ABOUT A DIOPHANTINE EQUATION

Diana Savin

Abstract

In this paper we study the Diophantine equation $x^{4}-6 x^{2} y^{2}+5 y^{4}=$ $16 F_{n-1} F_{n+1}$, where $\left(F_{n}\right)_{n \geq 0}$ is the Fibonacci sequence and we find a class of such equations having solutions which are determined.

1 Introduction

Let $\left(F_{n}\right)_{n \geq 0}, F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}, n \geq 0$, be the Fibonacci sequence and $\left(L_{n}\right)_{n \geq 0}, L_{0}=2, L_{1}=1, L_{n+2}=L_{n+1}+L_{n}, n \geq 0$, be the Lucas sequence.
Sometimes the sequences are given under the forms:

$$
\begin{gathered}
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right], \\
L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
\end{gathered}
$$

We find all solutions $(x, y, n) \in \mathbb{Z} \times \mathbb{Z} \times 3 \mathbb{N}$ of the Diophantine equation

$$
x^{4}-6 x^{2} y^{2}+5 y^{4}=16 F_{n-1} F_{n+1},
$$

when one of the Fibonacci numbers F_{n-1}, F_{n+1} is prime and another is prime or it is a product of two different prime numbers. There are such Fibonacci numbers, for example:

[^0]$F_{5}=5$ and $F_{7}=13 ; F_{11}=89$ and $F_{13}=233 ; F_{17}=1597$ and $F_{19}=4181=$ $37 \cdot 113 ; F_{29}=514229$ and $F_{31}=1346269=557 \cdot 2147 ; F_{41}=165580141=$ $2789 \cdot 59369$ and $F_{43}=433494437$.

In this paper, we prove that:
All the solutions $(x, y, n) \in \mathbb{Z} \times \mathbb{Z} \times 3 \mathbb{N}$ of the Diophantine equation

$$
x^{4}-6 x^{2} y^{2}+5 y^{4}=16 F_{n-1} F_{n+1}
$$

with F_{n-1} is a prime number and $F_{n+1}=p_{1} p_{2}$, where p_{1}, p_{2} are different prime natural numbers, are $(x, y, n)=\left(\pm L_{6 l}, \pm F_{6 l}, 6 l\right), l \in \mathbb{N}^{*}$, when $6 l-1$ are prime numbers and $F_{6 l+1}$ is a product of two prime different numbers.
Since Fibonacci numbers and Lucas numbers intervene in our equation, we recall some properties obtained along years:
1.1. The only perfect square Fibonacci numbers are $F_{0}, F_{1}, F_{2}, F_{12}$.
1.2. g.c.d. $\left(F_{n}, F_{n+1}\right)=1, \forall \in \mathbb{N}$.
1.3. The only perfect square Lucas numbers are L_{1}, L_{3}.
1.4. Between the terms of the Fibonacci sequence and the terms of the Lucas sequence there are the following identities:
i) $L_{n}=F_{n-1}+F_{n+1}$;
ii) $L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n}$;
iii) $L_{n}^{2}-F_{n}^{2}=4 F_{n-1} F_{n+1}$.
1.5. If n is an even number, then

$$
F_{n-1} F_{n+1}=F_{n}^{2} \pm 1
$$

1.6. The cycle of the Fibonacci numbers mod 4 is

$$
0,1,1,2,3,1,(0,1,1,2,3,1), \ldots
$$

so the cycle-length of the Fibonacci numbers mod 4 is 6.
1.7. F_{n} are even numbers if and only if $n \equiv 0(\bmod 3)$.
1.8. Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence. If F_{n} is a prime number, then n is a prime number.

We recall the algorithm of solving the generalized Pell equation:
Proposition 1.1 Let d and k be integer numbers, $d>0, d \neq h^{2}, \forall h \in \mathbb{N}^{*}$ and let be given the generalized Pell equation $x^{2}-d y^{2}=k$.
i) If $\left(x_{0}, y_{0}\right) \in \mathbb{N}^{*} \times \mathbb{N}^{*}$ is the minimal solution of the equation $x^{2}-d y^{2}=1$, $\epsilon=x_{0}+y_{0} \sqrt{d}$ and $\left(x_{i}, y_{i}\right), i=1, \ldots r$, are different integer solutions of the equation $x^{2}-d y^{2}=k$, with $\left|x_{i}\right| \leq \sqrt{|k| \epsilon}$ and $\left|y_{i}\right| \leq \sqrt{\frac{|k| \epsilon}{d}}$, then there exists an
infinity of integer solutions of the given equation and these solutions have the form: $\mu= \pm \mu_{i} \epsilon^{l}$ or $\mu= \pm \overline{\mu_{i}} \epsilon^{l}, l \in \mathbb{Z}$, where $\mu_{i}=x_{i}+y_{i} \sqrt{d}, \overline{\mu_{i}}=x_{i}-y_{i} \sqrt{d}$, $i=1, \ldots, r$.
ii) If the given equation does not have solutions satisfying the above conditions, then it does not have any solutions.

2 Results

Now we consider the Diophantine equation

$$
\begin{equation*}
x^{4}-6 x^{2} y^{2}+5 y^{4}=16 F_{n-1} F_{n+1} \tag{1}
\end{equation*}
$$

Proposition 2.1 All the solutions $(x, y, n) \in \mathbb{Z} \times \mathbb{Z} \times 3 \mathbb{N}$, of the Diophantine equation (1) with F_{n-1} a prime number and $F_{n+1}=p_{1} p_{2}$, where p_{1}, p_{2} are different prime natural numbers, are $(x, y, n)=\left(\pm L_{6 l}, \pm F_{6 l}, 6 l\right), l \in \mathbb{N}^{*}$, when $6 l-1$ are prime numbers and $F_{6 l+1}$ is a product of two prime different numbers.

Proof. Let $(x, y, n) \in \mathbb{Z} \times \mathbb{Z} \times 3 \mathbb{N}$ be a solution of the equation (1).
At the beginning, we note that $x \equiv y(\bmod 2)$ and $x^{2}-5 y^{2} \leq x^{2}-y^{2}$.
First, we study the situation when $x^{2} \geq y^{2}$.
The equation (1) is equivalent with

$$
\left(x^{2}-5 y^{2}\right)\left(x^{2}-y^{2}\right)=16 F_{n-1} F_{n+1}
$$

Using the fact that $n \equiv 0(\bmod 3)$ and $\mathbf{1 . 7}$ we obtain that F_{n-1} and F_{n+1} are odd numbers.
Other remark is that x and y are both even numbers (if x and y are both odd numbers we have $\left(x^{2}-5 y^{2}\right)\left(x^{2}-y^{2}\right) \equiv 0(\bmod 32)$ but $16 F_{n-1} F_{n+1}$ is not divisible by 32 because F_{n-1} and F_{n+1} are odd numbers).
We have the following cases:
Case 1. $x^{2}-5 y^{2}=r ; x^{2}-y^{2}=\frac{16}{r} F_{n-1} F_{n+1}$, where $r \in\{2,8\}$.
Case 2. $x^{2}-5 y^{2}=4 ; x^{2}-y^{2}=4 F_{n-1} F_{n+1}$.
Case 3. $x^{2}-5 y^{2}=r F_{n-1} ; x^{2}-y^{2}=\frac{16}{r} F_{n+1}$, where $r \in\{2,8\}$.
Case 4. $x^{2}-5 y^{2}=r k F_{n-1} ; x^{2}-y^{2}=\frac{16 F_{n+1}}{r k}$ or inverse $x^{2}-5 y^{2}=\frac{16 F_{n+1}}{r k} ; x^{2}-$ $y^{2}=r k F_{n-1}$, where $r \in\{2,8\}, k \in\left\{p_{1}, p_{2}\right\}^{r k}$.
Case 5. $x^{2}-5 y^{2}=4 F_{n-1} ; x^{2}-y^{2}=4 F_{n+1}$.
Case 6. $x^{2}-5 y^{2}=4 k F_{n-1} ; x^{2}-y^{2}=\frac{4 F_{n+1}}{k}, k \in\left\{p_{1}, p_{2}\right\}$ or inverse: $x^{2}-5 y^{2}=$ $\frac{4 F_{n+1}}{k} ; x^{2}-y^{2}=4 k F_{n-1}, k \in\left\{p_{1}, p_{2}\right\}$.
We study then the situation when $x^{2}<y^{2}$. There are the following cases:
Case 7. $x^{2}-5 y^{2}=-r F_{n-1} F_{n+1} ; x^{2}-y^{2}=-\frac{16}{r}$, where $r \in\{2,8\}$.
Case 8. $x^{2}-5 y^{2}=-r F_{n+1} ; x^{2}-y^{2}=-\frac{16}{r} F_{n-1}$, where $r \in\{2,8\}$.
Case 9. $x^{2}-5 y^{2}=-4 F_{n-1} F_{n+1} ; x^{2}-y^{2}=-4$.
Case 10. $x^{2}-5 y^{2}=-4 F_{n+1} ; x^{2}-y^{2}=-4 F_{n-1}$.

Case 11. $x^{2}-5 y^{2}=-\frac{r F_{n+1}}{k} ; x^{2}-y^{2}=-\frac{16}{r} k F_{n-1}$ or inverse: $x^{2}-5 y^{2}=$ $-\left\{\frac{16}{r}\right\} k F_{n-1} ; x^{2}-y^{2}=-\frac{r F_{n+1}}{k}$, where $r \in\{2,8\} ; k \in\left\{p_{1}, p_{2}\right\}$.
Case 12. $x^{2}-5 y^{2}=-\frac{4 F_{n+1}}{k} ; x^{2}-y^{2}=-4 k F_{n-1}$ or inverse $x^{2}-5 y^{2}=$ $-4 k F_{n-1} ; x^{2}-y^{2}=-\frac{4 F_{n+1}}{k}, k \in\left\{p_{1}, p_{2}\right\}$.

We analyse step by step all these cases.
Case 1. If $r=2$, we get the system $x^{2}-5 y^{2}=2 ; x^{2}-y^{2}=8 F_{n-1} F_{n+1}$. Since x, y are even numbers, we obtain $x^{2}-5 y^{2} \equiv 0(\bmod 4)$, so the equation $x^{2}-5 y^{2}=2$ does not have integer solutions.
Similarly with this situation, we obtain that the system does not have integer solutions when $r=8$. Similarly with the Case 1 we obtain that there are no integer solutions in the Cases $\mathbf{3}, 4,7,8,11$.

Case 2. $x^{2}-5 y^{2}=4 ; x^{2}-y^{2}=4 F_{n-1} F_{n+1}$.
First we solve the equation $x^{2}-5 y^{2}=4$. We consider the Pell equation $x^{2}-5 y^{2}=1$. The minimal solution is $\left(x_{0}, y_{0}\right)=(9,4)$ and $\epsilon=9+4 \sqrt{5}$.
Applying 1.1, for the equation $x^{2}-5 y^{2}=4$ we search for solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$, with $|x| \leq \sqrt{4 \epsilon}$ and $|y| \leq \sqrt{\frac{4 \epsilon}{5}}<4$. It results $y \in\{0, \pm 1, \pm 2, \pm 3\}$. But, in our system it is necessary that y be even number, so $y \in\{0, \pm 2\}$.
If $y= \pm 2$, we obtain $x \notin \mathbb{Z}$.
If $y=0$, we obtain $x=2$. According to Proposition 1.1, we obtain that all integer solutions of the equation $x^{2}-5 y^{2}=4$ are $\left(x_{l}, y_{l}\right) \in \mathbb{Z} \times \mathbb{Z}$ such that $x_{l}+\sqrt{5} y_{l}= \pm 2 \epsilon^{l}, l \in \mathbb{N}$. It results:

$$
\begin{gathered}
x_{l}= \pm\left[(2+\sqrt{5})^{2 l}+(2-\sqrt{5})^{2 l}\right] \\
y_{l}= \pm \frac{1}{\sqrt{5}}\left[(2+\sqrt{5})^{2 l}-(2-\sqrt{5})^{2 l}\right], l \in \mathbb{N}
\end{gathered}
$$

therefore

$$
x_{l}= \pm L_{6 l}, y_{l}= \pm F_{6 l} .
$$

We remark (according to 1.4.(iii)) that all these solutions $\left(x_{l}, y_{l}\right)=\left(\pm L_{6 l}, \pm F_{6 l}\right)$ are solutions for the second equation of the considered system $\left(x^{2}-y^{2}=\right.$ $4 F_{n-1} F_{n+1}$.)
Therefore, in the Case 2, we obtain solutions of the equation under the hypotheses given in our theorem: $\left(x_{l}, y_{l}, n\right)=\left(\pm L_{6 l}, \pm F_{6 l}, 6 l\right), l \in \mathbb{N}^{*}$, with $6 l-1$ prime numbers and $F_{6 l+1}$ a product of two different prime numbers.

Case 5. By substracting the two equations and using the recurrence relation of Fibonacci numbers, we obtain $y^{2}=F_{n}$. Applying Proposition 1.1 and the fact that $n \geq 1$, it results $n \in\{1,2,12\}$. $n=1$ is not valid because $1 \notin 3 \mathbb{Z}$.

Similarly $n=2$ is not valid.
If $n=12$, we obtain $y \in\{-12,12\}$, but $x \notin \mathbb{Z}$. So, in this case the equation (1) does not have integer solutions.
Case 6. Since x and y are even numbers we can denote $x=2 x^{\prime}, y=2 y^{\prime}$, $x^{\prime}, y^{\prime} \in \mathbb{Z}$. It is necessary that x^{\prime} is not congruent with $y^{\prime}(\bmod 2)$ (otherwise the equation $x^{\prime 2}-5 y^{\prime 2}=k F_{n-1}$ does not have integer solutions).
We obtain that the system from the case 6 . becomes

$$
x^{\prime 2}-5 y^{\prime 2}=k F_{n-1} ; x^{\prime 2}-y^{\prime 2}=\frac{F_{n+1}}{k}
$$

or

$$
x^{\prime 2}-5 y^{\prime 2}=\frac{F_{n+1}}{k} ; x^{\prime 2}-y^{\prime 2}=k F_{n-1}
$$

First we consider the situation: $y \notin 4 \mathbb{Z}$. It results $x^{\prime} \equiv 0(\bmod 2)$ and $y^{\prime} \equiv 1$ $(\bmod 2)$.
We turn back in the equation (1). This is equivalent with

$$
\begin{equation*}
x^{\prime 4}-6 x^{\prime 2} y^{\prime 2}+5 y^{\prime 4}=F_{n-1} F_{n+1} \tag{2}
\end{equation*}
$$

We consider two subcases.
First subcase: when $n \equiv 3(\bmod 6)$, using 1.6 we have $F_{n-1} \equiv 1(\bmod 4)$ and $F_{n+1} \equiv 3(\bmod 4)$.
We observe that the left side of the equation (2) is $\equiv 1(\bmod 4)$, but the right side of the same equation is $\equiv 3(\bmod 4)$. It results that the equation (2)does not have integer solutions, therefore the equation (1)doesn't have integer solutions.
Second subcase: when $n \equiv 0(\bmod 6)$, using 1.6 we have $F_{n-1} \equiv 1(\bmod 4)$, $F_{n+1} \equiv 1(\bmod 4), F_{n} \equiv 0(\bmod 4)$. Applying 1.5 we obtain that the equation (2) is equivalent with

$$
\begin{equation*}
x^{\prime 4}-6 x^{\prime 2} y^{\prime 2}+5 y^{\prime 4}=F_{n}^{2} \pm 1 \tag{3}
\end{equation*}
$$

We observe that the left side of the equation (3) is $\equiv 5$ or $13(\bmod 16)$, but the right side of the same equation is $\equiv 1$ or $15(\bmod 16)$. It results that the equation (3) does not have integer solutions, therefore the equation (1) does not have integer solutions.

Now, we consider the situation: $y \in 4 \mathbb{Z}$. Since F_{n-1} is a prime number and $F_{n+1}=p_{1} p_{2}$ where p_{1}, p_{2} are prime natural numbers, $p_{1}<p_{2}$, we have the following subcases:
Subcase i): $k=p_{1}$, and the system
$x^{\prime 2}-5 y^{\prime 2}=p_{1} F_{n-1} ; x^{\prime 2}-y^{\prime 2}=p_{2}$.
We observe immediately that $F_{n-1}<p_{2}$. We find the natural solutions of the second equation of the system: $x^{\prime}=\frac{p_{2}+1}{2}, y^{\prime}=\frac{p_{2}-1}{2}$. We return in the first equation of the system and we obtain $\left(p_{2}-1\right)\left(2-p_{2}\right)=p_{1} F_{n-1}-1$. This equality is impossible because the left side is negative and the right side is positive.
Subcase ii): $k=p_{2}$, and the system $x^{\prime 2}-5 y^{\prime 2}=p_{1} ; x^{\prime 2}-y^{\prime 2}=p_{2} F_{n-1}$, with $p_{1}<p_{2}$.
At the first equation of the system we attach the Pell equation $x^{\prime 2}-5 y^{\prime 2}=1$. The fundamental solution for this equation is $\left(x_{0}^{\prime}, y_{0}^{\prime}\right)=(9,4)$ and $\epsilon=9+4 \sqrt{5}$. For the equation $x^{\prime 2}-5 y^{\prime 2}=p_{1}$ we search integer solutions (according Proposition 1.1) $\left(x^{\prime}, y^{\prime}\right)$ which satisfy $\left|x^{\prime}\right| \leq \sqrt{p_{1} \epsilon},\left|y^{\prime}\right| \leq \sqrt{\frac{p_{1} \epsilon}{5}}$. This implies $\left|x^{\prime}\right| \leq 5 \sqrt{p_{1}}$ and $\left|y^{\prime}\right| \leq \sqrt{5 p_{1}}$. At the beginning, we search x^{\prime}, y^{\prime} natural numbers. We suppose that $F_{n-1}<p_{2}$. From the second equation of the system we obtain $x^{\prime}-y^{\prime}=F_{n-1}, x^{\prime}+y^{\prime}=p_{2}$, so $x^{\prime}=\frac{p_{2}+F_{n-1}}{2}, y^{\prime}=\frac{p_{2}-F_{n-1}}{2}$. We obtain:
$\frac{p_{2}-F_{n-1}}{2} \leq \sqrt{5 p_{1}}, \frac{p_{2}+F_{n-1}}{2} \leq 5 \sqrt{p_{1}}$, therefore $p_{1}<p_{2} \leq(5+\sqrt{5}) \sqrt{p_{1}}$. It results $p_{1}<53$. Since p_{1} is an odd prime natural number, we obtain that
$p_{1} \in\{3,5,7,11,13,17,19,23,29,31,37,41,47\}$. If $p_{2}<F_{n-1}$, similarly we obtain that $p_{1} \in\{3,5,7,11,13,17,19,23,29,31,37,41,43,47\}$.
If $p_{1} \in\{3,7,11,19,23,31,43,47\}$, the equation $x^{\prime 2}-5 y^{\prime 2}=p_{1}$ does not have integer solutions, because $x^{\prime 2}$ cannot be congruent with $3(\bmod 4)$.
If $p_{1}=13$, we turn back in the equation $x^{\prime 2}-5 y^{\prime 2}=13$. Since the last digit of the $5 y^{\prime 2}+13$ is 3 or 8 , it results that the equation $x^{\prime 2}-5 y^{\prime 2}=13$ does not have integer solutions.
If $p_{1}=17$, we turn back in the equation $x^{\prime 2}-5 y^{\prime 2}=17$. Since the last digit of the $5 y^{\prime 2}+17$ is 2 or 7 , it results that the equation $x^{\prime 2}-5 y^{\prime 2}=17$ does not have integer solutions.
Analogously we obtain that the equation $x^{\prime 2}-5 y^{\prime 2}=p_{1}$ does not have integer solutions for $p_{1}=37$.
If $p_{1}=5$, we try to find the integer solutions of the equation $x^{\prime 2}-5 y^{\prime 2}=5$. Knowing that $\left|y^{\prime}\right| \leq \sqrt{5 p_{1}}=5$ and y^{\prime} is even, it results $y^{\prime} \in\{0, \pm 2, \pm 4\}$.
If $y^{\prime} \in\{0, \pm 4\}$, it results $x^{\prime} \notin \mathbb{Z}$.
If $y^{\prime}= \pm 2$, it results $x^{\prime}= \pm 5$. We turn back in the system $x^{\prime 2}-5 y^{\prime 2}=$ $5 ; x^{\prime 2}-y^{\prime 2}=p_{2} F_{n-1}$ and we obtain $p_{2} F_{n-1}=21$. But $F_{n-1} \neq 7$, so $p_{2}=7$, $F_{n-1}=3$. This implies $n=5,35=p_{1} p_{2}=F_{n+1}=F_{6}$. This is false. Therefore $\left(x_{1}^{\prime}, y_{1}^{\prime}\right)=(5,2)$ is not a solution for the equation $x^{\prime 2}-y^{\prime 2}=p_{2} F_{n-1}$.
But all natural solutions $\left(x_{l}^{\prime}, y_{l}^{\prime}\right)$ of the equation $x^{\prime 2}-5 y^{\prime 2}=5$ are (according to Proposition 1.1) of the form:
$x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}=(5+2 \sqrt{5})(9+4 \sqrt{5})^{l}$ or $x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}=(5-2 \sqrt{5})(9+4 \sqrt{5})^{l}, l \in \mathbb{Z}$. This implies that $x_{l+1}^{\prime}+y_{l+1}^{\prime} \sqrt{5}=\left(x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}\right)(9+4 \sqrt{5})$. So

$$
\begin{equation*}
x_{l+1}^{\prime}=9 x_{l}^{\prime}+20 y_{l}^{\prime} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{l+1}^{\prime}=4 x_{l}^{\prime}+9 y_{l}^{\prime} \tag{5}
\end{equation*}
$$

We obtain that

$$
\begin{equation*}
x_{l+1}^{\prime 2}-y_{l+1}^{\prime 2}=65 x_{l}^{\prime 2}+319 y_{l}^{\prime 2}+288 x_{l}^{\prime} y_{l}^{\prime} . \tag{6}
\end{equation*}
$$

Since $\left(x_{1}^{\prime}, y_{1}^{\prime}\right)=(5,2), 5$ is not congruent with $0(\bmod 3), 2$ is not congruent with $0(\bmod 3)$, using the relations (4) and (5) we obtain x_{2}^{\prime} is not congruent with $0(\bmod 3), y_{2}^{\prime}$ is not congruent with $0(\bmod 3), \ldots, x_{l}^{\prime}$ is not congruent with $0(\bmod 3), y_{l}^{\prime}$ is not congruent with $0(\bmod 3)$. Using (6) we obtain that $x_{l+1}^{\prime 2}-y_{l+1}^{\prime 2} \equiv 0(\bmod 3)$.
If the second equation of the system had a solution, that means $x_{l+1}^{\prime 2}-y_{l+1}^{\prime 2}=$ $p_{2} F_{n-1}$, would result $p_{2}=3$ or $F_{n-1}=3$.
If $p_{2}=3$, it results $F_{n+1}=p_{1} p_{2}=15$. This is a contradiction, because there is not $n \in \mathbb{N}$ such that $F_{n+1}=15$.
If $F_{n-1}=3$, it results $n=5$ and $F_{n+1}=F_{6}=8 \neq p_{1} p_{2}$. So, we cannot have $F_{n-1}=3$.
From the previously proved, it results that the system

$$
x^{\prime 2}-5 y^{\prime 2}=5 ; x^{\prime 2}-y^{\prime 2}=p_{2} F_{n-1}
$$

does not have integer solutions.
If $p_{1}=29$, we try to find the integer solutions of the equation $x^{\prime 2}-5 y^{\prime 2}=29$.
Knowing that $\left|y^{\prime}\right| \leq \sqrt{5 p_{1}}=\sqrt{145}$ and y^{\prime} is even, it results
$y^{\prime} \in\{0, \pm 2, \pm 4 \pm 6, \pm 8, \pm 10, \pm 12\}$.
If $y^{\prime} \in\{0, \pm 4 \pm 6, \pm 8, \pm 12\}$, it results $x^{\prime} \notin \mathbb{Z}$.
If $y^{\prime}= \pm 2$, it results $x^{\prime}= \pm 7$.
From the system

$$
x^{\prime 2}-5 y^{\prime 2}=29 ; x^{\prime 2}-y^{\prime 2}=p_{2} F_{n-1}
$$

we obtain that $p_{2} F_{n-1}=45=3^{2} \cdot 5$. This is a contradiction with the fact that p_{2} and F_{n-1} are prime numbers.
If $y^{\prime}= \pm 10$, it results $x^{\prime}= \pm 23$.
From the system $x^{\prime 2}-5 y^{\prime 2}=29 ; x^{\prime 2}-y^{\prime 2}=p_{2} F_{n-1}$
we obtain that $p_{2} F_{n-1}=429=3 \cdot 11 \cdot 13$. This is a contradiction with the fact that p_{2} and F_{n-1} are prime numbers.
All the natural solutions of the equation $x^{\prime 2}-5 y^{\prime 2}=29$ are (according to Proposition 1.1) $\left(x_{l}^{\prime}, y_{l}^{\prime}\right)$:
$x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}=(7+2 \sqrt{5})(9+4 \sqrt{5})^{l}, l \in \mathbb{Z}$ and $x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}=(7-2 \sqrt{5})(9+4 \sqrt{5})^{l}$
and $x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}=(23+10 \sqrt{5})(9+4 \sqrt{5})^{l}$ and $x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}=(23-10 \sqrt{5})(9+4 \sqrt{5})^{l}$ $l \in \mathbb{Z}$.
Analogously with the case when $p_{2}=5$ we obtain that none of the solutions $\left(x_{l}^{\prime}, y_{l}^{\prime}\right)$ of the equation $x^{\prime 2}-5 y^{\prime 2}=29$ is solution for the equation $x^{\prime 2}-y^{\prime 2}=$ $p_{2} F_{n-1}$. So, the system $x^{\prime 2}-5 y^{\prime 2}=29 ; x^{\prime 2}-y^{\prime 2}=p_{2} F_{n-1}$ does not have integer solutions.
If $p_{1}=41$, we try to find the integer solutions of the equations $x^{\prime 2}-5 y^{\prime 2}=41$. Knowing that $\left|y^{\prime}\right| \leq \sqrt{5 p_{1}}=\sqrt{205}$ and y^{\prime} is even, it results $y^{\prime} \in\{0, \pm 2, \pm 4 \pm 6, \pm 8, \pm 10, \pm 12, \pm 14\}$.
If $y^{\prime}, \in\{0, \pm 2 \pm 6, \pm 10, \pm 12, \pm 14\}$. It results $x^{\prime} \notin \mathbb{Z}$.
If $y^{\prime}= \pm 4$, it results $x^{\prime}= \pm 11$.
From the system $x^{\prime 2}-5 y^{\prime 2}=41 ; x^{\prime 2}-y^{\prime 2}=p_{2} F_{n-1}$ we obtain that $p_{2} F_{n-1}=$ $105=3 \cdot 5 \cdot 7$. This is a contradiction with the fact that p_{2} and F_{n-1} are prime numbers.
If $y^{\prime}= \pm 8$, it results $x^{\prime}= \pm 19$.
From the system $x^{\prime 2}-5 y^{\prime 2}=41 ; x^{\prime 2}-y^{\prime 2}=p_{2} F_{n-1}$ we obtain that $p_{2} F_{n-1}=$ $3^{3} \cdot 11$. This is a contradiction with the fact that p_{2} and F_{n-1} are prime numbers.
All the natural solutions of the equation $x^{\prime 2}-5 y^{\prime 2}=41$ are (according to Proposition 1.1) $\left(x_{l}^{\prime}, y_{l}^{\prime}\right)$:
$x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}=(11+4 \sqrt{5})(9+4 \sqrt{5})^{l}, l \in \mathbb{Z}$ and $x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}=(11-4 \sqrt{5})(9+4 \sqrt{5})^{l}$, $l \in \mathbb{Z}$ and $x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}=(19+8 \sqrt{5})(9+4 \sqrt{5})^{l}, l \in \mathbb{Z}$ and $x_{l}^{\prime}+y_{l}^{\prime} \sqrt{5}=(19-8 \sqrt{5})(9+$ $4 \sqrt{5})^{l}, l \in \mathbb{Z}$.
Analogously with the case when $p_{2}=5$ we obtain that none of the solutions $\left(x_{l}^{\prime}, y_{l}^{\prime}\right)$ of the equation $x^{\prime 2}-5 y^{\prime 2}=41$ is solution for the equation $x^{\prime 2}-y^{\prime 2}=$ $p_{2} F_{n-1}$. So, the system $x^{\prime 2}-5 y^{\prime 2}=41 ; x^{\prime 2}-y^{\prime 2}=p_{2} F_{n-1}$ doesn't have integer solutions.
Subcase iii): $k=p_{1}$, and the system
$x^{\prime 2}-5 y^{\prime 2}=p_{2} ; x^{\prime 2}-y^{\prime 2}=p_{1} F_{n-1}$, with $p_{1}<p_{2}$
At the begining we consider the situation $F_{n-1}<p_{1}$. We have:

$$
\begin{gathered}
F_{n-1}<p_{1}<p_{2} \Rightarrow \\
F_{n-1}^{2}<p_{1}^{2}<F_{n+1} \Rightarrow \\
F_{n-1}\left(F_{n-1}-1\right)<F_{n}<2 F_{n-1} \Rightarrow
\end{gathered}
$$

$$
F_{n-1}<3=F_{4} .
$$

We obtain $n \in\{1,2,3,4\}$
For $n \in\{1,2,3\}$ it results $F_{n-1} \in\{0,1\}$. This is in contradiction with the fact that F_{n-1} is a prime number.
For $n=4$, it results $F_{n-1}=2$ and $F_{n+1}=F_{5}=5$. This is in contradiction with the fact that F_{n+1} is a product of two prime natural numbers.
Now, we consider the situation $F_{n-1}>p_{1}$.
From the second equation of the system we have natural solutions : $x^{\prime}=$ $\frac{p_{1}+F_{n-1}}{2}, y^{\prime}=\frac{F_{n-1}-p_{1}}{2}$.
For the first equation from the system we search (according to Proposition 1.1) integer solutions $\left(x^{\prime}, y^{\prime}\right)$ with the properties $\left|x^{\prime}\right| \leq 5 \sqrt{p_{2}}$ and $\left|y^{\prime}\right| \leq \sqrt{5 p_{2}}$.
So $\frac{p_{1}+F_{n-1}}{2} \leq 5 \sqrt{p_{2}}, \frac{F_{n-1}-p_{1}}{2} \leq \sqrt{5 p_{2}}$.
We obtain:

$$
\begin{gathered}
F_{n-1}<\sqrt{5 p_{2}}(\sqrt{5}+1) \Rightarrow \\
F_{n-1}^{2}<5(6+2 \sqrt{5}) p_{2}<54 p_{2} \Rightarrow \\
F_{n-1}^{2} \leq 18 p_{1} p_{2} \Leftrightarrow F_{n-1}^{2} \leq 18 F_{n+1} \Rightarrow \\
F_{n-1}\left(F_{n-1}-18\right) \leq 18 F_{n} \Rightarrow \\
F_{n-1}\left(F_{n-1}-18\right) \leq 36 F_{n-1} \Rightarrow \\
F_{n-1}<54 .
\end{gathered}
$$

Since F_{n-1} is a prime natural number, it results that $F_{n-1} \in\{3,5,13\}$. So $n \in\{5,6,8\}$.
If $n=5$, it results $F_{n+1}=F_{6}=2^{3} \neq p_{1} p_{2}$.
If $n=6$, it results $F_{n+1}=F_{7}=13 \neq p_{1} p_{2}$.
If $n=8$, it results $F_{n+1}=F_{9}=2 \cdot 17=p_{1} p_{2}$. Since $p_{1}<p_{2}$ it results $p_{1}=2$ and $p_{2}=17$. This is a contradiction with the fact that F_{n+1} is an odd number. From the previously proved, we obtain that there are not integer solutions in the case 6 .
Case 12. Similarly with the case 6 , we obtain that there are not integer solutions in this case.
Case 9. $x^{2}-5 y^{2}=-4 F_{n-1} F_{n+1} ; x^{2}-y^{2}=-4$.
All the integer solutions of the second equation are $(x, y)=(0,2),(x, y)=$ $(0,-2)$. We go back in the first equation and we obtain $F_{n-1} F_{n+1}=5$. We observe that there is not any $n \in \mathbf{N}^{*}$ such that $F_{n-1} F_{n+1}=5$.
Case 10. $x^{2}-5 y^{2}=-4 F_{n+1} ; x^{2}-y^{2}=-4 F_{n-1}$.
By substracting the two equations and using the recurrence relation of Fi bonacci numbers, we obtain $y^{2}=F_{n}$. Applying $\mathbf{1 . 1}$ and the fact that $n \geq 1$,
and $n \in 3 \mathbb{N}$, it results $n=12$. We obtain $y \in\{-12,12\}$ and $x \notin \mathbb{Z}$. So, there are not integer solutions in this case.

Proposition 2.2 All the solutions $(x, y, n) \in \mathbb{Z} \times \mathbb{Z} \times 3 \mathbb{N}$ of the Diophantine equation

$$
x^{4}-6 x^{2} y^{2}+5 y^{4}=16 F_{n-1} F_{n+1}
$$

with F_{n+1} a prime number and $F_{n-1}=p_{1} p_{2}$, where p_{1}, p_{2} are different prime natural numbers, are $(x, y, n)=\left(\pm L_{6 l}, \pm F_{6 l}, 6 l\right), l \in \mathbb{N}^{*}$, when $6 l+1$ are prime numbers and $F_{6 l-1}$ is a product of two different prime numbers.

Proof. It is similarly with the proof of the Proposition 2.1.
Proposition 2.3 All the solutions $(x, y, n) \in \mathbb{Z} \times \mathbb{Z} \times 3 \mathbb{N}$, of the Diophantine equation

$$
x^{4}-6 x^{2} y^{2}+5 y^{4}=16 F_{n-1} F_{n+1}
$$

with F_{n-1}, F_{n+1} prime numbers, are $(x, y, n)=\left(\pm L_{6 l}, \pm F_{6 l}, 6 l\right), l \in \mathbb{N}^{*}$, when $6 l-1$ and $6 l+1$ are prime numbers.

Proof. It is similarly with the proof of the Proposition 2.1, without the cases 4,6,11,12.

References

[1] Cohn, J.H.E., Square Fibonacci numbers, Fibonacci Quartely 2, 1964, pp. 109-113.
[2] Cohn, J.H.E., On Square Fibonacci numbers, Proc. Lond. Maths. Soc.34/1964.
[3] Panaitopol, L., Gica, A., An introduction in arithmetic and theory of numbers (in Romanian), Ed. Universitatii Bucuresti, 2001.
[4] Wunderlich, M., On the non-existence of Fibonacci Square,Math. of Computation, 17(1963), p. 455.
[5] http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibmaths.html

Diana Savin
Ovidius University of Constanta, Romania
E-mail: dianet72@yahoo.com, savin.diana@univ-ovidius.ro

[^0]: Key Words: Diophantine equations, Fibonacci and Lucas Numbers.
 Mathematics Subject Classification: 11D25, 11B39.
 Received: April 2009
 Accepted: October 2009

