CONFORMAL JACOBI OPERATORS OF HYPERSURFACES IN THE DE SITTER SPACE

Esmaiel Abedi

Abstract

Classification of the complete spacelike hypersurfaces in the de Sitter space S_1^{n+1} $(n \ge 4)$ with commuting Jacobi operators and non-zero index of nullity.

1 Introduction

The spacelike hypersurfaces in the de Sitter space S_1^{n+1} have been of increasing interest in the resent years from different points of view. For instance, Ramanathan [12] proved that every compact spacelike surface in S_1^3 with constant mean curvature is totally umbilical. This result was generalized to hypersurfaces of any dimension by Montiel [11]. Li [9] obtained the same conclusion when the compact spacelike surface has constant Gaussian curvature(see also [2]). Akutagawa [1] and Ramanathan [12] investigated spacelike hypersurface in a de Sitter space and proved independently that a complete spacelike hypersurface in a de Sitter space with constant mean curvature is totally umbilical if the mean curvature H satisfied $H^2 \leq 1$ when n = 2 and $n^2 H^2 \leq 4(n-1)$ when $n \geq 3$. Later, Cheng [8] generalized this result to general submanifolds in a de Sitter space.

On the other hand, the well-known examples with $H^2 = \frac{4(n-1)}{n^2}$ when n > 2 are the umbilical sphere $S^n(\frac{(n-2)^2}{n^2})$ and the hyperbolic cylinder $H^1(c_1) \times$

Key Words: de Sitter space, Weyl tensor, Conformally flat space Mathematics Subject Classification: 53C42

Received: March, 2009 Accepted: January, 2010

⁵

 $S^{n-1}(c_2), c_1 = 2-n$ and $c_2 = \frac{n-2}{n-1}$. In [10], Liu proved that only n-dimensional $(n \ge 3)$ complete submanifolds in a de Sitter space S_p^{n+p} with parallel mean curvature vector and $H^2 = \frac{4(n-1)}{n^2}$ are totally umbilical or hyperbolic cylinder $H^1(c_1) \times S^{n-1}(c_2)$ in S_1^{n+1} or has unbounded volume and positive Ricci curvature.

As a natural generalization of Ramanathan and Li results, Aledo and Galvez [4] characterized the totally umbilical round spheres of S_1^3 as the only compact linear Wingarten spacelike surface. In [3], Aledo and Espinar classified the spacelike surfaces in S_1^3 with the mean curvature H and the Gauss-Kronecker curvature K verifying the relationship 2a(H-1) + b(K-1) = 0 with $a + b \neq 0$.

On the other hand, conformally flat manifolds represent a classical field of investigation in Riemannian geometry. Brozos-Vazquez and Gilkey [6], characterized Riemannian manifolds of constant sectional curvature in tensor of commutation properties of their Jacobi operators. Ryan [13] classified conformally flat spaces with parallel Ricci tensor and who proved the following

Theorem 1.1. Let M be an n-dimensional connected, complete and conformally flat space with parallel Ricci tensor. Then M is locally isometric to one following spaces:

 $\mathbb{R}^n, S^n(k), H^n(-k), \mathbb{R} \times S^{n-1}(k), \mathbb{R} \times H^{n-1}(-k), S^p(k) \times H^{n-p}(-k)$

In this paper, firstly we show that, if M^n is a manifold with commuting conformal Jacobi operators, then M^n is conformally flat. Then we prove that, if M^n is a connected spacelike hypersurface of the de Sitter space S_1^{n+1} with a non-zero index of nullity, then M^n is totally umbilical or isometric to the $\mathbb{R} \times S^{n-1}(c)$, $S^1(c_1) \times H^{n-1}(c_2)$ or $S^{n-1}(c_1) \times H^1(c_2)$.

2 Preliminaries

2.1 The de Sitter and Hyperbolice Space

Let L^{n+2} be the (n+2)-dimensional Lorentz-Minkowski space given as the vectorial space \mathbb{R}^{n+2} with the Lorentzian metric \langle,\rangle induced by the quadratic form $-x_0^2 + x_1^2 + \ldots + x_{n+1}^2$, and consider the *de Sitter space* realized as the Lorentzian submanifold

$$S_1^{n+1} = \{(x_0, x_1, ..., x_{n+1}) \in L^{n+2} : -x_0^2 + x_1^2 + ... + x_{n+1}^2 = 1\}.$$

As it is well-known, S_1^{n+1} inherits from L^{n+2} a time orientable Lorentzian metric which makes it the standard model of a Lorentzian space of constant

sectional curvature 1. We will also consider the hyperbolic space

$$H^{n+1} = \{(x_0, x_1, ..., x_{n+1}) \in L^{n+2}: -x_0^2 + x_1^2 + ... + x_{n+1}^2 = -1, x_0 > 0\}.$$

A smooth immersion $\psi : M^n \longrightarrow S_1^{n+1}$ of a *n*-dimensional connected manifold M^n is called a *spacelike hypersurface* if the induced metric via ψ is a Riemannian metric on M^n , which, as usual, is also denoted by \langle, \rangle .

2.2 The Weyl Curvature

Let ∇ be the Levi-Civita connection of M. The curvature operator R(x, y)and curvature tensor R(x, y, z, w) are defined by setting

$$R(x,y) := \nabla_x \nabla_y - \nabla_y \nabla_x - \nabla_{[x,y]}$$

and

$$R(x, y, z, w) := \langle R(x, y)z, w \rangle.$$

Let e_i be a local orthonormal frame field for the tangent bundle. We sum over repeated indices to define the *Ricci tensor* ρ and *scalar curvature* τ by setting:

$$\rho_{ij} := \sum_k R_{ikkj}$$

and

$$\tau := \sum_i \rho_{ii}$$

where, $R_{ijkl} = R(e_i, e_j, e_k, e_l)$.

The associated *Ricci operator* is defined by $\rho(e_i) = \sum_j \rho_{ij} e_j$. We introduce additional tensors by

$$L(x,y)z := \langle \rho(y), z \rangle x - \langle \rho(x), z \rangle y + \langle y, z \rangle \rho(x) - \langle x, z \rangle \rho(y)$$

and

$$R_0(x,y)z := \langle y, z \rangle x - \langle x, z \rangle y.$$

The Weyl conformal curvature operator W(x, y) is defined by

$$W(x,y) := R(x,y) + \frac{\tau}{(n-1)(n-2)} R_0(x,y) - \frac{1}{n-2} L(x,y).$$

2.3 Conformal Geometry

We say that two Riemannian metrics g_1 and g_2 on Riemannian manifold of M are *conformally equivalent* if $g_1 = \alpha g_2$ where α is a smooth positive scaling function. The Weyl conformal curvature operator is invariant on a conformal class as

$$W_{g_1} = W_{g_2} \qquad \text{if} \qquad g_1 = \alpha.g_2$$

Conformal analogues of notions in Riemannian geometry can be obtained by replacing the full curvature operator R by the Weyl operator W; we add the name "conformal" in doing this. For example, one says that (M^n, g) is *conformally flat* if the Weyl tensor W vanishes identically; this implies that (M^n, g) is conformally equivalent to flat space. Then for a conformally flat space we have

$$R_{ijkl} = \frac{1}{n-2} (g_{il}\rho_{jk} + g_{jk}\rho_{il} - g_{ik}\rho_{jl} - g_{jl}\rho_{ik}) - \frac{\tau}{-\frac{\tau}{(n-1)(n-2)}} (g_{il}g_{jk} - g_{ik}g_{jl}).$$

2.4 Jacobi operator and conformal Jacobi operator

The Jacobi operator of the tangent bundle is a self-adjoint map $J_R(x)$ defined by

$$J_R(x)y := R(y, x)x.$$

Similarly, we follow the discussion of [5], the *conformal Jacobi operator* J_W is defined by

$$J_W(x)y := W(y,x)x.$$

2.5 Index of Nullity and Conullity

The *nullity vector space* of the curvature tensor at a point p of a Riemannian manifold (M^n, g) is given by

$$E_{0p} = \{ x \in T_p M : R(x, y)z = 0 \text{ for all } y, z \in T_p M \}.$$

The index of nullity at p is the number $v(p) = \dim E_{op}$. The index of conullity at p is the number u(p) = n - v(p).

3 Manifolds with commuting conformal Jacobi operators

Theorem 3.1. Let M be a Riemannian manifold. If $J_W(x)J_W(y) = J_W(y)J_W(x)$ for all x, y, then M is conformally flat.

Proof. Since $J_W(x)J_W(y) = J_W(y)J_W(x)$ for all $x, y \in T_pM$, so the conformal Jacobi operators $\{J_W(x)\}|_{x \in T_pM}$ form a commuting family of self-adjoint operators. Such a family can be simultaneously diagonalized - i.e. we can decompose

$$T_p M = \oplus (T_p M)_{\lambda},$$

where $J_W(x)y = \lambda(x)y$ for all $y \in (T_pM)_{\lambda}$. Choose $y \in T_pM$ such that $y = \sum_{\lambda} y_{\lambda} (y_{\lambda} \in (T_pM)_{\lambda})$ and $y_{\lambda} \neq 0$ for all λ . We have

$$0 = J_W(y)y = \sum_{\lambda} \lambda(y)y_{\lambda}.$$

Since $\{y_{\lambda}\}$ is a linearly independent set, this implies $\lambda(y) = 0$ for all λ . We have $\lambda(y) = \langle J_W(y)z_{\lambda}, z_{\lambda} \rangle$, for a fix unit vector $z_{\lambda} \in (T_pM)_{\lambda}$, so λ is a continuous function. Since the set of the $\{y = \sum_{\lambda} y_{\lambda} : y_{\lambda} \neq 0 \forall \lambda\}$ is a dense open subset of T_pM , and λ vanishes on this subset, then λ vanishes identically. Thus $J_W(x) = 0$ for all $x \in T_pM$; it now follows that W = 0 and so M is conformally flat. \Box

4 The hypersurfaces of S_1^{n+1} with non-zero index of nullity

We begin this section with two examples:

Example 1. Let (\mathbb{CP}^n, g_{FS}) denote the complex projective space with Fubini-Study metric. We know that the sectional curvature of (\mathbb{CP}^n, g_{FS}) satisfies the inequality $\frac{1}{4} < K \leq 1$. So the complex projective space is a manifold with the index of nullity zero, therefore it is not conformally flat.

Example 2. Let $(\overline{M}, \overline{g})$ be an (n-1)-dimensional space form with constant curvature of c. Suppose $\lambda(t) = \frac{1}{1+t}$ and $\mathbb{R}_+ = \{x \in \mathbb{R} : x > -1\}$. Consider the product manifold $M = \mathbb{R}_+ \times \overline{M}$, with the Riemannian metric

$$g = dx^0 \otimes dx^0 + \pi^* \overline{g},$$

where x^0 is the natural coordinate on \mathbb{R}_+ and $\pi : \mathbb{R}_+ \times \overline{M} \longrightarrow \overline{M}$ is the projection on the second factor. The manifold (M, g) is called a *Riemannian* cone over $(\overline{M}, \overline{g})$. Let T denote the unit vector field tangent to \mathbb{R}_+ in $\mathbb{R}_+ \times \overline{M}$. The curvature tensor of $M = \mathbb{R}_+ \times \overline{M}$ is described by (see [7])

$$R(X,Y)Z = g(B_0(Y),Z)B_0(X) - g(B_0(X),Z)B_0(Y) + (\pi^*R)(X,Y)Z$$

for all tangent vector field X, Y, Z to \overline{M} , where $B_0(X) := \nabla_X T = \lambda(X - -g(X,T)T)$. At any point $p \in M$, fix an orthonormal basis of tangent vectors $\{\underline{e}_0, e_1, ..., e_{n-1}\}$, with $e_0 = T_p$ and $e_1, ..., e_{n-1}$ tangent to the space form $(\overline{M}, \overline{g})$. Then, we have

$$R_{ijkh} = 0, \qquad \text{if} \qquad 0 \in \{ijkh\}$$

$$R_{ijkh} = \lambda^2 (c-1)(\delta_{ik}\delta_{jh} - \delta_{jk}\delta_{ih}), \qquad \text{otherwise}$$

This shows that, if $c \neq 1$, then (M, g) has the index of nullity equal to 1. Also we show easily that (M, g) is conformally flat.

Theorem 4.1. Let $M^n (n \geq 3)$ be a complete and connected spacelike hypersurface in the de Sitter space S_1^{n+1} . If the Weyl conformal operators are commuting and the index of nullity M^n is non-zero, then M^n is totally umbilical or isometric to one of product spaces $\mathbb{R} \times S^{n-1}(c)$, $S^1(c_1) \times H^{n-1}(c_2)$ or $S^{n-1}(c_1) \times H^1(c_2)$.

Proof. If, for any $p \in M$, we have v(p) = n, then M is flat therefore it is a totally umbilical hypersurface. Now let v(p) < n. Since $v(p) \neq 0$, then there exists a locally orthonormal frame field $\{e_0, e_1, ..., e_{n-1}\}$ of M^n , such that $e_0(p) \in E_{0p}$. Hence, we have $R_{0jkl} = 0$ for all j, k, l, and it follows that $\rho_{0k} = -\sum_j R_{0jkj} = 0$ for all k. Since M^n is conformally flat, then we have

$$0 = R_{0jkl} = \frac{1}{n-2} (\delta_{0l} \rho_{jk} - \delta_{0k} \rho_{jl}) - \frac{\tau}{(n-1)(n-2)} (\delta_{0l} \delta_{jk} - \delta_{jl} \delta_{0k}), \quad (1)$$

for any choice of j, k, l. Choosing k = 0 and $l \neq 0$, we then get

$$\rho_{jl} - \frac{\tau}{n-1} \delta_{jl} = 0. \tag{2}$$

Hence, the Ricci tensor is described by

$$\rho_{ii} = \frac{\tau}{n-1} \qquad if \qquad i \ge 1, \tag{3}$$

and $\rho_{ij} = 0$ in all the other cases.

Clearly, if the index of nullity is greater than 1, we can choose at least two locally vector field e_0, e_1 , such that $e_0(p)$ and $e_1(p)$ belong to E_{0p} . Let $\{e_0, e_1, \dots, e_{n-1}\}$ be a locally orthonormal frame field. But then, since e_1 is a nullity vector field, from equation (4.3), we have

$$0 = \rho_{11} = \frac{\tau}{n-1},\tag{4}$$

that is, $\tau = 0$ and so, again by (4.3), $\rho_{ij} = 0$ for all i, j. Then v(p) = 0 and this is a contradiction.

Now suppose \overline{M} be the conullity integral submanifold of M^n ; that is, for any $p \in \overline{M}$ and any $x \in T \mathbb{O}_p \overline{M}$ then x does not belong to the nullity vector space of E_{0p} . Clearly \overline{M} is (n-1)-dimensional hypersurface of M^n . By equation (4.3), the Ricci tensor of \overline{M} is

$$Ric = \frac{\tau}{n-1}g,\tag{5}$$

then \overline{M} is an Einstein manifold. Since $n \geq 3$, it results that τ is constant. Therefore by (4.3), the Ricci tensor of M^n is parallel. Now by Theorem 1.1, we get that M^n is isometric to one of product spaces $\mathbb{R} \times S^{n-1}(c)$, $S^1(c_1) \times H^{n-1}(c_2)$ or $S^{n-1}(c_1) \times H^1(c_2)$. \Box

Acknowledgement

This research was in part supported by a grant from Azarbaijan university of Tarbiat Moallem.

References

- K. Akutagawa, On spacelike hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196(1987) 13-19.
- [2] J. A. Aledo, L. J. Alias, A. Romero, Integral formulas for compact spacelike hypersurfaces in de Sitter space, J. Geom. Phys. 42(1999) 195-208.
- [3] J. Aledo, J. A. Espinar, A conformal representation for linear Wingarten surfaces in the de Sitter spaces, J. Geom. Phys. 57(2007) 1669-1977.
- [4] J. Aledo, J. A. Galvez, Some rigidity results for compact spaces surfaces in the 3-dimensional de Sitter spaces, World Scientific PC(2002) 19-27.
- [5] N. Blazic, P. Gilkey, S. Nikcevic, U. Simon The spectral geometry of the Weyl conformal tensor, Banach Center Publication 69(2005) 195-203.

- [6] M. Brozos-Vazquez, P. Gilkey, Manifolds with commuting Jacobi operators, J. Geom. 86(2007) 21-30.
- [7] E. Boeckx, O. Kowalski, L. Vanhecke, *Riemannian manifolds of conullity two*, World Scientific, 1996.
- [8] Q. M. Cheng, Complete spacelike submanifolds in a de Sitter space with parallel mean curvature vector, Math. Z. 206(1991) 333-339.
- [9] H. Li, Global rigidity theorems of hypersurfaces, Arc. Math. 35(1997) 327-351.
- [10] X. Liu, Complete spacelike submanifolds in de Sitter space, Acta Math. Univ. Comenianae 2(2001) 241-249.
- [11] S. Montiel, An integral in quality for compact spacelike hypersurfaces in the de Sitter space and application to the case of constant mean curvature, Indiana Univ. Math. J. 37(1988) 909-917.
- [12] J. Ramanathan, Complex spacelike hypersufaces of constant mean curvature in the de Sitter space, Indiana Univ. Math. J. 36(1987) 349-359.
- [13] P. Ryan, A note on conformally flat spaces with constant scaler curvature, Differ. Geom. Appl., 2(1972) 115-124.

Azarbaijan University of Tarbiat Moallem, Department of Mathematics, Tabriz, Iran e-mail: esabedi@azaruniv.edu