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NUMERICAL DISCRETE ALGORITHM

FOR SOME NONLINEAR PROBLEMS

Cristina Sburlan

Abstract

In this paper we use the eigenfunctions of the Laplacian to approxi-
mate the solution of some nonlinear equations which are used to model
natural phenomena (as the Navier-Stokes flow equations, for instance).
In this respect we propose a numerical algorithm, combining the Uzawa
and Arrow-Hurwitz algorithms. The algorithm proposed here shares fea-
tures from both algorithms, and it has the following advantages upon
them: the usage of a single parameter (like in the Uzawa algorithm) and
the fact that the approximative equation is linear (like in Arrow-Hurwitz
algorithm). We prove the convergence of the approximate solution to
the weak solution of the given equation. Next, we apply a Galerkin-type
discretization of this algorithm in order to compute the approximate so-
lution.

1 An Arrow-Hurwicz-Uzawa Type Algorithm

In this section we develop a numerical algorithm used to approximate the
solution of the stationary nonlinear Navier-Stokes system, combining Uzawa
and Arrow-Hurwicz algorithms presented in [6], which represent extensions of
the classical Uzawa and Arrow-Hurwicz algorithms that appear in nonlinear
optimization problems. We describe the algorithm and prove the convergence
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of the solution obtained by this algorithm to the weak solution of Navier-
Stokes system (without a direct reference to the optimization theory, even if
the idea of an algorithm of this type comes from the optimization theory).

This numerical method can also be applied to other linear or nonlinear
problems modeling natural phenomena, such as diffusion-dispersion problems,
Oseen equations, Brinkman equations and so on.

Consider the Navier-Stokes system for the flow of an incompressible fluid:
div u(x) = 0

(u · ∇)u(x) − ν∆u(x) + ∇p(x) = f(x), x ∈ Ω
u = 0 on ∂Ω.

where ν is the dynamical viscosity, Ω ⊂ R
N , 2 ≤ N ≤ 3, is a bounded domain

with smooth enough boundary to apply the Green formula and the Sobolev-
Kondrashov theorem, f ∈ L2(Ω) represents the body forces, the scalar function
p represents the pressure and the vector function u = (u1, . . . , uN ) represents
the velocity of the fluid.

Consider A ∈ L (E,E∗) (the Stokes operator):

(Ay,w) =
N

∑

i=1

∫

Ω

∇yi · ∇widx,∀ y, w ∈ E

and define the nonlinear form b (y, z, w) :=
N
∑

i,j=1

∫

Ω

yiDizjwjdx.

We write the weak formulation of the problem:

ν(Au, v) + b(u, u, v) = (f −∇p, v),∀v ∈ E,

or, equivalently,

ν < u, v > +b(u, u, v) = (f −∇p, v),∀v ∈ E, (1)

where we have considered the Hilbert spaces X := {y ∈
(

L2 (Ω)
)N

| ∇ · y =

0, n · y = 0 on ∂Ω} and E := {y ∈
(

H1
0 (Ω)

)N
| ∇ · y = 0}.

Denote by < ·, · > and ‖·‖ (respectively, by (·, ·) and |·|) the scalar product

and the norm on V :=
(

H1
0 (Ω)

)N
(respectively on

(

L2 (Ω)
)N

).

Define the three-linear functional b̂ : V × V × V → R,

b̂(u, v, w) =
1

2

N
∑

i,j=1

∫

Ω

ui(Divj)wjdx −
1

2

N
∑

i,j=1

∫

Ω

uivj(Diwj)dx, u, v, w ∈ V,

where u = (u1, . . . , uN ), v = (v1, . . . , vN ), w = (w1, . . . , wN ), and Diuj repre-
sents the partial derivative of uj with respect to xi (x = (x1, . . . , xN ) ∈ Ω).
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We have (see [6], p. 205) that b̂(u, u, v) = b(u, u, v),∀u, v ∈ E.

Also, in [6] is proved that ∃c > 0 such that |b̂(u, v, w)| ≤ c · ‖u‖ · ‖v‖ ·
‖w‖ ,∀u, v, w ∈ V, and, if ν2 − c ‖f‖E∗ > 0 and u is the solution of problem
(1), then ‖u‖ ≤ 1

ν
‖f‖E∗ . Moreover, in [6] there are described the following

numerical algorithms, whose solutions converge to the solution of problem (1).

Uzawa Algorithm: Let p0 ∈ L2(Ω) be arbitrary given. For a known pm

(m ∈ N), define um+1 ∈ V and pm+1 ∈ L2(Ω) as the solution of the problem:

ν < um+1, v > +b̂(um+1, um+1, v) = (pm,div v) + (f, v),∀v ∈ V,
(pm+1 − pm, q) + ρ(div um+1, q) = 0,∀q ∈ L2(Ω),

where ρ > 0 is a real number such that 0 < ρ < 2ν and ν − c
ν
‖f‖E∗ > 0.

Arrow-Hurwicz Algorithm: Let u0 ∈ V and p0 ∈ L2(Ω) arbitrary given.
For known um, pm (m ∈ N), define um+1 ∈ V and pm+1 ∈ L2(Ω) as the
solution of the problem:

< um+1 − um > +ρν < um, v > +ρb̂(um, um+1, v) =
= ρ(pm,div v) + ρ(f, v),∀v ∈ V,

α(pm+1 − pm, q) + ρ(div um+1, q) = 0,∀q ∈ L2(Ω),

where ν − 2c
ν
‖f‖E∗ − 4c2

ν2 ‖f‖
2
E∗ = ν∗ > 0 and α, ρ > 0 are real numbers such

that 0 < ρ < αν∗

2(1+ν2α) .

The Uzawa algorithm has as disadvantage that in the equation appears the
nonlinear term b̂(um+1, um+1, v), which makes difficult the solvability of this
equation. On the other hand, in the Arrow-Hurwicz algorithm, with respect
to the Uzawa algorithm, appears moreover the real parameter α, which is
related by some conditions with the parameter ρ. However, this method has
the advantage that the term b̂(um, um+1, v), in which um+1 is unknown, is
linear with respect to this unknown function.

Next, we will develop an algorithm of the above type, and we will prove the
convergence for it. The advantage of this algorithm against those presented
are the usage of a single real parameter, ρ, like in the Uzawa’s method, and
of the linear term b̂(um, um+1, v), like in the Arrow-Hurwicz method. We
succeeded to combine the two above methods to give a new numerical method
that presents the mentioned advantages.

The numerical algorithm is the following one:
Initially, we arbitrary give p0 ∈ L2(Ω) and u0 ∈ V . For known pm and um,

we compute pm+1 ∈ L2(Ω) and um+1 ∈ V by:

< um+1 − um, v > +ρν < um+1, v > +ρb̂(um, um+1, v)−
−ρ(pm,div v) = ρ(f, v),∀v ∈ V,

(2)
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(pm+1 − pm, q) + ρ(div um+1, q) = 0,∀q ∈ L2(Ω), (3)

where ρ is an arbitrary strictly positive real number.
For an arbitrary fixed m ∈ N

∗, we will prove the existence and the unique-
ness of the solution for the previous algorithm.

Theorem 1.1 If m ∈ N
∗ and pm ∈ L2(Ω), um ∈ V are known, then the

solution of the problem (2)−(3), (um+1, pm+1) ∈ V × L2(Ω), exists and it is
unique.

Proof. If we succeed to prove the existence and the uniqueness of um+1,
then the existence and the uniqueness of pm+1 will follow immediately, pm+1

being determined from relation (3): pm+1 = pm − ρdiv um+1.
Let us prove now the existence and the uniqueness of um+1. Equation (2)

can be written as:
< um+1, v > +ρν < um+1, v > +ρb̂(um, um+1, v) =

= ρ(pm,div v)+ < um, v > +ρ(f, v),∀v ∈ V,

or, equivalently, a(um+1, v) = g(v),∀v ∈ V , where a : V × V → R,

a(u, v) = (1 + ρν) < u, v > +ρ
2

N
∑

i,j=1

∫

Ω

um
i (Diuj)vjdx−

−ρ
2

N
∑

i,j=1

∫

Ω

um
i uj(Divj)dx, u, v ∈ V,

and we have considered the linear continuous functional g : V → R given by
g(v) =< um, v > +ρ(pm,div v) + ρ(f, v),∀v ∈ V

(we have applied: b̂(u, v, w) = 1
2

N
∑

i,j=1

∫

Ω

ui(Divj)wjdx− 1
2

N
∑

i,j=1

∫

Ω

uivj(Diwj)dx).

We have that a (u, v) is continuous, bilinear and coercive, because

a(u, u) =< u, u >= ‖u‖
2
,∀u ∈ V,

so, applying the Lax-Milgram Theorem, we have that there exists a unique
um+1 solution of the above equation. 2

Theorem 1.2 If
ν2 − c ‖f‖E∗ > 0 (4)

and ρ ∈ R satisfies the condition

0 < ρ <
ν

(

ν2 − c ‖f‖E∗

)

c2 ‖f‖
2
E∗ + ν2

, (5)

then, for m → ∞, the solution um of problem (2) (strongly) converges to u in
V , and pm weakly converges to p in L2(Ω)/R, where (u, p) is the solution of
problem (1).
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Proof. The proof can be done following a similar way to the one used
to prove the convergence of the Arrow-Hurwitz algorithm. First, denote by
vm = um − u and by qm = pm − p. We take v = 2vm+1 in equation (2) and in
equation (1) multiplied by ρ, and we have:

< um+1 − um, 2vm+1 > +ρν < um+1, 2vm+1 > +ρb̂(um, um+1, 2vm+1)−
−ρ(pm,div (2vm+1)) = (f, 2vm+1)

and ρν < u, 2vm+1 > +ρb̂(u, u, 2vm+1) − (p,div (2vm+1)) = (f, 2vm+1).
Making the difference of these equations term by term, we obtain:

< um+1 − um, 2vm+1 > +2ρν < um+1 − u, vm+1 > +

+2ρ
[

b̂(um, um+1, vm+1) − b̂(u, u, vm+1)
]

− 2ρ(pm − p,div vm+1) = 0.

On the other hand, we can write:

< um+1 − um, 2vm+1 >=< vm+1 − vm, 2vm >=
=< vm+1 − vm, vm+1 > + < vm+1 − vm, vm+1 >=

=
∥

∥vm+1
∥

∥

2
− < vm, vm+1 > + < vm+1 − vm, vm+1 − vm > +

+ < vm+1 − vm, vm >=
∥

∥vm+1
∥

∥

2
+

∥

∥vm+1 − vm
∥

∥

2
− < vm, vm+1 > +

+ < vm+1, vm > − < vm, vm >=
∥

∥vm+1
∥

∥

2
− ‖vm‖

2
+

∥

∥vm+1 − vm
∥

∥

2
and

b̂(um, um+1, vm+1) − b̂(u, u, vm+1) =

= b̂(um+1 − u, u, vm+1) + b̂(um, um+1, vm+1) − b̂(um+1, u, vm+1) =

= b̂(vm+1, u, vm+1) + b̂(um − um+1, u, vm+1) + b̂(um, um+1, vm+1)−

−b̂(um, u, vm+1) = b̂(vm+1, u, vm+1) + b̂(vm − vm+1, u, vm+1)+

+b̂(um, um+1 − u, vm+1) = b̂(vm+1, u, vm+1) + b̂(vm − vm+1, u, vm+1)+

+b̂(um, vm+1, vm+1) = b̂(vm+1, u, vm+1) + b̂(vm − vm+1, u, vm+1),

because b̂(w, v, v) = 0,∀w, v ∈ V (see [6], p. 218).
Using these relations, we have that:

∥

∥vm+1
∥

∥

2
− ‖vm‖

2
+

∥

∥vm+1 − vm
∥

∥

2
+ 2ρν

∥

∥vm+1
∥

∥

2
=

−2ρb̂(vm+1, u, vm+1) − 2ρb̂(vm − vm+1, u, vm+1) + 2ρ(qm,div vm+1) ≤

2ρc
∥

∥vm+1
∥

∥

2
· ‖u‖ + 2ρc

∥

∥vm − vm+1
∥

∥ ·
∥

∥vm+1
∥

∥ · ‖u‖ + 2ρ(qm,div vm+1) ≤

2ρc
ν
‖f‖E∗

∥

∥vm+1
∥

∥

2
+ 2ρc

ν
‖f‖E∗

∥

∥vm − vm+1
∥

∥ ·
∥

∥vm+1
∥

∥ + 2ρ(qm,div vm+1).

But, for every δ > 0, we can write:

2ρc
ν
‖f‖E∗

∥

∥vm − vm+1
∥

∥·
∥

∥vm+1
∥

∥ ≤ ρ2c2

ν2δ
‖f‖

2
E∗

∥

∥vm+1
∥

∥

2
+δ

∥

∥vm+1 − vm
∥

∥

2
,

therefore

∥

∥vm+1
∥

∥

2
− ‖vm‖

2
+

∥

∥vm+1 − vm
∥

∥

2
+ 2ρν

∥

∥vm+1
∥

∥

2
≤

≤ 2ρc
ν
‖f‖E∗

∥

∥vm+1
∥

∥

2
+ ρ2c2

ν2δ
‖f‖

2
E∗

∥

∥vm+1
∥

∥

2
+

+δ
∥

∥vm+1 − vm
∥

∥

2
+ 2ρ(div vm+1, qm).

(6)
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Next, taking q = 2qm+1 in relation (3), we have that (pm+1−pm, 2qm+1) =
−ρ(div um+1, 2qm+1), or (qm+1 − qm, 2qm+1) = −2ρ(div um+1, qm+1). Us-

ing the same technique, we obtain (qm+1 − qm, 2qm+1) =
∣

∣qm+1
∣

∣

2
− |qm|

2
+

∣

∣qm+1 − qm
∣

∣

2
, and, using that div u = 0, it follows:

(qm+1 − qm, 2qm) =
∣

∣qm+1
∣

∣

2
− |qm|

2
+

∣

∣qm+1 − qm
∣

∣

2
=

= −2ρ(div um+1, qm+1) = −2ρ(div um+1, qm+1) − 2ρ(div u, qm+1) =
= −2ρ(div (um+1 − u), qm+1) = −2ρ(div vm+1, qm+1)

and, therefore,
∣

∣qm+1
∣

∣

2
− |qm|

2
+

∣

∣qm+1 − qm
∣

∣

2
= −2ρ(div vm+1, qm+1). (7)

Adding relations (6) and (7), we have that:
∥

∥vm+1
∥

∥

2
− ‖vm‖

2
+

∥

∥vm+1 − vm
∥

∥

2
+ 2ρν

∥

∥vm+1
∥

∥

2
+

+
∣

∣qm+1
∣

∣

2
− |qm|

2
+

∣

∣qm+1 − qm
∣

∣

2
≤

≤ 2ρc
ν
‖f‖E∗

∥

∥vm+1
∥

∥

2
+ ρ2c2

ν2δ
‖f‖

2
E∗

∥

∥vm+1
∥

∥

2
+ δ

∥

∥vm+1 − vm
∥

∥

2
+

+2ρ(div vm+1, qm) − 2ρ(div vm+1, qm+1) =

≤ 2ρc
ν
‖f‖E∗

∥

∥vm+1
∥

∥

2
+ ρ2c2

ν2δ
‖f‖

2
E∗

∥

∥vm+1
∥

∥

2
+

+δ
∥

∥vm+1 − vm
∥

∥

2
+ 2ρ(div vm+1, qm − qm+1),

and we can evaluate (with the same δ previously considered):
2ρ(div vm+1, qm − qm+1) ≤ 2ρ

∥

∥vm+1
∥

∥ ·
∣

∣qm − qm+1
∣

∣ ≤

≤ ρ2

δ

∥

∥vm+1
∥

∥

2
+ δ

∣

∣qm − qm+1
∣

∣

2
.

From here it results that
∥

∥vm+1
∥

∥

2
− ‖vm‖

2
+

∥

∥vm+1 − vm
∥

∥

2
+ 2ρν

∥

∥vm+1
∥

∥

2
+

∣

∣qm+1
∣

∣

2
− |qm|

2
+

+
∣

∣qm+1 − qm
∣

∣

2
≤ 2ρc

ν
‖f‖E∗

∥

∥vm+1
∥

∥

2
+ ρ2c2

ν2δ
‖f‖

2
E∗

∥

∥vm+1
∥

∥

2
+

+δ
∥

∥vm+1 − vm
∥

∥

2
+ ρ2

δ

∥

∥vm+1
∥

∥

2
+ δ

∣

∣qm − qm+1
∣

∣

2
,

or, equivalently,
∥

∥vm+1
∥

∥

2
− ‖vm‖

2
+ (1 − δ)

∥

∥vm+1 − vm
∥

∥

2
+

+
(

2ρν − 2ρc
ν
‖f‖E∗ − ρ2c2

ν2δ
‖f‖

2
E∗ − ρ2

δ

)

∥

∥vm+1
∥

∥

2
+

+
∣

∣qm+1
∣

∣

2
− |qm|

2
+ (1 − δ)

∣

∣qm − qm+1
∣

∣

2
≤ 0.

(8)

Summing these inequalities for m = 0, 1, . . . , n (with arbitrary n ∈ N) we
obtain:

∥

∥vn+1
∥

∥

2
+ (1 − δ)

n
∑

m=1

∥

∥vm+1 − vm
∥

∥

2
+

+
(

2ρν − 2ρc
ν
‖f‖E∗ − ρ2c2

ν2δ
‖f‖

2
E∗ − ρ2

δ

) n
∑

m=1

∥

∥vm+1
∥

∥

2
+

∣

∣qn+1
∣

∣

2
+

+(1 − δ)
n
∑

m=1

∣

∣qm − qm+1
∣

∣

2
≤

∥

∥v0
∥

∥

2
+

∣

∣q0
∣

∣

2
.

(9)
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From hypotheses (4) and (5), we have that 0 <
ρ(c2‖f‖

E∗ )+ν2

2ν(ν2−c‖f‖2
E∗

< 1
2 , so we

can choose a δ > 0 in relation (9) such that 0 <
ρ(c2‖f‖

E∗ )+ν2

2ν(ν2−c‖f‖2
E∗

< 1
2 < δ < 1,

which is equivalent to 2ρν−2ρc
ν
‖f‖E∗ −

ρ2c2

ν2δ
‖f‖

2
E∗ −

ρ2

δ
> 0, and on the other

hand we have that 1 − δ > 0.
Therefore, in relation (9), all the coefficients from the left-hand side of the

inequality are strictly positive, and from here it results that lim
m→∞

∥

∥vm+1
∥

∥

2
= 0

and lim
m→∞

∣

∣qm+1 − qm
∣

∣

2
= 0.

Since vm+1 = um+1 − u, we have lim
m→∞

∥

∥um+1 − u
∥

∥ = 0, therefore um+1

converges to u in V .
On the other hand, we have from relation (9) that the sequence (qm+1)m∈N

is bounded in L2(Ω), so (pm+1)m∈N will be also bounded in L2(Ω). Therefore
it follows that we can extract from (pm+1)m∈N a subsequence (pkm+1)m∈N

weakly convergent to p̃ ∈ L2(Ω).
Passing to the limit with m → ∞ in relation (2), we have

ν < u, v > +ρb(u, u, v) − (p̃,div v) = (f, v),∀v ∈ E,

relation which we subtract from (1) and we obtain (p − p̃,div v) = 0,∀v ∈ E,
therefore ∇(p − p̃) = 0, so p = p̃ + K, where K ∈ R is arbitrary. 2

Remark 1.1 L2(Ω)/R =

{

p ∈ L2(Ω) |
∫

Ω

p(x)dx = 0

}

(see [6], p. 15).

Remark 1.2 We know that the pressure p must satisfy the condition:
∫

Ω

p(x)dx = 0

(see [5], p. 163). Asking this condition (like in [6]), we can obtain the conver-
gence of pm to p in L2(Ω) (instead L2(Ω)/R).

Choosing in the previous algorithm p0 ∈ L2(Ω) such that
∫

Ω

p0(x)dx =

0, then using relation (3) we have that pm = p0 −
m
∑

k=1

div uk, and because
∫

Ω

div vdx = 0,∀v ∈ X (see [5], p. 69) and we obtain
∫

Ω

pm(x)dx = 0,∀m ∈ N.

From the previous theorem it results now that pm weakly converges to p in
the space L2(Ω).

2 Discretization of the numerical algorithm

In this section we describe the discretization of the numerical algorithm using
Galerkin method, for which we prove the existence, the uniqueness and the



258 CRISTINA SBURLAN

convergence of the solution. This discretization can be used for the effective
calculation of the approximate solution, because it is reduced to the solving
of a linear algebraic system.

The discrete forms of the numerical algorithms from Section 1 can be
obtained using many methods (finite differences, finite element, Galerkin). For
instance, in [6] there are presented discretizations of the Uzawa and Arrow-
Hurwicz algorithms using finite differences method.

Next, we will present the discretization of algorithm (2) from Section 1,
using the Galerkin method. For the application of this method we will use as
discretization basis the orthonormal system of eigenfunctions of the Laplace’s
operator −∆, which is the duality mapping between the space (H1

0 (Ω))N and
its topological dual.

In the same conditions as in Section 1 and in conditions of Theorem 1.2,
consider (ϕn)n∈N ⊂ V the orthonormal system formed by eigenfunctions of
the Laplace’s operator −∆, which is an orthonormal basis in the space V =
(H1

0 (Ω))N (see [4], p. 67). Let k ∈ N
∗ and Sk(Ω) be the space generated

by the eigenfunctions ϕ1, ϕ2, . . . , ϕk. In this case, we have that the matrix
G = (Gij), Gij = 〈ϕi, ϕj〉 is the unity matrix, because {ϕi}i=1,2,...,k forms an
orthonormal system.

We want to formulate the discrete problem corresponding to the problem
(2), which asks to give an approximative problem whose solution will good
enough approximate the solution um+1 of the problem (2) (with known um,
pm, for an arbitrary fixed m ∈ N) (we are at the (m+1)th step of the considered
algorithm).

Denote, like in Section 1, by a : V × V → R,

a(u, v) = (1 + ρν) < u, v > +ρ
2

N
∑

i,j=1

∫

Ω

um
i (Diuj)vjdx−

−ρ
2

N
∑

i,j=1

∫

Ω

um
i uj(Divj)dx, u, v ∈ V.

(10)

We have that a (u, v) is continuous, bilinear and coercive.
Using the fact that:

b̂(u, v, w) =
1

2

N
∑

i,j=1

∫

Ω

ui(Divj)wjdx −
1

2

N
∑

i,j=1

∫

Ω

uivj(Diwj)dx

we can now formulate the approximative problem corresponding to problem
(2):

Find um+1
k ∈ Sk (Ω) such that:

a
(

um+1
k , ϕ

)

= g(ϕ),∀ϕ ∈ Sk (Ω) , (11)
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where g : V → R is given by g(v) =< um
k , v > +ρ(pm

k , div v) + ρ(f, v),∀v ∈ V
and pm

k = pm−1
k − ρ · div um

k .
Since um+1

k ∈ Sk (Ω), we have that

um+1
k =

k
∑

i=1

αiϕi, (12)

with αi ∈ R, and relations (11) and (12) lead us to the algebraic linear system
were αi are not known:

k
∑

i=1

αi · a (ϕi, ϕj) = g(ϕj), j = 1, 2, . . . , k. (13)

In the following, we prove the existence and uniqueness of the solution
um+1

k for problem (11), and also its strongly convergence to the solution um+1

of problem (2), using the specific arguments of the Galerkin method.

Theorem 2.1 In the above conditions, there exists a unique um+1
k ∈ Sk (Ω)

satisfying problem (11).

Proof. The proof is immediate using the Lax-Milgram Theorem, because a
is continuous, bilinear and coercive, and g is a linear functional on V . 2

Theorem 2.2 The solution um+1
k of the problem (11) strongly converges in

V = (H1
0 (Ω))N when k → ∞ to the solution um+1 of the problem (2).

Proof. We have that a(um+1
k , v) = g(v),∀v ∈ Sk(Ω). Taking v = um+1

k , we
obtain

a(um+1
k , um+1

k ) =
∥

∥um+1
k

∥

∥

2
= g(um+1

k ) ≤ ‖g‖V ∗ ·
∥

∥um+1
k

∥

∥ ,

so
∥

∥um+1
k

∥

∥ ≤ ‖g‖V ∗ , and then the sequence (um+1
k )k∈N is bounded in V , there-

fore it exists a subsequence (um+1
lk

)k∈N of this sequence, weakly convergent in
V to an element ũ ∈ V .

First, we prove that um+1 = ũ. For this, we pass to the limit with k → ∞ in
the relation a(um+1

lk
, v) = g(v),∀v ∈ Sk(Ω), and obtain a(ũ, v) = g(v),∀v ∈ V.

But this is in fact the relation (2) (written for ũ instead um+1), so ũ verifies
the problem (2). By the uniqueness of the solution of problem (2), it results
that um+1 = ũ. Hence, the subsequence (um+1

lk
)k∈N converges to the solution

um+1 of the problem (2).
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Now, we prove the strong convergence of this solution to um+1. For this,
denote by rkum+1 the restriction of um+1 to the subspace Sk(Ω). To simplify
the notations, denote also in the following the subsequence um+1

lk
by um+1

k .

We have that a(um+1
k − rkum+1, um+1

k − rkum+1) =
∥

∥um+1
k − rkum+1

∥

∥

2
.

On the other hand,
a(um+1

k − rkum+1, um+1
k − rkum+1) = a(um+1

k , um+1
k )−

−a(um+1
k , rkum+1) − a(rkum+1, um+1

k ) + a(rkum+1, rkum+1),
therefore

∥

∥um+1
k − rkum+1

∥

∥

2
= a(um+1

k , um+1
k )−

−a(um+1
k , rkum+1) − a(rkum+1, um+1

k ) + a(rkum+1, rkum+1).
Passing to the limit in this relation for k → ∞, we obtain:

lim
k→∞

∥

∥um+1
k − rkum+1

∥

∥

2
= a(um+1, um+1)−

−a(um+1, um+1) − a(um+1, um+1) + g(um+1) =
= −a(um+1, um+1) + g(um+1) = 0,

and from here it results that:

lim
k→∞

∥

∥um+1
k − um+1

∥

∥ = 0,

therefore um+1
k strongly converges in V to um+1. 2

Remark 2.1 For k → ∞ and m → ∞, we have that um+1
k strongly converges

in V to the solution u of the problem (1).

3 Numerical Results and Conclusions

We can apply this discretization for the computation of the approximate so-
lution, considering that this is reduced to the solving of the linear algebraic
system (13), and that in the coefficients of this system there are involved the
scalar products of the orthonormal system {ϕn} in V . On the other hand, the
eigenfunctions of the Laplace’s operator, ϕn, are easy to compute for some
particular domains Ω, which makes more facile the effective computation of
the solution.

Some numerical results were tested for the rectangular domain Ω = (0, 1)×
(0, 1) or the ball Ω = B(0, 1) ⊂ R

2, where f = 0 on Ω, and we have experi-
mentally chosen m, k, ν and ρ as in the table from bellow.

Ω m k ν ρ

(0, 1) × (0, 1) 10 500 0.4 0.1
B(0, 1) 20 450 0.3 0.1

The next figure shows the streamlines of the flow for the case Ω = B(0, 1) ⊂ R
2.
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Figure 1: Streamlines of the flow for Problem (2)–(3)
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