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VOLTERRA INTEGRAL EQUATIONS

GOVERNED BY HIGHLY OSCILLATORY

FUNCTIONS ON TIME SCALES

Bianca Satco

Abstract

In this paper, we present an existence result for Volterra integral

equations on time scales. Since the theory of time scales unifies the

cases of difference and differential problems, our result encompasses both

situations and not only these ones. Moreover, we use the Henstock-∆-

integral, therefore the situation where the equation is governed by an

oscillatory function is also covered.

1 Introduction

It is well known that there are many analogies between the theories of differ-
ence equations and differential equations. The concept of time scales unifies
these two situations but gives also solutions for problems on discrete sets with
non-uniform step size or combinations of real and discrete intervals and many
others.

On the other hand, as it was seen in literature (beginning with [2]), the
study of dynamical systems leads, in a very natural way, to integrals of highly
oscillatory functions, such as the Henstock-type integrals. On time scales,
integrals of this type were introduced on the real line in [16] and [3] and in
general Banach spaces in [8] and, recently, used in applications (see [9]).

Combining methods used in both theories (time scales and non-absolute
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integrability in Banach spaces) we study, in the present paper, a Banach space
Volterra integral equation on time scales with a highly oscillatory function on
the right hand side:

x(t) = (H)

∫ t

0

f(t, s, x(s))∆s, ∀t ∈ T. (1)

To obtain the existence result, we apply a generalization of Darbo’s fixed point
theorem given in [14].

Let us first recall some basic concepts related to the theory of time scales.
A time scale T is a closed nonempty subset of the real numbers R endowed
with the usual topology (as, for example, the set of nonnegative integers, any
closed interval or finite union of closed intervals, but not only these).
The notion of a time scale was introduced by [12]. See also [5], [6] and the
references therein.

Definition 1 Let T be a time scale. Then the forward jump operator at the

point t, denoted by σ(t), is σ(t) = inf{s > t, s ∈ T} and, similarly, the

backward jump operator is ρ(t) = sup{s < t, s ∈ T}.We make the convention

that inf ∅ = sup T and sup ∅ = inf T.

If σ(t) > t, then t is called right-scattered; if ρ(t) < t, we say that t is left-
scattered. If t < sup T and σ(t) = t, we say t is right-dense and, likewisely, if
t > inf T and ρ(t) = t, then t is said to be left-dense.
Let a, b ∈ T. Define the time scale interval by [a, b]T = {t ∈ T, a ≤ t ≤ b}.

Let X be a Banach space and consider a function f : T → X. In the
sequel, we present the Henstock-∆-integral, following the method used in [16]
to introduce the real Henstock-Kurzweil integral on time scales. A pair of
functions δ = (δL, δR) is a ∆-gauge on [a, b]T if δL(t) > 0 on (a, b]T, δL(a) ≥ 0,
δR(t) > 0 on [a, b)T, δR(b) ≥ 0 and δR(t) ≥ σ(t) − t,∀t ∈ [a, b)T.

Definition 2 A partition of [a, b]T is a finite family {(ti−1, ti), ξi}
n
i=1 of non-

overlapping intervals covering [a, b]T with the tag points ξi ∈ (ti−1, ti); a par-

tition is said to be δ-fine if for each i = 1, ..., n,

ξi − δL(ξi) ≤ ti−1 < ti ≤ ξi + δR(ξi).

Definition 3 A function f : [a, b]T → X is Henstock-∆-integrable (shortly,

H-∆-integrable) on [a, b]T if there exists an element (H)
∫ b

a
f(s)∆s ∈ X such

that, for every ε > 0, there is a ∆-gauge δε with

∥

∥

∥

∥

∥

n
∑

i=1

f(ξi)(ti−1 − ti) − (H)

∫ b

a

f(s)∆s

∥

∥

∥

∥

∥

< ε
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for every δε-fine partition. We call this element the Henstock-∆-integral of f

on [a, b]T.

The definition of Henstock delta integral makes sense since in [16] the
following lemma (Cousin’s Lemma for time scale theory) was proved:

Lemma 4 If δ is a ∆-gauge for [a, b]T, then one can find a δ-fine partition of

[a, b]T.

Remark 5 In particular, if the time scale is a real closed interval, then the

previous Definition 3 gives the Henstock integral for Banach-valued functions

(see [7]). Moreover, if X is the real line, one obtains the real Henstock-

Kurzweil integral, for which the reader is referred to the monograph [11].

The space of Henstock-∆-integrable X-valued functions will be denoted by
H(T,X) and will be considered provided with the Alexiewicz norm:

‖f‖A = sup
a,b∈T

∥

∥

∥

∥

∥

(H)

∫ b

a

f(s)∆s

∥

∥

∥

∥

∥

.

As for the usual Henstock integral, it can be seen ([8]) that

Lemma 6 If f : [a, b]T → X is Henstock-∆-integrable on [a, b]T, then it is

Henstock-∆-integrable on any time scale interval [a′, b′]T, where a ≤ a′ < b′ ≤

b. Besides, the primitive in Henstock-∆ sense t 7→ (H)
∫ t

a
f(s)∆s is continuous

on [a, b]T.

The space of continuous functions endowed with the usual norm is denoted by
C(T,X) and let BR be its closed ball centered in the constant null function
with radius R.

2 An existence result for Volterra integral equations on

time scale

We prove in this section an existence result for the Volterra integral equation
(1) on a bounded time scale (suppose that 0 is the minimum of the time scale
and denote by b its maximum).

Our main theorem will be proved by applying the following generalization
of the Darbo’s fixed point Theorem given in [14]:

Lemma 7 Let F be a closed convex subset of a Banach space and the operator

A : F → F be continuous with A(F ) bounded. For any bounded B ⊂ F set

Ã1(B) = A(B) and Ãn(B) = A
(

co
(

Ãn−1(B)
))

,∀n ≥ 2.
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If there exist a positive constant 0 ≤ k < 1 and a natural number n0 such that

α(Ãn0(B)) ≤ kα(B) for every bounded B ⊂ F , then A has a fixed point.

Here α is the Hausdorff measure of noncompactness (for which the reader is
referred to [4]). A result of Ambrosetti-type ([1]) proved in [9] will be useful:

Lemma 8 Let K ⊂ C(T,X) be bounded and equi-continuous. Then

α(K) = sup
t∈T

α(K(t)).

Theorem 9 Let f : T × T × X → X satisfy:

i) for every t ∈ T and every continuous x : T → X, the function f(t, ·, x(·)) is

H-∆-integrable;

ii) the H-∆-primitives (H)
∫

·

0
f(·, s, x(s))∆s are uniformly continuous on T,

uniformly with respect to x in any ball of the space of continuous functions:

for every R > 0 and every ε > 0, one can find 0 < δε,R < 1 such that

∥

∥

∥

∥

∥

(H)

∫ t”

t′
f(t, s, x(s))∆s

∥

∥

∥

∥

∥

< ε, ∀|t′ − t”| < δε,R, ∀x ∈ BR.

iii) the map x 7→ f(t, ·, x(·)) from C(T,X) to H(T,X) is ‖ · ‖A-uniformly

continuous, uniformly with respect to t ∈ T;

iv) lim sup
R→∞

b + 1

Rδ1,R

< 1;

v) there exists a positive constant c such that

α(F (t, [0, t],D)) ≤ cα(D), ∀t ∈ T, ∀D ⊂ X bounded.

Then the Volterra integral equation possess continuous solutions.

Proof. By hypothesis iv), one can find R0 > 0 such that for any R ≥ R0,

b + 1

δ1,R

< R.

Let A : C(T,X) → C(T,X) be defined by

Ax(t) = (H)

∫ t

0

f(t, s, x(s))∆s.

We prove that A is a continuous operator mapping the closed ball BR0
of

C(T,X) into itself. First of all, for every t ∈ T and for all x ∈ BR0
, let N ∈ N
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be the integer part of t
δ1,R0

. Then

∥

∥

∥

∥

(H)

∫ t

0

f (t, s, x(s)) ∆s

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

(H)

∫ δ1,R0

0

f (t, s, x(s)) ∆s

∥

∥

∥

∥

∥

+ ...

+

∥

∥

∥

∥

∥

(H)

∫ Nδ1,R0

(N−1)δ1,R0

f (t, s, x(s)) ∆s

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

(H)

∫ t

Nδ1,R0

f (t, s, x(s)) ∆s

∥

∥

∥

∥

∥

≤ N + 1

≤
b

δ1,R0

+ 1 ≤
b + 1

δ1,R0

.

It follows that, for any x ∈ BR0
,

‖Ax‖C ≤
b + 1

δ1,R0

< R0.

The continuity immediately comes from hypothesis iii).
Next, we prove that F = coA(BR0

) is equi-continuous. By Lemma 2.1 in [14],
it suffices to show that A(BR0

) is equi-continuous. For all u ∈ BR0
and all

t′ < t” ∈ T, we have

‖Ax(t′) − Ax(t”)‖ =

∥

∥

∥

∥

∥

(H)

∫ t”

t′
f(t, s, x(s))∆s

∥

∥

∥

∥

∥

and, by assumption ii), this can be made less than some fixed ε if t′, t” are
close enough. So, the equi-continuity follows.
Obviously, A : F → F is bounded and continuous. Let us prove, by mathe-
matical induction, that for every B ⊂ F and any n ∈ N, Ãn(B) ⊂ A(BR0

),
so Ãn(B) is bounded and equi-continuous. For n = 1 it is true, since A(B) ⊂
A(F ) ⊂ A(BR0

). Suppose now that this is true for n − 1 and prove it for n:

Ãn(B) = A(co(Ãn−1(B))) ⊂ A(co(A(BR0
))) ⊂ A(co(BR0

)) = A(BR0
).

Then, by Lemma 8,

α
(

Ãn(B)
)

= sup
t∈T

α
(

Ãn(B)(t)
)

, ∀n ∈ N.

As in the second part of the proof of Theorem 3.1 in [14], one can show that
there exist a constant 0 ≤ k < 1 and a positive integer n0 such that for any
B ⊂ F , α(Ãn0(B)) ≤ kα(B).
Let (vn)n be an arbitrary countable subset of Ã1(B) = A(B). There exists
a sequence (un)n ⊂ B such that vn = Aun. Using now a mean value result
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proved in [9] for the Henstock-Kurzweil-Pettis ∆-integral (the class of functions
integrable in this sense is larger than that of Henstock-∆-integrable functions)
one gets that

α ({vn(t), n ∈ N}) = α
(

{Aun(t), n ∈ N}
)

= α
(

(H)

∫ t

0

f(t, s, {un(s), n})∆s
)

≤ α (tconv(f(t, [0, t], {un([0, t]), n}))) .

By hypothesis v) it follows that

α({vn(t), n ∈ N}) ≤ ctα({un([0, t])})).

Since the Banach space is separable, this implies that

α
(

Ã1(B)(t)
)

≤ ctα(B).

It can be shown, by mathematical induction, that for every m ∈ N,

α
(

Ãm+1(B)
)

≤ ctα
(

Ãm(B)
)

,

and so α
(

Ãm+1(B)
)

≤ (ct)m+1α(B). For some integer n0 the evaluation

term (ct)n0 can be made less than 1 and so, by Lemma 7, A has a fixed point,
which is a global solution to our equation.

Remark 10 Our assumptions are less restrictive than similar results on time

scale (see [5] or [6]) where absolutely convergent integrals are considered. More-

over, since the time scale theory encompasses the classical theory (the case

T = R), our main result extends those already given on real intervals, as the

existence theorem in [10]. Related existence results are proved as particular,

the single-valued, case in [17] and [18]. Finally, the result presented in [15]
under Carathéodory type assumptions is also contained.
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