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ABOUT A DIOPHANTINE EQUATION

Diana Savin

Abstract

In this paper we study the Diophantine equation x4
−6x2y2 +5y4 =

16Fn−1Fn+1, where (Fn)
n≥0

is the Fibonacci sequence and we find a
class of such equations having solutions which are determined.

1 Introduction

Let (Fn)n≥0, F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn, n ≥ 0, be the Fibonacci
sequence and (Ln)n≥0, L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln, n ≥ 0, be the
Lucas sequence.
Sometimes the sequences are given under the forms:

Fn =
1√
5

[(

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n]

,

Ln =

(

1 +
√

5

2

)n

+

(

1 −
√

5

2

)n

.

We find all solutions (x, y, n)∈Z × Z × 3N of the Diophantine equation

x4 − 6x2y2 + 5y4 = 16Fn−1Fn+1,

when one of the Fibonacci numbers Fn−1, Fn+1is prime and another is prime
or it is a product of two different prime numbers. There are such Fibonacci
numbers, for example:
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F5 = 5 and F7 = 13; F11 = 89 and F13 = 233; F17 = 1597 and F19 = 4181 =
37 · 113; F29 = 514229 and F31 = 1346269 = 557 · 2147; F41 = 165580141 =
2789 · 59369 and F43 = 433494437.

In this paper, we prove that:

All the solutions (x, y, n)∈Z × Z × 3N of the Diophantine equation

x4 − 6x2y2 + 5y4 = 16Fn−1Fn+1

with Fn−1 is a prime number and Fn+1 = p1p2, where p1, p2 are different

prime natural numbers,are (x, y, n) = (±L6l,±F6l, 6l), l ∈ N
∗, when 6l− 1 are

prime numbers and F6l+1 is a product of two prime different numbers.

Since Fibonacci numbers and Lucas numbers intervene in our equation, we
recall some properties obtained along years:

1.1. The only perfect square Fibonacci numbers are F0, F1, F2, F12.

1.2. g.c.d.(Fn, Fn+1)= 1, ∀∈N.

1.3. The only perfect square Lucas numbers are L1, L3.

1.4. Between the terms of the Fibonacci sequence and the terms of the Lucas

sequence there are the following identities:

i) Ln = Fn−1 + Fn+1;
ii) L2

n − 5F 2
n = 4(−1)n;

iii) L2
n − F 2

n = 4Fn−1Fn+1.

1.5. If n is an even number, then

Fn−1Fn+1 = F 2
n ± 1.

1.6. The cycle of the Fibonacci numbers mod 4 is

0, 1, 1, 2, 3, 1, (0, 1, 1, 2, 3, 1), ...

so the cycle-length of the Fibonacci numbers mod 4 is 6.

1.7. Fn are even numbers if and only if n≡ 0 (mod 3).

1.8. Let (Fn)n≥0 be the Fibonacci sequence. If Fn is a prime number, then n
is a prime number.

We recall the algorithm of solving the generalized Pell equation:

Proposition 1.1 Let d and k be integer numbers, d > 0, d6=h2, ∀h∈N
∗

and let be given the generalized Pell equation x2 − dy2 = k.
i) If (x0, y0)∈N

∗ × N
∗ is the minimal solution of the equation x2 − dy2 = 1,

ǫ = x0 + y0

√
d and (xi, yi), i = 1, ...r, are different integer solutions of the

equation x2 − dy2 = k, with |xi|≤
√

|k| ǫ and |yi|≤
√

|k|ǫ
d

, then there exists an
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infinity of integer solutions of the given equation and these solutions have the

form: µ = ±µiǫ
l or µ = ±µiǫ

l, l∈Z, where µi = xi + yi

√
d, µi = xi − yi

√
d,

i = 1, ..., r.
ii)If the given equation does not have solutions satisfying the above conditions,

then it does not have any solutions.

2 Results

Now we consider the Diophantine equation

x4 − 6x2y2 + 5y4 = 16Fn−1Fn+1. (1)

Proposition 2.1 All the solutions (x, y, n)∈Z×Z×3N, of the Diophantine

equation (1) with Fn−1 a prime number and Fn+1 = p1p2, where p1, p2 are

different prime natural numbers,are (x, y, n) = (±L6l,±F6l, 6l), l ∈ N
∗, when

6l−1 are prime numbers and F6l+1 is a product of two prime different numbers.

Proof. Let (x, y, n)∈Z × Z × 3N be a solution of the equation (1).
At the beginning, we note that x≡y (mod 2) and x2 − 5y2≤x2 − y2.

First, we study the situation when x2≥y2.
The equation (1) is equivalent with

(x2 − 5y2)(x2 − y2) = 16Fn−1Fn+1

Using the fact that n ≡ 0 (mod 3) and 1.7 we obtain that Fn−1 and Fn+1

are odd numbers.
Other remark is that x and y are both even numbers (if x and y are both odd
numbers we have (x2 − 5y2)(x2 − y2) ≡ 0 (mod32) but 16Fn−1Fn+1 is not
divisible by 32 because Fn−1 and Fn+1 are odd numbers).
We have the following cases:
Case 1. x2 − 5y2 = r;x2 − y2 = 16

r
Fn−1Fn+1, where r∈{2, 8} .

Case 2. x2 − 5y2 = 4;x2 − y2 = 4Fn−1Fn+1.
Case 3. x2 − 5y2 = rFn−1;x

2 − y2 = 16
r

Fn+1, where r∈{2, 8} .

Case 4. x2−5y2 = rkFn−1;x
2−y2 = 16Fn+1

rk
or inverse x2−5y2 = 16Fn+1

rk
;x2−

y2 = rkFn−1, where r∈{2, 8} , k∈{p1, p2} .
Case 5. x2 − 5y2 = 4Fn−1;x

2 − y2 = 4Fn+1.

Case 6. x2−5y2 = 4kFn−1;x
2−y2 = 4Fn+1

k
, k ∈ {p1, p2} or inverse: x2−5y2 =

4Fn+1

k
;x2 − y2 = 4kFn−1, k∈{p1, p2} .

We study then the situation when x2<y2. There are the following cases:
Case 7. x2 − 5y2 = −rFn−1Fn+1;x

2 − y2 = − 16
r

, where r ∈ {2, 8} .
Case 8. x2 − 5y2 = −rFn+1;x

2 − y2 = − 16
r

Fn−1, where r ∈ {2, 8} .
Case 9. x2 − 5y2 = −4Fn−1Fn+1;x

2 − y2 = −4.
Case 10. x2 − 5y2 = −4Fn+1;x

2 − y2 = −4Fn−1.
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Case 11. x2 − 5y2 = − rFn+1

k
;x2 − y2 = − 16

r
kFn−1 or inverse: x2 − 5y2 =

−
{

16
r

}

kFn−1;x
2 − y2 = − rFn+1

k
, where r ∈ {2, 8} ; k∈{p1, p2} .

Case 12. x2 − 5y2 = − 4Fn+1

k
;x2 − y2 = −4kFn−1 or inverse x2 − 5y2 =

−4kFn−1;x
2 − y2 = − 4Fn+1

k
, k∈{p1, p2} .

We analyse step by step all these cases.

Case 1. If r = 2, we get the system x2 − 5y2 = 2;x2 − y2 = 8Fn−1Fn+1.
Since x,y are even numbers, we obtain x2 − 5y2≡0 (mod 4), so the equation
x2 − 5y2 = 2 does not have integer solutions.
Similarly with this situation, we obtain that the system does not have integer
solutions when r = 8. Similarly with the Case 1 we obtain that there are no

integer solutions in the Cases 3,4,7,8,11.

Case 2. x2 − 5y2 = 4;x2 − y2 = 4Fn−1Fn+1.
First we solve the equation x2 − 5y2 = 4. We consider the Pell equation
x2 − 5y2 = 1. The minimal solution is (x0, y0) = (9, 4) and ǫ = 9 + 4

√
5.

Applying 1.1, for the equation x2−5y2 = 4 we search for solutions (x, y)∈Z×Z,

with |x|≤
√

4ǫ and |y|≤
√

4ǫ
5 < 4. It results y∈{0,±1,±2,±3} . But, in our sys-

tem it is necessary that y be even number, so y∈{0,±2} .
If y = ±2, we obtain x/∈Z.
If y = 0, we obtain x = 2. According to Proposition 1.1, we obtain that all
integer solutions of the equation x2 − 5y2 = 4 are (xl, yl)∈Z × Z such that
xl +

√
5yl = ±2ǫl, l∈N. It results:

xl = ±[(2 +
√

5)2l + (2 −
√

5)2l],

yl = ± 1√
5
[(2 +

√
5)2l − (2 −

√
5)2l], l ∈ N,

therefore
xl = ±L6l, yl = ±F6l.

We remark (according to 1.4.(iii)) that all these solutions (xl, yl) = (±L6l,±F6l)
are solutions for the second equation of the considered system (x2 − y2 =
4Fn−1Fn+1.)
Therefore, in the Case 2, we obtain solutions of the equation under the hy-
potheses given in our theorem: (xl, yl, n) = (±L6l,±F6l, 6l), l ∈ N

∗, with 6l−1
prime numbers and F6l+1 a product of two different prime numbers.

Case 5. By substracting the two equations and using the recurrence rela-
tion of Fibonacci numbers, we obtain y2 = Fn. Applying Proposition 1.1 and
the fact that n ≥ 1, it results n∈{1, 2, 12} .
n = 1 is not valid because 1/∈3Z.
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Similarly n = 2 is not valid.
If n = 12, we obtain y∈{−12, 12} , but x/∈Z. So, in this case the equation (1)
does not have integer solutions.
Case 6. Since x and y are even numbers we can denote x = 2x

′

, y = 2y
′

,
x

′

, y
′∈Z. It is necessary that x

′

is not congruent with y
′

(mod 2)(otherwise

the equation x
′2 − 5y

′2

= kFn−1 does not have integer solutions).
We obtain that the system from the case 6. becomes

x
′2 − 5y

′2

= kFn−1;x
′2 − y

′2

=
Fn+1

k

or

x
′2 − 5y

′2

=
Fn+1

k
;x

′2 − y
′2

= kFn−1

First we consider the situation: y/∈4Z. It results x
′≡0 (mod 2) and y

′≡1
(mod 2).
We turn back in the equation (1). This is equivalent with

x
′4 − 6x

′2

y
′2

+ 5y
′4

= Fn−1Fn+1. (2)

We consider two subcases.
First subcase: when n≡3 (mod 6), using 1.6 we have Fn−1≡1 (mod 4) and
Fn+1≡3 (mod 4).
We observe that the left side of the equation (2) is ≡1 (mod 4), but the right
side of the same equation is ≡3 (mod 4). It results that the equation (2)does
not have integer solutions, therefore the equation (1)doesn’t have integer so-
lutions.
Second subcase: when n≡0 (mod 6), using 1.6 we have Fn−1≡1 (mod 4),
Fn+1≡1 (mod 4), Fn ≡0 (mod 4). Applying 1.5 we obtain that the equation
(2) is equivalent with

x
′4 − 6x

′2

y
′2

+ 5y
′4

= F 2
n ± 1. (3)

We observe that the left side of the equation (3) is ≡ 5 or 13 (mod16), but
the right side of the same equation is ≡ 1 or 15 (mod16). It results that the
equation (3) does not have integer solutions, therefore the equation (1) does
not have integer solutions.

Now, we consider the situation: y∈4Z. Since Fn−1 is a prime number and
Fn+1 = p1p2 where p1, p2 are prime natural numbers, p1<p2, we have the
following subcases:
Subcase i): k = p1, and the system
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x
′2 − 5y

′2

= p1Fn−1;x
′2 − y

′2

= p2.
We observe immediately that Fn−1 < p2. We find the natural solutions of the
second equation of the system: x

′

= p2+1
2 , y

′

= p2−1
2 . We return in the first

equation of the system and we obtain (p2 − 1)(2 − p2) = p1Fn−1 − 1. This
equality is impossible because the left side is negative and the right side is
positive.
Subcase ii): k = p2, and the system x

′2 − 5y
′2

= p1;x
′2 − y

′2

= p2Fn−1, with
p1 < p2.
At the first equation of the system we attach the Pell equation x

′2 − 5y
′2

= 1.
The fundamental solution for this equation is (x

′

0, y
′

0) = (9, 4) and ǫ = 9+4
√

5.

For the equation x
′2 − 5y

′2

= p1 we search integer solutions (according Propo-

sition 1.1) (x
′

, y
′

) which satisfy
∣

∣

∣
x

′

∣

∣

∣
≤ √

p1ǫ,
∣

∣

∣
y

′

∣

∣

∣
≤

√

p1ǫ

5 . This implies
∣

∣

∣
x

′

∣

∣

∣
≤ 5

√
p1 and

∣

∣

∣
y

′

∣

∣

∣
≤ √

5p1. At the beginning, we search x
′

, y
′

natural

numbers. We suppose that Fn−1 < p2. From the second equation of the sys-

tem we obtain x
′ − y

′

= Fn−1, x
′

+ y
′

= p2, so x
′

= p2+Fn−1

2 , y
′

= p2−Fn−1

2 .
We obtain:
p2−Fn−1

2 ≤ √
5p1,

p2+Fn−1

2 ≤ 5
√

p1, therefore p1 < p2 ≤ (5+
√

5)
√

p1. It results
p1 < 53. Since p1 is an odd prime natural number, we obtain that
p1∈{3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47} . If p2 < Fn−1, similarly we ob-
tain that p1∈{3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47} .

If p1∈{3, 7, 11, 19, 23, 31, 43, 47} , the equation x
′2 − 5y

′2

= p1 does not have

integer solutions, because x
′2

cannot be congruent with 3 (mod 4).

If p1= 13, we turn back in the equation x
′2 − 5y

′2

= 13. Since the last digit
of the 5y

′2

+ 13 is 3 or 8, it results that the equation x
′2 − 5y

′2

= 13 does not
have integer solutions.
If p1= 17, we turn back in the equation x

′2 − 5y
′2

= 17. Since the last digit
of the 5y

′2

+ 17 is 2 or 7, it results that the equation x
′2 − 5y

′2

= 17 does not
have integer solutions.
Analogously we obtain that the equation x

′2 −5y
′2

= p1 does not have integer
solutions for p1 = 37.
If p1= 5, we try to find the integer solutions of the equation x

′2 − 5y
′2

= 5.

Knowing that
∣

∣

∣
y

′

∣

∣

∣
≤ √

5p1 = 5 and y
′

is even, it results y
′∈{0,±2,±4} .

If y
′∈{0,±4} , it results x

′

/∈Z.

If y
′

= ±2, it results x
′

= ±5. We turn back in the system x
′2 − 5y

′2

=
5;x

′2 − y
′2

= p2Fn−1 and we obtain p2Fn−1 = 21. But Fn−1 6= 7, so p2 = 7,
Fn−1 = 3. This implies n = 5, 35 = p1p2 = Fn+1 = F6. This is false. Therefore

(x
′

1, y
′

1) = (5, 2) is not a solution for the equation x
′2 − y

′2

= p2Fn−1.

But all natural solutions (x
′

l, y
′

l) of the equation x
′2 − 5y

′2

= 5 are (according
to Proposition 1.1) of the form:
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x
′

l + y
′

l

√
5 = (5 + 2

√
5)(9 + 4

√
5)l or x

′

l + y
′

l

√
5 = (5 − 2

√
5)(9 + 4

√
5)l, l∈Z.

This implies that x
′

l+1 + y
′

l+1

√
5 = (x

′

l + y
′

l

√
5)(9 + 4

√
5). So

x
′

l+1 = 9x
′

l + 20y
′

l (4)

and
y

′

l+1 = 4x
′

l + 9y
′

l . (5)

We obtain that

x
′2

l+1 − y
′2

l+1 = 65x
′2

l + 319y
′2

l + 288x
′

ly
′

l . (6)

Since (x
′

1, y
′

1) = (5, 2), 5 is not congruent with 0 (mod 3), 2 is not congruent
with 0 (mod 3), using the relations (4) and (5) we obtain x

′

2 is not congruent
with 0 (mod 3), y

′

2 is not congruent with 0 (mod 3),..., x
′

l is not congruent

with 0 (mod 3), y
′

l is not congruent with 0 (mod 3). Using (6) we obtain that

x
′2

l+1 − y
′2

l+1≡0 (mod 3).

If the second equation of the system had a solution, that means x
′2

l+1 − y
′2

l+1 =
p2Fn−1, would result p2 = 3 or Fn−1 = 3.
If p2 = 3, it results Fn+1 = p1p2 = 15. This is a contradiction, because there
is not n ∈ N such that Fn+1 = 15.
If Fn−1 = 3, it results n = 5 and Fn+1 = F6 = 86=p1p2. So, we cannot have
Fn−1 = 3.
From the previously proved, it results that the system

x
′2 − 5y

′2

= 5;x
′2 − y

′2

= p2Fn−1

does not have integer solutions.
If p1 = 29, we try to find the integer solutions of the equation x

′2 − 5y
′2

= 29.

Knowing that
∣

∣

∣
y

′

∣

∣

∣
≤ √

5p1 =
√

145 and y
′

is even, it results

y
′ ∈ {0,±2,±4 ± 6,±8,±10,±12} .

If y
′∈{0,±4 ± 6,±8,±12} , it results x

′

/∈Z.
If y

′

= ±2, it results x
′

= ±7.
From the system

x
′2 − 5y

′2

= 29;x
′2 − y

′2

= p2Fn−1

we obtain that p2Fn−1 = 45 = 32 ·5. This is a contradiction with the fact that
p2 and Fn−1 are prime numbers.
If y

′

= ±10, it results x
′

= ±23.
From the system x

′2 − 5y
′2

= 29; x
′2 − y

′2

= p2Fn−1
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we obtain that p2Fn−1 = 429 = 3 ·11 ·13. This is a contradiction with the fact
that p2 and Fn−1 are prime numbers.

All the natural solutions of the equation x
′2 − 5y

′2

= 29 are (according to
Proposition 1.1) (x

′

l, y
′

l):

x
′

l + y
′

l

√
5 = (7 + 2

√
5)(9 + 4

√
5)l, l∈Z and x

′

l + y
′

l

√
5 = (7 − 2

√
5)(9 + 4

√
5)l

and x
′

l +y
′

l

√
5 = (23+10

√
5)(9+4

√
5)l and x

′

l +y
′

l

√
5 = (23−10

√
5)(9+4

√
5)l

l∈Z.
Analogously with the case when p2 = 5 we obtain that none of the solutions
(x

′

l, y
′

l) of the equation x
′2 − 5y

′2

= 29 is solution for the equation x
′2 − y

′2

=

p2Fn−1. So, the system x
′2 − 5y

′2

= 29; x
′2 − y

′2

= p2Fn−1 does not have
integer solutions.
If p1 = 41, we try to find the integer solutions of the equations x

′2 −5y
′2

= 41.

Knowing that
∣

∣

∣
y

′

∣

∣

∣
≤ √

5p1 =
√

205 and y
′

is even, it results

y
′∈{0,±2,±4 ± 6,±8,±10,±12,±14} .

If y
′∈{0,±2 ± 6,±10,±12,±14} . It results x

′

/∈Z.
If y

′

= ±4, it results x
′

= ±11.
From the system x

′2 − 5y
′2

= 41; x
′2 − y

′2

= p2Fn−1 we obtain that p2Fn−1 =
105 = 3 ·5 ·7. This is a contradiction with the fact that p2 and Fn−1 are prime
numbers.
If y

′

= ±8, it results x
′

= ±19.
From the system x

′2 − 5y
′2

= 41; x
′2 − y

′2

= p2Fn−1 we obtain that p2Fn−1 =
33 · 11. This is a contradiction with the fact that p2 and Fn−1 are prime
numbers.
All the natural solutions of the equation x

′2 − 5y
′2

= 41 are (according to
Proposition 1.1) (x

′

l, y
′

l):

x
′

l +y
′

l

√
5 = (11+4

√
5)(9+4

√
5)l, l∈Z and x

′

l +y
′

l

√
5 = (11−4

√
5)(9+4

√
5)l,

l∈Z and x
′

l+y
′

l

√
5 = (19+8

√
5)(9+4

√
5)l, l∈Z and x

′

l+y
′

l

√
5 = (19−8

√
5)(9+

4
√

5)l, l∈Z.
Analogously with the case when p2 = 5 we obtain that none of the solutions
(x

′

l, y
′

l) of the equation x
′2 − 5y

′2

= 41 is solution for the equation x
′2 − y

′2

=

p2Fn−1. So, the system x
′2 −5y

′2

= 41; x
′2 −y

′2

= p2Fn−1 doesn’t have integer
solutions.
Subcase iii): k = p1, and the system

x
′2 − 5y

′2

= p2;x
′2 − y

′2

= p1Fn−1, with p1 < p2

At the begining we consider the situation Fn−1 < p1. We have:

Fn−1 < p1 < p2 ⇒

F 2
n−1 < p2

1 < Fn+1 ⇒
Fn−1(Fn−1 − 1) < Fn < 2Fn−1 ⇒
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Fn−1 < 3 = F4.

We obtain n ∈ {1, 2, 3, 4}
For n∈{1, 2, 3} it results Fn−1∈{0, 1}. This is in contradiction with the fact
that Fn−1 is a prime number.
For n = 4, it results Fn−1 = 2 and Fn+1 = F5 = 5. This is in contradiction
with the fact that Fn+1 is a product of two prime natural numbers.
Now, we consider the situation Fn−1 > p1.
From the second equation of the system we have natural solutions : x

′

=
p1+Fn−1

2 , y
′

= Fn−1−p1

2 .
For the first equation from the system we search (according to Proposition 1.1)

integer solutions (x
′

, y
′

) with the properties
∣

∣

∣
x

′

∣

∣

∣
≤ 5

√
p2 and

∣

∣

∣
y

′

∣

∣

∣
≤ √

5p2.

So p1+Fn−1

2 ≤ 5
√

p2,
Fn−1−p1

2 ≤ √
5p2.

We obtain:

Fn−1 <
√

5p2(
√

5 + 1) ⇒
F 2

n−1 < 5(6 + 2
√

5)p2 < 54p2 ⇒
F 2

n−1 ≤ 18p1p2 ⇔ F 2
n−1 ≤ 18Fn+1 ⇒

Fn−1(Fn−1 − 18) ≤ 18Fn ⇒
Fn−1(Fn−1 − 18) ≤ 36Fn−1 ⇒

Fn−1 < 54.

Since Fn−1 is a prime natural number, it results that Fn−1∈{3, 5, 13} . So
n∈{5, 6, 8} .
If n = 5, it results Fn+1 = F6 = 23 6=p1p2.
If n = 6, it results Fn+1 = F7 = 136=p1p2.
If n = 8, it results Fn+1 = F9 = 2 · 17=p1p2. Since p1 < p2 it results p1 = 2
and p2 = 17. This is a contradiction with the fact that Fn+1 is an odd number.
From the previously proved, we obtain that there are not integer solutions in
the case 6.
Case 12. Similarly with the case 6, we obtain that there are not integer so-
lutions in this case.
Case 9. x2 − 5y2 = −4Fn−1Fn+1;x

2 − y2 = −4.
All the integer solutions of the second equation are (x, y) = (0, 2), (x, y) =
(0,−2). We go back in the first equation and we obtain Fn−1Fn+1 = 5. We
observe that there is not any n∈N∗ such that Fn−1Fn+1 = 5.
Case 10. x2 − 5y2 = −4Fn+1;x

2 − y2 = −4Fn−1.
By substracting the two equations and using the recurrence relation of Fi-
bonacci numbers, we obtain y2 = Fn. Applying 1.1 and the fact that n ≥ 1,
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and n∈3N, it results n = 12. We obtain y∈{−12, 12} and x/∈Z. So, there are
not integer solutions in this case.

Proposition 2.2 All the solutions (x, y, n)∈Z×Z×3N of the Diophantine

equation

x4 − 6x2y2 + 5y4 = 16Fn−1Fn+1,

with Fn+1 a prime number and Fn−1 = p1p2, where p1, p2 are different prime

natural numbers,are (x, y, n) = (±L6l,±F6l, 6l), l ∈ N
∗, when 6l + 1 are prime

numbers and F6l−1 is a product of two different prime numbers.

Proof. It is similarly with the proof of the Proposition 2.1.

Proposition 2.3 All the solutions (x, y, n)∈Z×Z×3N, of the Diophantine

equation

x4 − 6x2y2 + 5y4 = 16Fn−1Fn+1,

with Fn−1, Fn+1 prime numbers, are (x, y, n) = (±L6l,±F6l, 6l), l ∈ N
∗, when

6l − 1 and 6l + 1 are prime numbers.
Proof. It is similarly with the proof of the Proposition 2.1, without the

cases 4,6,11,12.
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