\right\}\left\|x_{n-1}-p\right\|^{2} \\
& +\left\{2 \alpha_{n} \beta_{n} L^{2}(1+L)+\alpha_{n} L\left[\alpha_{n}(1+L)+\beta_{n}+\gamma_{n}+\delta_{n}\right]\right. \\
& \left.+\alpha_{n} \gamma_{n} L+\alpha_{n} \delta_{n} L(1+L)+2 \alpha_{n}+\gamma_{n}\right\}\left\|x_{n}-p\right\|^{2}+\gamma_{n}(1+L) M_{1} \\
& +\alpha_{n} \delta_{n} L(1+L) M_{1}-2 \alpha_{n} k\left\|x_{n}-T_{n} x_{n}\right\|^{2} \\
= & \tau_{n}\left\|x_{n-1}-p\right\|^{2}+\sigma_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}(1+L) M_{1} \\
& +\alpha_{n} \delta_{n} L(1+L) M_{1}-2 \alpha_{n} k\left\|x_{n}-T_{n} x_{n}\right\|^{2} \tag{2.6}
\end{align*}
$$

where

$$
\tau_{n}=\left(1-\alpha_{n}\right)^{2}+\alpha_{n} L\left[\alpha_{n}(1+L)+\beta_{n}+\gamma_{n}+\delta_{n}\right]
$$

and

$$
\begin{aligned}
\sigma_{n}= & 2 \alpha_{n} \beta_{n} L^{2}(1+L)+\alpha_{n} L\left[\alpha_{n}(1+L)+\beta_{n}+\gamma_{n}+\delta_{n}\right] \\
& +\alpha_{n} \gamma_{n} L+\alpha_{n} \delta_{n} L(1+L)+2 \alpha_{n}+\gamma_{n} .
\end{aligned}
$$

Transposing and simplifying above inequality (2.6), we have

$$
\begin{align*}
\left\|x_{n}-p\right\|^{2} \leq & \left(\frac{\tau_{n}}{1-\sigma_{n}}\right)\left\|x_{n-1}-p\right\|^{2}+\frac{\left(\gamma_{n}+\alpha_{n} \delta_{n} L\right)(1+L) M_{1}}{1-\sigma_{n}} \\
& -\left(\frac{2 \alpha_{n} k}{1-\sigma_{n}}\right)\left\|x_{n}-T_{n} x_{n}\right\|^{2} \\
= & \left(1+\frac{\mu_{n}}{1-\sigma_{n}}\right)\left\|x_{n-1}-p\right\|^{2}+\frac{\left(\gamma_{n}+\alpha_{n} \delta_{n} L\right)(1+L) M_{1}}{1-\sigma_{n}} \\
& -\left(\frac{2 \alpha_{n} k}{1-\sigma_{n}}\right)\left\|x_{n}-T_{n} x_{n}\right\|^{2} \tag{2.7}
\end{align*}
$$

where

$$
\begin{aligned}
\mu_{n}= & \tau_{n}+\sigma_{n}-1 \\
= & \alpha_{n}^{2}+2 \alpha_{n} L\left[\alpha_{n}(1+L)+\beta_{n}+\gamma_{n}+\delta_{n}\right] \\
& +2 \alpha_{n} \beta_{n} L^{2}(1+L)+\alpha_{n} \gamma_{n} L+\alpha_{n} \delta_{n} L(1+L)+\gamma_{n}
\end{aligned}
$$

It follows from the conditions (ii)-(v) that

$$
\begin{aligned}
\sigma_{n}= & 2 \alpha_{n} \beta_{n} L^{2}(1+L)+\alpha_{n} L\left[\alpha_{n}(1+L)+\beta_{n}+\gamma_{n}+\delta_{n}\right] \\
& +\alpha_{n} \gamma_{n} L+\alpha_{n} \delta_{n} L(1+L)+2 \alpha_{n}+\gamma_{n} \rightarrow 0(n \rightarrow \infty)
\end{aligned}
$$

therefore there exists a natural number n_{0} such that $1-\sigma_{n} \geq \frac{1}{2}$ for any $n \geq n_{0}$. Hence, from (2.7) we have

$$
\begin{aligned}
\left\|x_{n}-p\right\|^{2} \leq & \left(1+2 \mu_{n}\right)\left\|x_{n-1}-p\right\|^{2}+2\left(\gamma_{n}+\alpha_{n} \delta_{n} L\right)(1+L) M_{1} \\
& -2 \alpha_{n} k\left\|x_{n}-T_{n} x_{n}\right\|^{2} \\
= & \left(1+b_{n}\right)\left\|x_{n-1}-p\right\|^{2}+c_{n}-2 \alpha_{n} k\left\|x_{n}-T_{n} x_{n}\right\|^{2}, \quad \forall n \geq\left(\bigotimes_{6} 8\right)
\end{aligned}
$$

where $b_{n}=2 \mu_{n}$ and $c_{n}=2\left(\gamma_{n}+\alpha_{n} \delta_{n} L\right)(1+L) M_{1}$. From the conditions (ii)-(v) it is easy to see that $\sum_{n=1}^{\infty} b_{n}<\infty$ and $\sum_{n=1}^{\infty} c_{n}<\infty$. Thus using (2.8) and Lemma 1.2 we have limit $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|^{2}$ exists, and so limit $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists (since $\left\|x_{n}-p\right\| \geq 0$).

Since $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, then $\left\{x_{n}\right\}$ is bounded, hence there exists constant $M_{2}>0$ such that $\left\|x_{n}-p\right\|^{2} \leq M_{2}, \forall n \geq 1$. It also follows from (2.8) that

$$
\begin{aligned}
2 \alpha_{n} k\left\|x_{n}-T_{n} x_{n}\right\|^{2} & \leq\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2}+b_{n}\left\|x_{n-1}-p\right\|^{2}+c_{n} \\
& \leq\left\|x_{n-1}-p\right\|^{2}-\left\|x_{n}-p\right\|^{2}+b_{n} M_{2}+c_{n}, \quad \forall n \geq n_{0} .
\end{aligned}
$$

Thus

$$
2 k \sum_{j=n_{0}+1}^{\infty} \alpha_{j}\left\|x_{j}-T_{j} x_{j}\right\|^{2} \leq\left\|x_{n_{0}}-p\right\|^{2}+M_{2} \sum_{j=n_{0}+1}^{\infty} b_{j}+\sum_{j=n_{0}+1}^{\infty} c_{j},
$$

and hence

$$
\begin{equation*}
2 k \sum_{n=1}^{\infty} \alpha_{n}\left\|x_{n}-T_{n} x_{n}\right\|^{2} \leq\left\|x_{n_{0}}-p\right\|^{2}+M_{2} \sum_{n=1}^{\infty} b_{n}+\sum_{n=1}^{\infty} c_{n} . \tag{2.9}
\end{equation*}
$$

By virtue of the $\sum_{n=1}^{\infty} b_{n}<\infty$ and $\sum_{n=1}^{\infty} c_{n}<\infty$, it follows from (2.9) that

$$
\sum_{n=1}^{\infty} \alpha_{n}\left\|x_{n}-T_{n} x_{n}\right\|^{2}<\infty
$$

Since $\sum_{n=1}^{\infty} \alpha_{n}=\infty$, then we must have

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0
$$

This completes the proof of Theorem 2.1.
Remark 2.1. Theorem 2.1 is a generalization of Theorem SL, that is, if $\gamma_{n}=\delta_{n}=0$ for all $n \geq 1$, then one can get Theorem SL from Theorem 2.1.

Remark 2.2. Noticing that, the inequality (2.12) is error in Su and Li [12]. Moreover, it can not be obtained about the Theorem SL [12] because of the error. In here, we give a correction for proof of the Theorem SL use a new method.

Corollary 2.2. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}: K \rightarrow K$ be N strictly pseudocontractive mappings with $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ (the set of common fixed points of $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$). Let $\left\{\alpha_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are two real sequences in [0, 1] satisfying $\alpha_{n}+\gamma_{n} \leq 1$ for all $n \geq 1,\left\{u_{n}\right\}$ be a bounded sequence in K satisfying the following conditions:
(i) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$;
(iii) $\sum_{n=1}^{\infty} \gamma_{n}<\infty$.

Suppose further that $x_{0} \in K$ be any given point and $\left\{x_{n}\right\}$ is the explicit iteration sequence defined by (1.7), then the following conclusions hold:
(i) $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for all $p \in F$;
(ii) $\lim \inf _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0$.

Proof. Taking $\beta_{n}=\delta_{n}=0, \forall n \geq 1$ in Theorem 2.1, then the conclusion of Corollary 2.2 can be obtained from Theorem 2.1 immediately. This completes the proof of Corollary 2.2.

Theorem 2.3. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}: K \rightarrow K$ be N strictly pseudocontractive mappings with $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ (the set of common fixed points of $\left.\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}\right)$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\}$ are four real sequences in [0,1$]$ satisfying $\alpha_{n}+\gamma_{n} \leq 1$ and $\beta_{n}+\delta_{n} \leq 1$ for all $n \geq 1,\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are two bounded sequences in K satisfying the following conditions:
(i) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$;
(iii) $\sum_{n=1}^{\infty=1} \alpha_{n} \beta_{n}<\infty$;
(iv) $\sum_{n=1}^{\infty} \alpha_{n} \delta_{n}<\infty$;
(v) $\sum_{n=1}^{\infty} \gamma_{n}<\infty$;
(vi) $\alpha_{n} \beta_{n} L^{2}<1$, where $L=\max _{1 \leq i \leq N}\left\{L_{i}\right\}$.

Suppose further that $x_{0} \in K$ be any given point and $\left\{x_{n}\right\}$ is the implicit iteration sequence defined by (1.6), then the sequence $\left\{x_{n}\right\}$ convergence strongly to a common fixed point of the mappings family $\left\{T_{i}\right\}_{i=1}^{N}$ if and only if

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} d\left(x_{n}, F\right)=0 \tag{2.10}
\end{equation*}
$$

Proof. The necessity of condition (2.10) is obvious.
Next we prove the sufficiency of Theorem 2.3. For any given $p \in F$, it follows from (2.8) in Theorem 2.1 that

$$
\begin{equation*}
\left\|x_{n}-p\right\|^{2} \leq\left(1+b_{n}\right)\left\|x_{n-1}-p\right\|^{2}+c_{n}, \quad \forall n \geq n_{0} \tag{2.11}
\end{equation*}
$$

where sequences $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ satisfying $\sum_{n=1}^{\infty} b_{n}<\infty$ and $\sum_{n=1}^{\infty} c_{n}<\infty$. Hence, we have

$$
\begin{equation*}
\left[d\left(x_{n}, F\right)\right]^{2} \leq\left(1+b_{n}\right)\left[d\left(x_{n-1}, F\right)\right]^{2}+c_{n}, \quad \forall n \geq n_{0} \tag{2.12}
\end{equation*}
$$

It follows from (2.12) and Lemma 1.2 that the limit $\lim _{n \rightarrow \infty}\left[d\left(x_{n}, F\right)\right]^{2}$ exists, further, limit $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)$ exists. By the condition (2.10), we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0 .
$$

Next we prove that the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in K. In fact, since $\sum_{n=1}^{\infty} b_{n}<\infty, 1+t \leq \exp \{t\}$ for all $t>0$, and (2.11), therefore we have

$$
\begin{equation*}
\left\|x_{n}-p\right\|^{2} \leq \exp \left\{b_{n}\right\}\left\|x_{n-1}-p\right\|^{2}+c_{n}, n \geq n_{0} . \tag{2.13}
\end{equation*}
$$

Hence, for any positive integers $n, m, n \geq n_{0}$, from (2.13) we have

$$
\begin{aligned}
\left\|x_{n+m}-p\right\|^{2} & \leq \exp \left\{b_{n+m}\right\}\left\|x_{n+m-1}-p\right\|^{2}+c_{n+m} \\
& \leq \exp \left\{b_{n+m}\right\}\left[\exp \left\{b_{n+m-1}\right\}\left\|x_{n+m-2}-p\right\|^{2}+c_{n+m-1}\right]+c_{n+m} \\
& =\exp \left\{b_{n+m}+b_{n+m-1}\right\}\left\|x_{n+m-2}-p\right\|^{2}+\exp \left\{b_{n+m}\right\} c_{n+m-1}+c_{n+m} \\
& \leq \cdots \omega_{n} \\
& \leq \exp \left\{\sum_{i=n+1}^{n+m} b_{i}\right\}\left\|x_{n}-p\right\|^{2}+\exp \left\{\sum_{i=n+2}^{n+m} b_{i}\right\} \sum_{i=n+1}^{n+m} c_{i} \\
& \leq W\left\|x_{n}-p\right\|^{2}+W \sum_{i=n+1}^{\infty} c_{i} .
\end{aligned}
$$

where $W=\exp \left\{\sum_{n=1}^{\infty} b_{n}\right\}<\infty$.

Since $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$ and $\sum_{n=1}^{\infty} c_{n}<\infty$, for any given $\epsilon>0$, there exists a positive integer $n_{1} \geq n_{0}$ such that

$$
\left[d\left(x_{n}, F\right)\right]^{2}<\frac{\epsilon^{2}}{8(W+1)}, \quad \sum_{i=n+1}^{\infty} c_{i}<\frac{\epsilon^{2}}{4 W}, \quad \forall n \geq n_{1}
$$

Therefore there exists $p_{1} \in F$ such that

$$
\left\|x_{n}-p_{1}\right\|^{2}<\frac{\epsilon^{2}}{4(W+1)}, \quad \forall n \geq n_{1}
$$

Consequently, for any $n \geq n_{1}$ and for all $m \geq 1$ we have

$$
\begin{aligned}
\left\|x_{n+m}-x_{n}\right\|^{2} & \leq\left(\left\|x_{n+m}-p_{1}\right\|+\left\|x_{n}-p_{1}\right\|\right)^{2} \\
& \leq 2\left(\left\|x_{n+m}-p_{1}\right\|^{2}+\left\|x_{n}-p_{1}\right\|^{2}\right) \\
& \leq 2(1+W)\left\|x_{n}-p_{1}\right\|^{2}+2 W \sum_{i=n+1}^{\infty} c_{i} \\
& <2 \cdot \frac{\epsilon^{2}}{4(W+1)}(1+W)+2 W \cdot \frac{\epsilon^{2}}{4 W} \\
& =\epsilon^{2} .
\end{aligned}
$$

i.e.,

$$
\left\|x_{n+m}-x_{n}\right\|<\epsilon
$$

This implies that $\left\{x_{n}\right\}$ is a Cauchy sequence in K. By the completeness of K, we can assume that $x_{n} \rightarrow x^{*} \in K$. Observe that if $T: K \rightarrow K$ is strictly pseudocontractive and $\left\{p_{n}\right\}_{n=1}^{\infty}$ is a sequence in $F(T)$ which converges strongly to some p, them

$$
\begin{aligned}
\|p-T p\| & \leq\left\|p-p_{n}\right\|+\left\|p_{n}-T p\right\| \\
& =\left\|p-p_{n}\right\|+\left\|T p_{n}-T p\right\| \\
& \leq(1+L)\left\|p-p_{n}\right\| \rightarrow 0(n \rightarrow \infty)
\end{aligned}
$$

Thus $p \in F(T)$, so that $F(T)$ is closed. It follows that $F\left(T_{i}\right)$ is closed for all $i \in I$, so that F is closed. Since

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0
$$

we must have that $x^{*} \in F$. This completes the proof of Theorem 2.3.
Corollary 2.4. Let E be a real Banach space and K be a nonempty closed
convex subset of E. Let $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}: K \rightarrow K$ be N strictly pseudocontractive mappings with $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ (the set of common fixed points of $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$). Let $\left\{\alpha_{n}\right\}$, and $\left\{\gamma_{n}\right\}$ be two real sequences in [0, 1] satisfying $\alpha_{n}+\gamma_{n} \leq 1$ for all $n \geq 1,\left\{u_{n}\right\}$ be a bounded sequence in K satisfying the following conditions:
(i) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$;
(iii) $\sum_{n=1}^{\infty} \gamma_{n}<\infty$.

Suppose further that $x_{0} \in K$ be any given point and $\left\{x_{n}\right\}$ is the explicit iteration sequence defined by (1.7), then the sequence $\left\{x_{n}\right\}$ convergence strongly to a common fixed point of the mappings family $\left\{T_{i}\right\}_{i=1}^{N}$ if and only if the condition (2.10) is satisfied.

Proof. Taking $\beta_{n}=\delta_{n}=0, \forall n \geq 1$ in Theorem 2.3, then the conclusion of Corollary 2.4 can be obtained from Theorem 2.3 immediately. This completes the proof of Corollary 2.4.

In the case of $N=1,(1.6)$ become the implicit iteration process as follows:

$$
\left\{\begin{array}{l}
x_{n}=\left(1-\alpha_{n}-\gamma_{n}\right) x_{n-1}+\alpha_{n} T y_{n}+\gamma_{n} u_{n}, n \geq 1, \tag{2.14}\\
y_{n}=\left(1-\beta_{n}-\delta_{n}\right) x_{n-1}+\beta_{n} T x_{n}+\delta_{n} v_{n}, n \geq 1,
\end{array}\right.
$$

The conclusion of Theorems 2.1 and 2.3 are still valid for the iteration process (2.14). Furthermore, we have the following result:

Theorem 2.5. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $T: K \rightarrow K$ be a semi-compact strictly pseudocontractive mappings with $F(T)=\{x \in K: T x=x\} \neq \emptyset$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$, $\left\{\delta_{n}\right\}$ are four real sequences in [0,1] satisfying $\alpha_{n}+\gamma_{n} \leq 1$ and $\beta_{n}+\delta_{n} \leq 1$ for all $n \geq 1,\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are two bounded sequences in K satisfying the following conditions:
(i) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$;
(iii) $\sum_{n=1}^{\infty} \alpha_{n} \beta_{n}<\infty$;
(iv) $\sum_{n=1}^{\infty} \alpha_{n} \delta_{n}<\infty$;
(v) $\sum_{n=1}^{\infty} \gamma_{n}<\infty$;
(vi) $\alpha_{n} \beta_{n} L^{2}<1$.

Suppose further that $x_{0} \in K$ be any given point and $\left\{x_{n}\right\}$ is the implicit iteration sequence defined by (2.14), then the sequence $\left\{x_{n}\right\}$ convergence strongly to a fixed point of T

Proof. By the Theorem 2.1 we known that

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0
$$

then there exists a subsequence $\left\{n_{k}\right\}$ of $\{n\}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-T x_{n_{k}}\right\|=0 \tag{2.15}
\end{equation*}
$$

By the semi-compactness of T, there must exists a subsequence $\left\{x_{n_{k_{i}}}\right\}$ of $\left\{x_{n_{k}}\right\}$ such that

$$
\lim _{i \rightarrow \infty} x_{n_{k_{i}}}=p_{0} .
$$

It follows from (2.15) that $p_{0}=T p_{0}$, hence $p_{0} \in F(T)$. Since $\lim _{n \rightarrow \infty}\left\|x_{n}-p_{0}\right\|$ exists, then

$$
\lim _{n \rightarrow \infty} x_{n}=p_{0}
$$

This completes the proof of Theorem 2.5.
Corollary 2.6. Let E be a real Banach space and K be a nonempty closed convex subset of E. Let $T: K \rightarrow K$ be a semi-compact strictly pseudocontractive mappings with $F(T)=\{x \in K: T x=x\} \neq \emptyset$. Let $\left\{\alpha_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be two real sequences in $[0,1]$ satisfying $\alpha_{n}+\gamma_{n} \leq 1$ for all $n \geq 1,\left\{u_{n}\right\}$ be a bounded sequence in K satisfying the following conditions:
(i) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$;
(iii) $\sum_{n=1}^{\infty} \gamma_{n}<\infty$.

Suppose further that $x_{0} \in K$ be any given point and $\left\{x_{n}\right\}$ is the explicit iteration sequence defined by

$$
\begin{equation*}
x_{n}=\left(1-\alpha_{n}-\gamma_{n}\right) x_{n-1}+\alpha_{n} T x_{n-1}+\gamma_{n} u_{n}, n \geq 1 \tag{2.16}
\end{equation*}
$$

Then the sequence $\left\{x_{n}\right\}$ convergence strongly to a fixed point of T
Proof. Taking $\beta_{n}=\delta_{n}=0, \forall n \geq 1$ in Theorem 2.5, then the conclusion of Corollary 2.6 can be obtained from theorem 2.5 immediately. This completes the proof of Corollary 2.6.

Bibliography

1. F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20(1967)197-228.
2. S. S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal. 30(1997)4197-4028.
3. F. Gu, The new composite implicit iteration process with errors for common fixed points of a finite of strictly pseudocontractive mappings, J. Math. Anal. Appl., 329(2007)766-776
4. T. L. Hicks, J. R. Kubicek, On the Mann iterative process in Hilbert spaces, J. Math. Anal. Appl. 59(1977)498-504.
5. S. Maruster, The solution by iteration of nonlinear equations, Proc. Amer. Math. Soc. 66(1977)69-73.
6. M. O. Osilike, Strong and weak convergence of the Ishikawa iteration methods for a class of nonlinear equations, Bull. Korean Math. Soc. 37(2000)117-127.
7. M. O. Osilike, Implicit iteration process for common fixed point of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294(2004) 73-81.
8. M. O. Osilike, S. C. Aniagbosor, B. G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces,PanAmer. Math. J. 12(2002)77-88.
9. M. O. Osilike, A. Udomene, Demiclosedness principle and convergence results for strictly pseudocontractive mappings of Browder-Petryshyn type, J. Math. Anal. Appl. 256(2001)431-445.
10. B. E. Rhoades, Comments on two fixed point iteration methods, J. Math. Anal. Appl. 56(1976)741-750.
11. B. E. Rhoades, Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc. 196(1974)741-750.
12. Y. $\mathrm{Su}, \mathrm{S} . \mathrm{Li}$, Composite implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 320(2006) 882-891.
13. H.-K. Xu and M. G. Ori, An implicit iterative process for nonexpansive mappings, Numer. Funct. Anal. and Optimiz. 22(2001)767-773.

Institute of Applied Mathematics
Department of Mathematics
Hangzhou Teacher's College, Hangzhou, Zhejiang 310036, China
Email: gufeng99@sohu.com

[^0]: Key Words: Strictly pseudocontractive mappings; Implicit iteration process with errors; Common fixed points

 Mathematics Subject Classification: 47H05, 47H09, 49M05
 The present studies were supported by the National Natural Science Foundation of China (10771141), the Natural Science Foundation of Zhejiang Province (Y605191)

 Received: August, 2009
 Accepted: January, 2010

