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THE ASYMPTOTIC STRESS FIELD FOR

FREE EDGE JOINTS UNDER SMALL -

SCALE YIELDING CONDITIONS

Liviu Marsavina and Marius Craciun

Abstract

In the complex engineering structures the use of bonded joints are

often preferred to more traditional methods of fabrication such as bolts

and welds since they are lighter and spread load more evenly. For deter-

mination the durability of such structures it is necessary to know well

the stress field around stress concentrators. At the free edge of bonded

joints between the adhesive and the adherend layers it is well-known

that there exists an elastic singular stress field. However, little is known

about the material behavior beyond the yield point. This paper presents

the small-scale yielding plane-strain asymptotic field calculated for the

interfacial free-edge joint singularity. Non-linear elasto-plastic materials

with Ramberg-Osgood power-law hardening properties bonded to a rigid

elastic substrate were considered. The leading order problem consists of

five non-linear ordinary differential equations. The numerical solutions

were obtained using a fourth order Runge - Kutta numerical method

fitted to the governing equations. For exemplification the singularity

orders for the interfacial free-edge joint with an angle of 60◦ are shown

plotted against hardening exponent.
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1 Introduction

Interface-controlled fracture is one of the most important microscopic events
leading to ultimate macroscopic rupture in many polycrystalline, composite,
and ceramic materials. The elasto-plastic interfacial crack problem has re-
ceived considerable attention in the last decade enabling a thorough under-
standing to be developed. Numerical solutions involving elasto-plastic be-
haviour at a traction-free crack tip for a Ramberg-Osgood hardening mate-
rial have been developed by Shih and Asaro (1988, 1989) and Zywicz and
Parks(1992) amongst others.

Failure of interfacial systems frequently initiates, however, at the free-edge
joint of two materials, where a stress singularity also exists, leading to the de-
velopment and propagation of an interface crack. The analysis of such interfa-
cial free-edge stress fields is just as important, therefore, to our understanding
of crack initiation and growth though in comparison to its counterpart the
interface crack it has received far less attention. A description of the process
leading to crack initiation assuming purely elastic behaviour is complicated
by the difference in stress singularity orders and fields. Indeed, it has been
shown by Klingbeil and Beuth (2000) that conflicting solutions are obtained if
designing to prevent debond of the interfacial free-edge joint and/or to prevent
propagation of an interfacial crack. Furthermore, the same limitations of the
elastic solution apply to the interfacial free-edge solution as with the interfacial
crack-tip, i.e. the stress and strains are unbounded. Relatively little effort has
been paid to the elasto-plastic behaviour of the free-edge singularity except for
the determination of plastic zone size and shape (Romeo and Ballarini, 1994,
Yang, et al., 1997). The rigid-plastic slip-line field for the crack developed
by Zywicz and Parks (1992) was used to show that the interfacial free-edge
solution has some strong similarities with its counterpart the interfacial crack-
tip for elastic-perfectly-plastic material. Zhang and Joseph (1998) presented a
nonlinear plane strain finite element analysis in order to describe the singular
stress fields in bi-material wedges, while Loghin and Joseph (2003) investigates
the mixed mode fracture in power law hardening materials. Lazzarin et al.,
2001 and Filippi et al., 2002 presented analytical approaches of asymptotic
solutions for V shape notches in materials with Ramberg - Osgood non-linear
material behaviour.

Marsavina and Nurse(2007) presented a comparison of the asymptotic
structure of small-scale yielding for interfacial free-edge joint and crack-tip
fields. They also proposed an expression for estimation the elasto-plastic sin-
gularity order for the interfacial free-edge joint sjoint on the form: sjoint =
2selastic/(1+n), where selastic is the elastic singularity order for the interfacial
free-edge joint and n the hardening exponent.
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In this paper, the asymptotic structure of the elasto-plastic stress field at
the interfacial free-edge joint is considered for a Ramberg-Osgood hardening
material and a rigid elastic material bonded perfectly to form a half plane.
Within the framework of small-scale yielding (SSY) the singular fields for
varying degrees of hardening are numerically calculated by developing asymp-
totic solutions to the fundamental equations of equilibrium and compatibility.
The asymptotic structures of the stress and displacement field developed at
the bonded free-edge joint are obtained using an approach similar to that of
Sharma and Aravas (1993).

2 Formulation of the problem

A thorough analysis of the plane-strain interfacial free-edge joint (Fig. 1) is
presented. The constitutive behaviour of the homogeneous isotropic elasto-

Figure 1: Geometry of interfacial free-edge joint and cylindrical coordinates

plastic material is characterised by the J2 deformation theory for Ramberg-
Osgood uniaxial stress-strain behaviour, i.e.:
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where εij is the infinitesimal strain tensor, σ0 is the yield stress, ε0 = σ0/E ,
and the deviatoric stress is given by:
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and the Mises equivalent stress is defined as:
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sijsij

)
1
2
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Also, n is the power-law hardening exponent (1 ≤ n ≤ ∞), E is the Young’s

Figure 2: Non-linear Ramberg - Osgood material behavior

moduli, δij is the Kronecker delta, and α is a material constant. If n=1 then
the behaviour is purely elastic.

A cylindrical co-ordinate system is adopted and the equilibrium equations
for infinitesimal linear strain theory can be expressed as:
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The strain-displacement equations are written as:
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where u = (ur, uθ) is the displacement vector. Out-of-plane stresses and
strains are assumed to vanish. Finally, the strain-compatibility equation is
given by:
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For the problem of a homogeneous isotropic elasto-plastic material bonded
perfectly to a rigid base, the following boundary conditions apply for the
interfacial free-edge joint:

σθθ(r, θ0) = 0, σrθ(r, θ0) = 0 (10)

ur(r, 0) = 0, uθ(r, 0) = 0 (11)

Existing solutions for the two geometries under elasto-plastic behaviour are
described in the next section to provide a foundation for the new study. Selec-
tion of the upper material for this investigation is a comparatively arbitrary
choice though that used throughout has elastic properties typical of modern
adhesives and as shown later its singularity order under elastic conditions is
approximately half that of the interfacial crack. Predictions for the asymp-
totic elasto-plastic behaviour at the interfacial free-edge joint satisfying the
boundary conditions (10) and (11) are obtained using a similar approach to
Sharma and Arawas (1993). The key parameter in the investigation is the
hardening exponents and values were considered.

The fundamental question to be posed is what are the singularity orders
for a joint angle θ and for different given hardening exponent n. To arrive at
the answer the numerical results of an asymptotic analysis for the interfacial
free-edge joint are presented next. Numerical calculations assume the upper
domain is a Ramberg-Osgood hardening material that is perfectly bonded to
a rigid elastic substrate. Field solutions to the plane-strain interfacial free-
edge joint problem were obtained using the asymptotic approach of Sharma
and Arawas (1993) for hardening cases n=1.1, 2, 4, 10, and 20. The value
n=1.1 was chosen as it is just above unity (elastic behaviour). The asymptotic
solutions to the problem are presented in two subsections. The first presents
the radial variations of stress for the asymptotic fields. Finally, the second
subsection presents the angular variations of stresses.

To obtain the asymptotic solution the problem is formulated in terms of the
leading order stresses σ̃(0) in (12) and the corresponding displacement leading
order expansion of the form:
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u(r, θ)

αε0
=
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)sn

rsũ(0)(θ) + . . . as r −→ 0, (13)

where σ̃(0) and σ̃(1) are normalised angular functions, s < t < 0, J is the
J-integral, and Q is the parameter controlling the magnitude of the second
term. The quantity In is defined in Sharma and Arawas, 1991.

The expansions (12) and (13) are substituted into the governing equa-
tions of equilibrium and stress-strain relationship (Sharma and Arawas, 1991).
Terms having like powers of r are collected and hierarchy of problems is ob-
tained. The leading order problem that defines σ̃(0) and ũ(0) consists of five
non-linear ordinary differential equations:
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A second order problem may be expressed as a linear eigenvalue problem to
solve for the exponent t and the eigen-functions for the corresponding stresses
σ(1) (and displacements u(1)). This has not been solved at this time as the
focus of the paper is the leading order solution for the interfacial free-edge
joint and its similarities with that of the crack tip. A fourth-order Runge-
Kutta solution to the equations in (14) was obtained for different values of
the hardening exponent n using the proprietary software Mathcad (v.2001).
An iteration scheme was used to determine the solution s to the non-linear
eigenvalue problem and the subsequent distributions for the stresses and dis-
placements that satisfy (14) above, and the conditions (10) and (11). The
shooting method was used prior to solve the system (14) in order to find the

initial values for σ̃
(0)
θθ (r, 0) and σ̃

(0)
rθ (r, 0).

3 Numerical results

The results are shown for a joint angle of 60◦ (θ0 = 60◦in Fig. 1), considering
a non linear material behaviour described by eq. (1) and Fig. 2 considering
the following hardening exponents: n = 1.1, 2, 4, 10 and 20.
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3.1 Radial variations

Determination of the singularity order s was done using asymptotic analysis.
The radial variation of the Von-Mises equivalent stress versus ratio between
distance r and size of the plastic zone rp in a log-log scale are plotted in Fig.
3 for −4 < log(r/rp) < 1 and on a direction θ = 30◦.

Figure 3: Radial variation of the asymptotic normalised plane-strain equiv-
alent stress for the interfacial free-edge (θ0 = 60◦) at θ = 30◦ for different
hardening exponents

The asymptotic solution has been superimposed as a straight line of the
appropriate gradient given by s to enable the region of singularity dominance
to be determined. The singularity orders s, determined by the asymptotic
solution, are plotted versus hardening exponent n, Fig. 4. It can be seen the
tendency of decreasing the singularity with increasing the value of hardening
coefficient.

3.2 Angular variations

The radial variation of the stresses σ̃
(0)
rr σ̃

(0)
θθ σ̃

(0)
rθ for the five cases of hardening n

= 1.1, 2, 4, 10 and 20 are plotted in Figs. 5 - 7 at a radius log(r/rp) = −2. The
results are normalised to the maximum value of the equivalent stress in the
angular variation. It could be observed that the free edge boundary condition

for σ̃
(0)
θθ σ̃

(0)
rθ at θ = θ0 are fulfilled. The values of the stresses σ̃

(0)
rr σ̃

(0)
θθ σ̃

(0)
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decrease with increasing the hardening exponent for all angles θ.
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Figure 4: Singularity order versus hardening exponents for the interfacial free-
edge (θ0 = 60◦)

Figure 5: Angular variation of the asymptotic normalised plane-strain radial

stress component σ̃
(0)
rr for the interfacial free-edge joint (θ0 = 60◦)

4 Conclusions

For an isotropic elasto - plastic non-linear material bonded to a rigid sub-
strate the SSY asymptotic plane-strain behaviour at the interfacial free-edge
joint has been identified for several values of the hardening exponent n. A
non-linear system of five differential equations was solved numerically using a
fourth order Runge - Kutta method in conjunction with the shooting method.
Using an asymptotic analysis the cylindrical components of stresses have been
determined for a geometry with θ0 = 60◦. The singularity orders under elasto
- plastic behaviour were identified and shown to be only dependent on the
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Figure 6: Angular variation of the asymptotic normalised plane-strain radial

stress component σ̃
(0)
θθ for the interfacial free-edge joint (θ0 = 60◦)

Figure 7: Angular variation of the asymptotic normalised plane-strain radial

stress component σ̃
(0)
rθ for the interfacial free-edge joint (θ0 = 60◦)

hardening exponent n and not on the elastic properties of the material.
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