
An. Şt. Univ. Ovidius Constanţa Vol. 17(3), 2009, 111–118

MORE ON MATRIX NEAR - RINGS

Mariana Dumitru

Abstract

In this paper, we study matrix near-rings introduced by A.P.J. van

der Walt and J.D.P. Meldrum in 1986 and generalized by K.S. Smith

ten years later. We find some properties of their ideals and some appli-

cations.

1 Introduction

We recall first some definitions and results on matrix near-rings over a right
near-ring with identity R. Proofs and other informations could be found in
[3], [4], [5].

In our considerations, R will denote a right near-ring with identity 1 6= 0,
which is 0-symmetric, while M will denote a faithfull left R−module, i.e.
M is endowed with a group binary operation, +, and with a left external
multiplications · : R × M −→ M , such that:

(i) (a + b) · x = a · x + b · x, for all a, b ∈ R, x ∈ M ;

(ii) (a · b) · x = a · (b · x), for all a, b ∈ R, x ∈ M ;

(iii) 1 · x = x, for all x ∈ M ;

(iv) AnnR (M) = {0} .
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For n ∈ N
∗, (Mn,+) can be also structured as a faithful left R-module.

K.C. Smith [5] has generalized the construction of matrix near-ring Mn (R)
given earlier by Meldrum and van der Walt [3].

The problem in this construction is that the old construction in the case of
rings does not fit, since the addition is not commutative and the distributivity
law is only on the right side.

Take n ∈ N
∗; we may define functions fr

ij : Mn −→ Mn, for r ∈ R,
i, j ∈ {1, 2, ..., n} by fr

ij (x1, x2, ..., xn) = (0, ..., 0, rxj , 0, ..., 0), where rxj is
on the i-th position in the n-tuple obtained for (x1, ..., xn) ∈ Mn. Hence
fr

ij = σiλrπj , where σi : M −→ Mn is σi (x) = (0, ..., 0, x, 0, ..., 0) , πj :
Mn −→ M , πj (x1, x2, ..., xn) = xj , λr : M −→ M , λr (x) = rx. Mn (R,M) is
the subring of M0 (Mn) (the near-ring of functions preserving zero from Mn

to Mn) generated by the set

F =
{

fr
ij |i, j = 1, 2, ..., n, r ∈ R

}

.

From [3], [5] we know the following rules of calculations on F , for all
i, j, k, l, h = 1, 2, ..., n, and r, s ∈ R:

(i) fr
ij + fs

ij = fr+s
ij ;

(ii) fr
ij + fs

kl = fs
kl + fr

ij , if i 6= k;

(iii) fr
ij · f

s
kl =

{

frs
il , if j = k

0 , if j 6= k
;

(iv) fr
ij

(

n
∑

k=1

fs
kh

)

= frs
ih .

There are some properties which are transferred from R to Mn (R,M):

1. If R is distributive (distributively generated), so is Mn (R,M).

2. If R is Abelian, then Mn (R) is Abelian.

3.

{

∑

i∈∆

fr
ii|r ∈ R

}

, for ∆ 6= ⊘, ∆ ∈ {1, 2, ..., n} generates a subnear-ring of

Mn (R,M), isomorphic to R.

4. If R is an abstract affine near-ring, then so in Mn (R,M).

5. If R has identity 1 6= 0, then, denoting Eij = f1
ij , 1 ≤ i, j ≤ n, we get the

identity of Mn (R,M), I =
n
∑

i=1

Eii. Here, Eij · Ekl =

{

Eil, if j = k
0 , if j 6= k

.
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We notice that Mn (R,M) is a 0-symmetric near-ring, while, when R is
not so, then we have:

fr
ij · f

s
kl = fr·0

il , when j 6= k.

6. The matrices
n
∑

i=1

Eiiri are called diagonal matrices.

The papers in the Reference list pointed out some properties of Mn (R,M)
or Mn (R,R) (denoted Mn (R)).

So, r ∈ R is distributive with respect to addition in M (in R), if and only
if fr

ij is distributive in Mn (R,M) (in Mn (R)), or, equivalently, with respect
to addition in Mn (i.e. fr

ij ∈ End (Mn,+)).
K.C. Smith [5], as well as J.D.P. Meldrum and A.P.J. van der Walt [3] have

proved the following interesting proposition.
Proposition 1.1. For any matrix f ∈ Mn (R,M) and any i, 1 ≤ i ≤ n ,

and for any a, b, ..., c ∈ R, there exist r, s, ..., t ∈ R, such that

f
(

fa
1i + f b

2i + ... + fc
ni

)

= fx
1i + fy

2i + ... + fz
ni.

This shows that the multiplication in Mn (R,M) has some interesting prop-
erties, and Mn (R,M) is additively generated by the set F .

The proof of the Proposition 1.1. is done by induction with respect to w (f),
the number of fr

ij involved in the expression of f , using the decomposition
of f as f = g + h or f = gh, where g, h ∈ Mn (R,M) are matrices with
w (g) , w (h) < w (f).

2 Ideals in Mn (R)

Let L be a left ideal of R.
This means that L is a normal subgroup of (R,+) with the property:

r (a + s) − rs ∈ L,∀r, s ∈ R, a ∈ L.

If, in addition, ar ∈ L, for all r ∈ R, a ∈ L, then L is an ideal of R.
Although the construction of matrices is not like in the ring case, we can

establish a correspondence of ideals for R and those for Mn (R).
So, we consider the subset of Mn (R):

L∗ = {f ∈ Mn (R) |f (x) ∈ Ln, for all x ∈ Rn} .

Then L∗ is a (two-sided) ideal of Mn (R). Indeed, if f, g ∈ L∗, we have
(f − g) (x) = f (x) − g (x) ∈ Ln, for all x ∈ Rn.
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In a similar way, we see that h + f − h ∈ L∗, for all h ∈ Mn (R) and
f ∈ L∗,then if f ∈ L∗, g, h ∈ Mn (R), then:

fg (x) = f (g (x)) ∈ Ln, for all x ∈ Rn.

This means that L∗ is a right ideal, no matter whether the normal subgroup
L is a right ideal or not. Now, since L is a left ideal, we may prove that, for
all g, h ∈ Mn (R) and f ∈ L∗, we have g (f + h) − gh ∈ L∗.

This can be proved by induction on w (g). Indeed, for g = fs
ij = σiλsπj ,

we get:

fs
ij (f + h) (x) = σi (sπj (f (x) + h (x))) = σi

(

s
(

(f (x))j + (h (x))j

))

,

where (f (x))j ∈ L , s, (h (x))j ∈ R, and L is a left ideal in R. Then there is
tj ∈ L, such that

fs
ij (f + h) (x) = σi

(

s
(

(h (x))j + tj

))

=

= σi

(

s
(

(h (x))j

))

+ σi (tj) =
(

fs
ijh

)

(x) + σi (tj) ,

and σi (tj) ∈ Ln. Hence fs
ij (f + h) − fs

ijh ∈ L∗.
The next step of induction is clear, therefore L∗ is a left ideal in Mn (R).
We consider now the ideal generated by

FL
1 =

{

fa
ij |a ∈ L

}

,

denoting it by L+.
Which is the relationship between L+ and L∗? Let a ∈ L, then, for x ∈ Rn,

fa
ij (x) = σi (aπj (x)) ∈ Ln,

since aπj (x) ∈ L (L is a right ideal). We have L+ ⊆ L∗.
For two distinct ideals L,L1 of R, L 6= L1, we have:

L∗ 6= L∗

1.

Indeed, if a ∈ L\L1, fa
11 ∈ L∗, but fa

11 /∈ L∗

1.
We establish now a converse correspondence.
Let T be an ideal of Mn (R); define

T∗ = {x ∈ Im(πjf), for somef ∈ T, 1 ≤ j ≤ n} .

Clearly, a ∈ T∗ if and only if fa
11 ∈ T .
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Indeed, for a ∈ T∗, consider f ∈ T and j, 1 ≤ j ≤ n, such that (πjf) (x) =
a, for x ∈ Rn. Hence f (x) = σj (a) = σj (a · 1) = σj (λa (1)) = σjλaπj (1).

As a consequence of Proposition 1.1., we have that, for f ∈ Mn (R) and
x, y, ..., z ∈ R there exists a ∈ R such that

E11f (fx
11 + fy

21 + ... + fz
n1) = fa

11.

Hence, for x ∈ Rn, there is g ∈ Mn (R) such that x = g (e1), where
e1 = (1, 0, ..., 0), since we may take g = fx1

11 +fx2

21 +...+fxn

n1 , for x = (x1, ..., xn).
From f (x) = g (e1), we have:

g (e1) = g
((

f1
11 + f0

21 + ... + f0
n1

)

(e1)
)

= (fa1

11 + fa2

21 + ... + fan

n1 ) (e1) ,

where aj = a. But then E1jg
(

f1
11 + f0

21 + ... + f0
n1

)

= fa
11 ∈ T .

We have proved:
Proposition 2.2. There is a correspondence between the set of ideals in

Mn (R) and the set of ideals in R, namely:

(i) J −→ J∗, for J ∈ L(R),

(ii) T −→ T∗, for T ∈ L (Mn (R)) ,

such that:
1) The first correspondence is injective.
2) (T∗)

∗
⊇ T.

3) (J∗)
∗

= J.
4)

(

(T∗)
∗
)

∗
= T∗.

Corollary 2.3. There is a bijection between L (R) and L1 ⊆ L (Mn (R)),
where L1 = {T ∈ L (Mn (R)) |∃J ∈ L (R) , T = J∗}.

Proof Is obvious from the above result.

3 Application to primitivity in Mn (R)

As it has been seen in the previous sections, although there are similarities to
the ring case, for matrix near-rings there are some striking differences.

We point out other similarities in the case of connected modules over R
and Mn (R) and for the 2-primitivity.

Let R be a right 0-symmetric near-ring with identity and G be a left R-
module. Denote the semigroup of all R-endomorphisms of G by EndRG. For
a group G, if S is a semigroup of all endomorphisms of G acting on the right,
the right near-ring of all function f : G −→ G such that f (gs) = (f (g))s,
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for all g ∈ G, s ∈ S, will be called a bicentralizer near-ring, denoted by
BiCenCG. The n × n matrix near-ring Mn (R) over R is the subnear-ring of
BiCenRRn generated by the functions fr

ij , r ∈ R, 1 ≤ i, j ≤ n.

Definition 3.1. An R-module G is called connected if, for any g1, g2 ∈
G, there exists g ∈ G and r, s ∈ R such that g1 = rg and g2 = sg.

Obviously, every monogenic module is connected, the converse being false.
If G is a connected R-module, then:

(1) If g1, ..., gn ∈ G,n ≥ 2, then there are r1, ..., rk ∈ R and g ∈ G, such that
gi = rig, i = 1, 2, ..., n (by induction on n).

(2) If d is distributive in R, then d (g + h) = dg + dh, for any g, h ∈ G.

Indeed, putting g = rg′, h = sg′, we have
d (g + h) = d (rg′ + sg′) = (d (r + s)) g′ = (d(r + s))g′ = (dr + ds) g′ =
= (dr) g′ + (ds) g′ = d (rg′) + d (sg′) = dg + dh.

Proposition 3.2. (1) If G is a connected R-module, then Gn is a con-
nected Mn (R)-module.
(2) If G is monogenic as an R-module, then Gn is monogenic viewed as an
Mn (R)-module.

Proof (1) The action of Mn (R) on Gn is defined as follows. If A ∈ Mn (R)
and (g1, ..., gn) ∈ Gn, let r1, ..., rn ∈ R and g ∈ G be such that gi = rig,
i = 1, 2, ..., n. Then A (g1, ..., gn) = (A (r1, ..., rn)) g. Here (g1, ..., gn) =
(r1, ..., rn) g and A (r1, ..., rn) means that the action of A as a function on Rn

to Rn ( we denote the vectors in Rn as rows). If gi = sih, with si ∈ R and
h ∈ G, i = 1, 2, ..., n then there are k ∈ G and r, s ∈ R, such that g = rk and
h = sk, therefore gi = rirk = sisk, i.e. rir = sis+K, where K = AnnRk. We
may show that (A (r1, ..., rn)) g = (A (s1, ..., sn))h and the action of Mn (R)
over Gn is well-defined. The axioms in the definition of a of module over
Mn (R) are easily proved, so it remains to show only the connectedness of Gn.
Let (g1, ..., gn) , (h1, ..., hn) ∈ Gn, and ri, si ∈ R, i = 1, 2, ..., n, g ∈ G such
that gir

= rig and hi = sig, i = 1, 2, ..., n. Then we obtain

(fr1

11 + ... + frn

n1 ) (g, 0, ..., 0) = (g1, ..., gn) and

(fs1

11 + ... + fsn

n1 ) (g, 0, ..., 0) = (h1, ..., hn) .

(2) If G is monogenic by g, then the Mn (R)-module Gn is generated by
(g, 0, ..., 0) as it is obvious from the first part.

Proposition 3.3. If Γ is a connected Mn (R)-module, then there exists
an appropriate R-module G, such that (Γ,+) ∼= (Gn,+) as groups.
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Proof We take G := f1
11Γ =

{

f1
11γ|γ ∈ Γ

}

; f1
11 being distributive in

Mn (R) and connected, G is a subgroup of (Γ,+) and we can define an op-
eration of R-module over G by putting r

(

f1
11γ

)

:= f1
11

(

fr
11f

1
11γ

)

= fr
11γ. Of

course, f1
11γ = f1

11f
1
1iγ ∈ G. Defining ϕ : Γ −→ Gn by ϕ (γ) :=

(

f1
11γ, ..., f1

1nγ
)

and taking into account that f1
ij are distributive elements in Mn (R), we

obtain a group homomorphism ϕ which is bijective, because for all α =
(

f1
11γ1, ..., f

1
11γn

)

∈ Gn, ϕ

(

n
∑

i=1

f1
11γi

)

= α and ker ϕ = {0}.

Proposition 3.4. If G is a connected R-module, then

EndRG ∼= EndMn(R)G
n

. In particular, EndMn(R)R
n ∼= R as semigroups.

Proof We define the isomorphism ϕ : EndMn(R)G
n −→ EndRG by taking

ϕ (σ) such that gϕ (σ) = π1 ((g, 0, ..., 0) σ). Note that, since (g, 0, ..., 0) σ =
f1
11 ((g, 0, ..., 0)), it follows that (g, 0, ..., 0) σ = (g′, 0, ..., 0), hence gϕ (στ) =

π1 ((g, 0, ..., 0) στ) = π1 (((g, 0, ..., 0) σ) τ) = π1 ((π1 (((g, 0, ..., 0) σ) , 0, ..., 0)) τ) =
(gϕ (σ))ϕ (τ), therefore ϕ (σ) = ϕ (σ)ϕ (τ). Assume σ 6= τ , then there
is a γ ∈ Gn such that γσ 6= γτ . If πi (γσ) 6= πi (γτ), for some i, we
obtain ϕ (σ) 6= ϕ (τ), hence ϕ is injective. For s ∈ EndRG, we define
σ ∈ EndMn(R)G

n by (g1, ..., gn) σ = (g1s, ..., gns) (by induction on the weight
function, we obtain that σ ∈ EndMn(R)G

n), and ϕ (σ) = s. The last part
follows from the isomorphism EndRR ∼= R (as additive groups).

Lemma 3.5. Let G be a connected R-module. Then any Mn (R)-submodule
of Gn is of the form Ln, where L is an R-submodule of G.

Proof Putting Li := {πi (γ) |γ ∈ T} where T is an Mn (R)-submodule of
Gn, we see that Li = Lj , 1 ≤ i, j ≤ n. But L1 is an R-submodule of G and
T = Ln

1 .

Some immediate corollaries are the following ones:
Corollary 3.6. If G is a connected R-module, then G is simple (i.e. it

has no trivial submodules) if and only if Gn is simple.

Corollary 3.7. If the monogenic R-module G is faithful then Gn is faith-
ful. If R is ν-primitive on G, then Mn (R) is ν-primitive on Gn, ν = 0, 2.

Moreover, for ν = 2, we have:

Theorem 3.8. R is 2-primitive if and only if Mn (R) is 2-primitive.
Proof Assume Γ is a 2-primitive Mn (R)-module and let G be the de-

rived R-module in Proposition 3.3. Since r ∈ AnnRG if and only if fr
11 ∈

AnnMn(R)Γ, G is faithful. To prove that G is 2-primitive, let f1
11γ ∈ G (any
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nonzero element). As Γ is 2-primitive, we have, for any f1
11γ ∈ G, a ma-

trix A ∈ Mn (R) such that A
(

f1
11γ

)

= f1
11γ. But Af1

11 =
n
∑

i=1

fri

i1 , therefore
(

f1
11Af1

11

)

γ = fr1

11γ = r1

(

f1
11γ

)

= f1
11δ. Thus every nonzero element of G

generates G and G is 2-primitive.

A nice application of this theorem is the following:
Theorem 3.9. If R is 2-primitive on G and S = EndRG has only finitely

many orbits on Gn, R not being a ring, then Mn (R) BiCenSGn.
Proof is based on the following result (Meldrum [2], 3.15, 4.16 and 4.28):

“If R is a near-ring with identity which is not a ring and R is 2-primitive on
an R-module Γ such that T := EndRΓ has only a finite number of orbits on
Γ, then R ∼= BiCenT Γ”. We take as R the matrix near-ring Mn (R), Γ = Gn

and T = S.
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