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SOLUTION OF MULTI - DELAY SYSTEMS

VIA COMBINED BLOCK-PULSE

FUNCTIONS AND LEGENDRE

POLYNOMIALS

Mohsen Razzaghi

Abstract

A method for finding the solution of a linear time varying multi-

delay systems using a hybrid function is proposed. The properties of the

hybrid functions which consists of block-pulse functions plus Legendre

polyno- mials are presented. The method is based upon expanding var-

ious time functions in the system as their truncated hybrid functions.

Operational matrices of integration, delay and product are presented

and are utilized to reduce the solution of multi-delay systems to the

solution of algebraic equations. An Illustrative examples are included

to demonstrate the va- lidity and applicability of the technique. Key

words: Orthogonal functions, hybrid functions, multi-delay sys- tems,

block-pulse functions, Legendre polynomials.

1 Introduction

Delays occur frequently in biological, chemical, transportation, electronic,
com- munication, manufacturing and power systems [1]. Time-delay and
multi-delay systems are therefore very important classes of systems whose con-
trol and op- timization have been of interest to many investigators [2-5]. The
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available sets of orthogonal functions can be divided into three classes. The
first includes set of piecewise constant basis functions (PCBFs)(e.g., Walsh,
block-pulse,etc.). The second consists of a set of orthogonal polynomials (e.g.,
Laguerre, Legendre, Chebyshev, etc.). The third is the widely used set of sine-
cosine functions in Fourier series. While orthogonal polynomials and sine-
cosine functions together form a class of continuous basis functions, PCBFs
have in- herent discontinuities or jumps. It is worth mentioning that approx-
imating a continuous function with PCBFs, results in an approximation that
is piecewise constant. On the other hand if a discontinuous function is ap-
proximated by continuous basis functions, the discontinuities are not properly
modeled. Signals frequently have mixed features of continuity and jumps.
These signals are continuous over certain segments of time, with discontinu-
ities or jump occurring at the transitions of the segments. In such situations,
neither the continuous basis functions nor PCBFs taken alone would form an
efficient basis in the representation of such signals.

Orthogonal functions have received considerable attention in dealing with
various problems of dynamic systems. Much progress has been made towards
the solution of delay systems. The approach is to convert the delay-differential
equation to an algebraic form through the use of operational matrices of in-
tegration and delay. These matrices can be uniquely determined based on
the particular choices of basis functions. Special attention has been given
to applica- tions of Walsh functions [6], block pulse functions [7], Laguerre
polynomials [8], Legendre polynomials [9], and Chebyshev polynomials [10].
Moreover, Walsh functions was used for the solution of multi-delay systems
in [11]. Due to the nature of these functions, the solution obtained were
piecewise constant. In general, the computed response of the delay systems
via orthogonal functions and Taylor series is not in good agreement with the
exact response of the system [12].

In the present paper we introduce a new direct computational method to
solve linear time varying multi-delay systems. The method consists of reduc-
ing the multi-delay problem to a set of algebraic equations by first expanding
the candidate function as a hybrid function with unknown coefficients. These
hybrid functions, which consists of block-pulse functions plus Legendre poly-
nomials are first introduced. The operational matrices of integration and delay
are given. These matrices are then used to evaluate the coefficients of the hy-
brid function for the solution of multi- delay systems. The paper is organized
as follows: In Section 2 we describe the basic properties of the hybrid func-
tions of block-pulse and Legendre Polynomials required for our subsequent
development. Section 3 is devoted to the formulation of linear time varying
multi-delay systems. In Section 4 we apply the proposed numerical method
to multi-delay systems, and in Section 5, we report our numerical finding and
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demonstrate the accuracy of the proposed scheme by considering a numerical
example.

2 Properties of hybrid functions

2.1 Hybrid functions of block-pulse and Legendre Polynomials.

Hybrid functions bnm(t), n = 1, 2, · · · , N,m = 0, 1, · · · ,M − 1, have three
arguments; n and m are the order of block-pulse functions and Legendre poly-
nomials respectively, and t is the normalized time. They are defined on the
interval [0, tf ) as

bnm(t) =

{

Pm( 2N
tf

t − 2n + 1), t ∈
[

n−1
N

tf , n
N

tf
]

0, otherwise.
(1)

Here, Pm(t) are the well-known Legendre polynomials of order m which satisfy
the following recursive formula.

P0(t) = 1, P1(t) = t

Pm+1(t) =
2m + 1

m + 1
tPm(t) −

m

m + 1
Pm−1(t), m = 1, 2, 3, · · ·

2.2 Function approximation

A function f(t), defined over the interval 0 to tf may be expanded as

f(t) ≃
N

∑

n=1

M−1
∑

m=0

cnmbnm(t) = CT B(t),

where

C = [c10, · · · , c1M−1, c20, · · · , c2M−1, · · · , cN0, · · · , cNM−1]
T , (2)

and

B(t) = [b10(t), · · · , b1M−1(t), b20(t), · · · , b2M−1(t), · · · , bN0(t), · · · , bNM−1(t)]
T .

(3)
The integration of the vector B(t) defined in (3) can be approximated by

∫ t

0

B(t′)dt′ ≃ PB(t), (4)



226 MOHSEN RAZZAGHI

where P is the MN × MN operational matrix of integration and is given in
[13]. The product of two hybrid function vectors can be approximated as

B(t)BT (t)C ≃ C̃B(t), (5)

where C̃ is a MN ×MN where C̃ is the operational matrix of product and is
given in [14].

2.3 The multi-delay operational matrix of delay for the hybrid of

block-pulse and Legendre polynomials

The delay function B(t − kj), j = 1, 2, . . . , r is the shift of the function B(t)
defined in (3), along the time axis by kj , where k1, k2, . . . , kr are rational
numbers in (0, 1). It is assumed without loss of generality that k1 < k2 <

· · · < kr.
The general expression is given by

B(t − kj) = DjB(t), t > kj (6)

where Dj is the delay operational matrix of hybrid functions corresponding to
kj .

To find Dj for j = 1, 2, . . . , r, we first choose N the order of block-pulse
functions in the following manner:

We define w as the smallest positive integer number for which wkj ∈ Z

for j = 1, 2, . . . , r. Next we choose λ as the greatest common divisor of the
integers wkj , j = 1, 2, . . . , r, that is

λ = g.c.d(wk1, wk2, . . . , wkr).

Let

N =







w

λ
, if w

λ
∈ Z,

[w

λ

]

+ 1, otherwise,

where [.] denotes greatest integer value.
With the aid of(1), it is noted that for the case kj < t < kj + λ

w
, the

only terms with nonzero values are b1m(t − kj) for m = 0, 1, 2, . . . ,M − 1.

If we set βj =
wkj

λ
+ 1, and expand b1m(t − kj) in terms of bβjm(t), since

b1m(t− kj) = bβjm(t), then the coefficient (element) of the delay matrix is an
M × M identity matrix.

In a similar manner, for kj + λ
w

< t < kj + 2λ
w

, only b2m(t − kj) for
m = 0, 1, 2, . . . ,M − 1 has nonzero values. If we set γj = βj + 1, and expand
b2m(t − kj) in terms of bγjm(t), since b2m(t − kj) = bγjm(t), then the element
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of the delay matrix is M × M identity matrix. Thus, if we expand B(t − kj)
in terms of B(t) we find NM × NM matrix Dj as

Dj =















0 0 · · · 0 I 0 · · · 0
0 0 · · · 0 0 I · · · 0
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · I

0 0 · · · 0 0 0 · · · 0















.

It is noted that the first identity matrix in the first row is located at the βjth
column.

3 Problem statement

Consider the following linear time-varying multi-delay system:

Ẋ(t) = E(t)X(t) +
r

∑

j=1

Fj(t)X(t − kj) + G(t)U(t), 0 ≤ t ≤ 1 (7)

X(0) = X0, (8)

X(t) = Φ(t), t < 0 (9)

where X(t) ∈ Rl, U(t) ∈ Rq, E(t), G(t), and Fj(t), j = 1, 2, . . . , r, are
matrices of appropriate dimensions, X0 is a constant specified vector, and
Φ(t) is an arbitrary known function. The problem is to find X(t), 0 ≤ t ≤ 1,
satisfying (7)–(9).

4 Approximation using hybrid functions

Let

X(t) = [x1(t), x2(t), . . . , xl(t)]
T

, U(t) = [u1(t), u2(t), . . . , uq(t)]
T

, (10)

B̂(t) = Il ⊗ B(t), B̂1(t) = Iq ⊗ B(t) (11)

where Il and Iq are the l and q dimensional identity matrices, B(t) is MN ×

1 vector and ⊗ denotes Kronecker product [14]. Using the property of the
Kronecker product, B̂(t) and B̂1(t) are matrices of order lMN×l and qMN×q

respectively.
Assume that each xi(t) and each of uj(t), i = 1, 2, . . . , l, j = 1, 2, . . . , q,

can be written in terms of hybrid functions as

xi(t) = BT (t)Xi, uj(t) = BT (t)Uj .
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Then using (16) and (17) we have

X(t) = B̂T (t)X, U(t) = B̂T
1 (t)U, (12)

where X and U are vectors of order lMN × 1 and qMN × 1, respectively,
given by

X = [X1,X2, . . . ,Xl]
T

, U = [U1, U2, . . . , Uq]
T

.

Similarly we have

X(0) = B̂T (t)d, Φ(t − kj) = B̂T (t)Rj , (13)

where d and Rj , j = 1, 2, . . . , r, are vectors of order lMN × 1 given by

d = [d1, d2, . . . , dl]
T

, Rj = [αj1, αj2, . . . , αjl]
T

.

We now expand E(t), Fj(t), j = 1, 2, . . . , r, and G(t) by hybrid functions as
follows:

E(t) = [E10, E11, . . . , E1M−1, . . . , EN0, EN1, . . . , ENM−1]
T

B̂(t) = ET B̂(t),

Fj(t) =
[

Fj10, Fj11, . . . , Fj1(M−1), . . . , FjN0, FjN1, . . . , FjN(M−1)

]T
B̂(t) = FT

j B̂(t),

G(t) = [G10, G11, . . . , G1M−1, . . . , GN0, GN1, . . . , GNM−1]
T

B̂1(t) = GT B̂1(t),

where ET , FT
j , j = 1, 2, . . . , r, and GT are of dimensions l × lMN , l × lMN

and l × qMN , respectively.
We can also write X(t − kj), j = 1, 2, . . . , r, in terms of hybrid functions

as

X(t − kj) =

{

B̂T (t)Rj , 0 ≤ t ≤ kj

B̂T (t)D̂T
j X, kj < t ≤ 1

where
D̂j = Il ⊗ Dj

and Dj is the delay operational matrix given in (6).
Now we have

E(t)X(t) = ET B̂(t)B̂T (t)X = B̂T (t)ẼT X,

G(t)U(t) = GT B̂1(t)B̂
T
1 (t)U = B̂T (t)G̃T U, (14)

where Ẽ and G̃ can be calculated similarly to matrix C̃ in (5). Moreover

∫ t

0

B̂T (t′) dt′ = (Il ⊗ BT (t))(Il ⊗ PT ) = B̂T (t)P̂T , (15)
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∫ t

0

Fj(t
′)X(t′−kj) dt′ =











B̂T (t)P̂T F̃T
j Rj , 0 ≤ t ≤ kj

B̂T (t)ZjF̃
T
j Rj + B̂T (t)P̂T F̃T

j D̂T
j X, kj < t ≤ 1

(16)
where

P̂ = Il ⊗ P,

and P is the operational matrix of integration given in (4) and

∫ kj

0

B̂T (t) dt = B̂T (t)Zj ,

where Zj , j = 1, 2, . . . , r, is a constant matrix of order lMN × lMN .

By integrating (7) from 0 to t and using (12)–(16) we have

B̂T (t)X − B̂T (t)d = B̂T (t)P̂T ẼT X+

+

r
∑

j=1

[

B̂T (t)P̂T F̃T
j Rj + B̂T (t)ZjF̃

T
j Rj + B̂T (t)P̂T F̃T

j D̂T
j X

]

+B̂T (t)P̂T G̃T U,

(17)
using (17) we get

X =



I − P̂T ẼT
−

r
∑

j=1

P̂T F̃T
j D̂T

j





−1 

d +

r
∑

j=1

(

P̂T F̃T
j Rj + ZjF̃

T
j Rj

)

+ P̂T G̃T U



 .

5 An illustrative example

Consider the time-varying multi-delay system described by

(

ẋ1(t)
ẋ2(t)

)

=

(

t 1
t 2t

) (

x1(t −
1
3 )

x2(t −
1
3 )

)

+

(

2 t

t2 0

)(

x1(t −
2
3 )

x2(t −
2
3 )

)

+

(

0
1

)

u(t), (18)

with

x1(t) = x2(t) = u(t) = 0, t ∈

[

−
2

3
, 0

]

(19)

and

u(t) = 2t + 1, t > 0.
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The exact solutions are [12]

x1(t) =































0, 0 ≤ t < 1
3

7
162 −

2
9 t + 1

6 t2 + 1
3 t3, 1

3 ≤ t < 2
3

11
162 −

58
243 t + 31

162 t2 + 1
9 t3 + 7

72 t4 + 1
6 t5, 2

3 ≤ t ≤ 1

and

x2(t) =































t + t2, 0 ≤ t < 1
3

5
486 + t + 7

9 t2 + 2
9 t3 + 1

2 t4, 1
3 ≤ t < 2

3

1
486 + t + 200

243 t2 + 20
81 t3 + 29

72 t4 − 1
9 t5 + 1

6 t6, 2
3 ≤ t ≤ 1.

Here, we solve this problem by choosing N = 3 and M = 7. Let

x1(t) = CT
1 B(t), x2(t) = CT

2 B(t), (20)

where C1, C2 and B(t) can be obtained similarly to (2) and (3). By expanding
t and t2 in terms of hybrid functions we get

t = KT
1 B(t), t2 = KT

2 B(t).

We also have

tx1(t −
1

3
) = CT

1 D1K̃1B(t), tx2(t −
1

3
) = CT

2 D1K̃1B(t), (21)

t2x1(t −
2

3
) = CT

1 D2K̃2B(t), tx2(t −
2

3
) = CT

2 D2K̃1B(t), (22)

where K̃1 and K̃2 can be calculated similarly to matrix C̃ in Eq. (5). By
integrating Eq. (18) from 0 to t and using (19)–(22) we can calculate the
values of CT

1 and CT
2 and using (20) the same values as the exact x1(t) and

x2(t) would be obtained.

6 Conclusion

The hybrid of block-pulse functions and Legendre polynomials and the associ-
ated operational matrices of integration P, product C, and delay D are applied
to solve the linear time varying multi-delay systems. The method is based upon



SOLUTION OF MULTI - DELAY SYSTEMS 231

reducing the system into a set of algebraic equations. The matrices P, C, and
D have many zeros; hence, the method is computationally very attractive. It
is also shown in the example that the hybrid of block-pulse functions and Leg-
endre polynomials provides an exact solution when the exact solutions in each
subintervals are polynomials.
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