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COMSOL MODELLING FOR A WATER

INFILTRATION PROBLEM IN AN

UNSATURATED MEDIUM

Cornelia Andreea Ciutureanu

Abstract

The paper deals with the COMSOL modelling of fluid diffusion in
unsaturated porous media. A representative phenomenon in this class
of problems is water infiltration in soils.

1 Introduction

The model we are concerned of describes the water infiltration into an isotropic,
nonhomogeneous, unsaturated porous medium with a variable porosity. It con-
sists of a diffusion equation with a transport term in addition with a initial
data and a Dirichlet boundary condition

m(x)
∂u

∂t
− ∆β∗(u) +

∂K(u)

∂x3
= F in Q := Ω × (0, T ), (1)

m(x)u(x, 0) = θ0(x) in Ω, (2)

u(x, t) = g(x) < us on Σ := Γ × (0, T ). (3)

Key Words: boundary value problems for nonlinear parabolic PDE; stability and con-
vergence of numerical methods; Flows in porous media.

Mathematics Subject Classification: 35K60; 65M12; 76S05.
Received: April 2009
Accepted: October 2009
This paper is part of the projects PN II IDEI ID 404/2007 and PN II IDEI ID 70/2008

financed by the Romanian Ministry of Education, Research and Youth.

87



88 CORNELIA-ANDREEA CIUTUREANU

The domain Ω is an open bounded subset of R3, with the boundary Γ :=
∂Ω piecewise smooth. We denote the space variable by x := (x1, x2, x3) ∈ Ω
and the time by t ∈ (0, T ), with T finite. The model is written in dimensionless
form. The porosity is denoted by m, the function u stands for the water
saturation, while by us we shall denote its maximum value.

The volumetric water content is given by mu and θ0 is the initial volumetric
water content.

2 Hypothesis

In the unsaturated case the diffusivity β : (−∞, us) → [ρ,+∞) is a continuous
and monotonically increasing function that satisfies the following hypotheses:

(iD) β(r) ≥ ρ, β(0) = ρ, ∀r ∈ (−∞, us),
(iiD) lim

rրus

β(r) = +∞,

(iiiD) lim
rրus

∫ r

0
β(ξ)dξ = +∞.

The function K : (−∞, us] → [0,Ks] is a non-negative Lipschitz function
satisfying the following condition

(ik) there exists M > 0 such that

|K(r1) − K(r2)| ≤ M |r1 − r2| , ∀r1, r2 ∈ (−∞, us],

and stands for the hydraulic conductivity.
We denote by β∗ the primitive of the diffusivity β that vanishes at 0,

β∗(r) =

∫ r

0

β(ξ)dξ, for r < us. (4)

According to (iD) − (iiiD), β∗ is a differentiable and a monotonically in-
creasing function on (−∞, us) that satisfies:

(i) (β∗(r1) − β∗(r2))(r1 − r2) ≥ ρ(r1 − r2)
2, ∀r1, r2 ∈ (−∞, us),

(ii) lim
rրus

β∗(r) = +∞,

(iii) lim
rրus

∫ r

0
β∗(ξ)dξ = +∞.

We

consider δ > 0 and g ∈ L∞(Γ) with ‖g(x)‖L∞(Ω) ≤ us < us − δ. We assume

m ∈ C1(Ω) such that
0 < m0 ≤ m ≤ m, (5)

for m0 and m constants. In general, m = 1.
Next we introduce a new function θ by θ(x, t) := m(x)u(x, t), thus we have

u = θ
m

.

System (1)-(3) becomes
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∂θ

∂t
− ∆β∗

(

θ

m

)

+
∂K

(

θ
m

)

∂x3
= F in Q, (6)

θ(x, 0) = θ0(x) in Ω, (7)

θ(x, t) = m(x)g(x) := G(x) on Σ. (8)

We assume that there exists w such that

(Hw) {w ∈ H1(Ω)∩L∞(Ω),
∥

∥

w
m

∥

∥

L∞(Ω)
≤ us−δ < us and w

m
= g|Γ}.

By (iD) and using the (Hw) property for w, we have

ρ < D
( w

m

)

≤ ‖D(ys − δ)‖L∞(Ω) := Dw < ∞. (9)

By φ we denote the function

φ := θ − w (10)

and observe that φ|Σ = 0.

Instead of problem (6)-(8) we have obtained a homogeneous Dirichlet
boundary condition problem in φ

∂φ

∂t
− ∆Dw (φ) +

∂K
(

φ+w
m

)

∂x3
= f in Q, (11)

φ(x, 0) = φ0(x) = m(x)θ0(x) − w(x) in Ω, (12)

φ(x, t) = 0 on Σ, (13)

where

Dw(φ) := β∗

(

φ + w

m

)

− β∗
( w

m

)

and

f := F −
(

−∆β∗
( w

m

))

.

It can be easily observed that Dw(φ)|Γ = 0.
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3 Functional framework

Let V be H1
0 (Ω) endowed with the usual Hilbertian norm

‖ψ‖
2
V =

∫

Ω

|∇ψ|
2
dx, ∀ψ ∈ V (14)

and V ′ = H−1(Ω) be its dual space. On V ′ we introduce the scalar product

〈u, u〉V ′ = u(ψ) ∀u, u ∈ V
′

, (15)

where ψ ∈ V satisfies the boundary value problem:

−∆ψ = u, ψ|Γ = 0. (16)

We introduce the operator A : D(A) ⊂ V ′ → V ′ by

〈Aφ,ψ〉V ′,V :=

∫

Ω

(

∇Dw(φ) · ∇ψ − K

(

φ + w

m

)

∂ψ

∂x3

)

dx, ∀ψ ∈ V, (17)

where

D(A) := {φ ∈ L2(Ω)| Dw(φ) ∈ V }. (18)

We have the Cauchy problem

dφ

dt
+ Aφ = f, a.e. t ∈ (0, T ), (19)

φ(0) = φ0.

We define

j(r) =

{ ∫ r

0
m(ζ)β∗(ζ)dζ, for r < us

+∞, for r ≥ us.

Definition 1. Let m ∈ C1(Ω), F ∈ L2(0, T ;V ′), j
(

φ0+w
m

)

∈ L1(Ω) and

(Hw) hold. By solution to (11)-(13) we mean a function

φ ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V )

such that dφ
dt

∈ L2(0, T ;V ′), Dw(φ) ∈ L2(0, T ;V ) and
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〈

dφ

dt
(t), ψ

〉

V
′
,V

+

∫

Ω

(

∇Dw(φ) · ∇ψ − K

(

φ + w

m

)

∂ψ

∂x3

)

dx(20)

= 〈F (t), ψ〉V ′,V a.e. t ∈ (0, T ), ∀ψ ∈ V,

φ + w

m
< us a.e. in Ω, (21)

and φ(0) = φ0 in Ω.

We notice that, if F ∈ L2(0, T ;V ′), then f ∈ L2(0, T ;V ′). Indeed, under
hypothesis (Hw) we have

∥

∥

∥
−∆β∗

( w

m

)∥

∥

∥

V ′

< ∞.

Now, if φ is a solution to (11)-(13), then u = φ+w
m

is a solution to (1)-(3)
belonging to the following spaces

u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)) (22)

du

dt
∈ L2(0, T ; (H1(Ω))′), β∗(u) ∈ L2(0, T ;H1(Ω)) (23)

and

u < us a.e. on Ω. (24)

4 Stability of the discretization scheme

Definition 2. Let m ∈ C1(Ω), f ∈ L2(0, T ;V ′) and h > 0 small enough be
given. We take Dh

A(0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tn; fh
1 , ..., fh

n ) an h-discretization

on [0, T ] of the equation (19), for h = T
n

the time step and n the number of
division points.

The functions fh
i are computed as the time average of f within the interval

((i − 1)h, ih), i.e.,

fh
i :=

1

h

∫ ih

(i−1)h

f(s)ds, i = 1, ..., n. (25)

We remark that fh
i ∈ V ′ and are well defined, for any ψ ∈ V, by the relations

〈

fh
i , ψ

〉

V ′,V
:=

1

h

∫ ih

(i−1)h

〈f(s), ψ〉V ′,V ds. (26)
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Definition 3. Let m ∈ C1(Ω), f ∈ L2(0, T ;V ′), j
(

φ0+w
m

)

∈ L1(Ω) and

(Hw) hold. A solution to the h-discretization Dh
A(0 = t0 ≤ t1 ≤ t2 ≤ ... ≤

tn; fh
1 , ..., fh

n ) is a piecewise constant function denoted φh : [0, T ] → V ′ whose
values φh

i on (ti−1, ti] satisfy the equations

φh
i − φh

i−1

ti − ti−1
+ Aφh

i = fh
i , i = 1, ..., n, (27)

with
φh(0) := φh

0 = φ0. (28)

With these considerations we write the time discretized system (11)-(13)
in the implicit form, as follows

φh
i −φh

i−1

h
− ∆Dw(φh

i ) +
∂K

(

φh
i
+w

m

)

∂x3
= fh

i in Ω,

φh
0 = φ0 in Ω,

φh
i = 0 on Γ,

(29)

for i = 1, ..., n.

Recalling the definition of the operator A we can write this in the abstract
form

(

1

h
I + A

)

φh
i = fh

i +
1

h
φh

i−1, i = 1, ..., n, (30)

where I is the identity operator on V ′ and aim to prove that it has, for each
i, a unique solution, φh

i , i.e.,
〈(

1

h
I + A

)

φh
i , ψ

〉

V ′,V

=
〈

fh
i , ψ

〉

V ′,V
+

〈

1

h
φh

i−1, ψ

〉

V ′,V

, (31)

for any ψ ∈ V, i = 1, ..., n.

The existence for problem (27)-(28) for h small enough follows by the quasi
m-accretivity of the operator A, meaning the m-accretivity of the operator
λI + A, for λ large enough (see e.g., [4]), as we are going to prove below.

Proposition 4. Assume (i)-(iii), (iK) and (Hw). Then the operator A is
quasi - m-accretive.

The proof follows directly the definition of m-accretive operators. For more
details we refer the reader to [2].

Proposition 5. Let (i)-(iii), (iK) and (Hw) hold and assume

j

(

φ0 + w

m

)

∈ L1(Ω), (32)
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fh
i ∈ V ′, m ∈ C1(Ω). (33)

Then (30) has a unique solution φh
i ∈ D(A) and the discretization scheme is

stable, i.e.,
∥

∥φh
p + w

∥

∥

2
≤ C, for any p = 1, ..., n, (34)

h

p
∑

i=1

∥

∥Dw(φh
i )

∥

∥

2

V
≤ C, for any p = 1, ..., n, (35)

h

p
∑

i=1

∥

∥

∥

∥

∥

φh
i − φh

i−1

h

∥

∥

∥

∥

∥

2

V ′

≤ C, for any p = 1, ..., n, (36)

where by C we have denoted some constants depending on the problem data
and independent on p and h.

Proof. Since the operator A is quasi - m-accretive, then it follows that 1
h
I+A

is invertible and has a Lipschitz continuous inverse. Therefore, (30) has a
unique solution φh

i ∈ D(A), meaning that Dw(φh
i ) ∈ V, which also implies

that φh
i ∈ V for all i = 1, ..., n.

Next we shall establish the estimates to ensure the scheme stability.
For proving (35) we multiply (30) by Dw(φh

i ) ∈ V . We have

1

h

∫

Ω

(

φh
i − φh

i−1

)

Dw(φh
i )dx +

∫

Ω

∣

∣∇Dw(φh
i )

∣

∣

2
dx (37)

=
〈

fh
i ,Dw(φh

i )
〉

V ′,V
+

∫

Ω

K

(

φh
i + w

m

)

·
∂Dw(φh

i )

∂x3
dx.

It follows that

1

h

∫

Ω

(

j

(

φh
i + w

m

)

− j

(

φh
i−1 + w

m

))

dx +
∥

∥Dw(φh
i )

∥

∥

2

V
(38)

≤
1

k

∥

∥Dw(φh
i )

∥

∥

2

V
+ k

∥

∥fh
i

∥

∥

2

V ′
+ M2k

∥

∥

∥

∥

φh
i + w

m

∥

∥

∥

∥

2

+
1

h

∫

Ω

m
∣

∣

∣
β∗

( w

m

)∣

∣

∣

∣

∣

∣

∣

∣

φh
i + w

m
−

φh
i−1 + w

m

∣

∣

∣

∣

∣

dx.

After summing up from i = 1 to p and multiplying by h, we obtain
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∫

Ω

j

(

φh
p + w

m

)

dx +

(

1 −
1

k

)

h

p
∑

i=1

∥

∥Dw(φh
i )

∥

∥

2

V
(39)

≤ M2kh

p
∑

i=1

∥

∥

∥

∥

φh
i + w

m

∥

∥

∥

∥

2

+ kh

p
∑

i=1

∥

∥fh
i

∥

∥

2

V ′
+

∫

Ω

j

(

φh
0 + w

m

)

dx

+βw

∫

Ω

|w|

∣

∣

∣

∣

∣

φh
p + w

m

∣

∣

∣

∣

∣

dx + βw

∫

Ω

|w|

∣

∣

∣

∣

φh
0 + w

m

∣

∣

∣

∣

dx.

The norm of fh
i on V ′ satisfies

h

p
∑

i=1

∥

∥fh
i

∥

∥

2

V ′
≤

n
∑

i=1

∫ ih

(i−1)h

‖f(s)‖
2
V ′ ds =

∫ T

0

‖f(s)‖
2
V ′ ds := Cf . (40)

By the definition of the function j, it is easy to observe that

∫

Ω

j(r)dx ≥ m0
ρ

2
r2, for any r ∈ R.

We apply Lemma 2.5 (see [2]) for

C0 : =
2m2

m0ρ

(

kCf +

∫

Ω

j

(

φh
0 + w

m

)

dx +
ρ

4m0

∥

∥φh
0 + w

∥

∥

2

+
2(βw)2

m0ρ
‖w‖

2

)

,

CM : =
2M2k

m0ρ

and obtain

∥

∥φh
p + w

∥

∥

2
≤ 2max {1, CM}

(

∥

∥φh
0 + w

∥

∥

2
+ C0

)

eCM T , (41)

for any p = 1, ..., n. Applying a result of the same lemma, we get

h

p
∑

i=1

∥

∥φh
i + w

∥

∥

2
≤ h max

{

1,
1

CM

}

eCM T
(

(φh
0 + w) + C0

)

. (42)

Therefore, the right-hand sides in (41) and (42) are bounded by constants
generically denoted C.
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Plugging (42) in (39) we obtain for any p = 1, ..., n,

∫

Ω
j

(

φh
p+w

m

)

dx +
(

1 − 1
k

)

h
p
∑

i=1

∥

∥Dw(φh
i )

∥

∥

2

V

≤ c(ρ,M, k, T,m0,m)
(

∥

∥φh
0 + w

∥

∥

2
+ C0

)

,

(43)

(where c(ρ,M, k, T,m0,m) is a constant depending on ρ,M, k, T,m0,m) and
this leads to (35). By (41) we have actually obtained (34), as well.

We pass now to show (36). To this end we multiply (30) by

δφh
i :=

φh
i − φh

i−1

h

scalarly in V ′ and multiply the result by h. We obtain

∫

Ω

(

j

(

φh
i + w

m

)

− j

(

φh
i−1 + w

m

))

dx +

(

1 −
1

k

)

h
∥

∥δφh
i

∥

∥

2

V ′

≤ kM2h

∥

∥

∥

∥

φh
i + w

m

∥

∥

∥

∥

2

+ kh
∥

∥fh
i

∥

∥

2

V ′
+

∫

Ω

m
∣

∣

∣
β∗

( w

m

)
∣

∣

∣

∣

∣

∣

∣

∣

φh
i + w

m
−

φh
i−1 + w

m

∣

∣

∣

∣

∣

dx,

and then we proceed exactly like before to deduce that

∫

Ω

j

(

φh
p + w

m

)

dx +

(

1 −
1

k

)

h

p
∑

i=1

∥

∥δφh
i

∥

∥

2

V ′
≤ C, (44)

whence (36) is proved. This ends the proof of Proposition 5.

We stress that C denotes some constants depending on k, ρ, M, m0, m,

the norms of f, φ0 and w in the corresponding spaces and the domain Ω.

5 Numerical algorithm

For solving (31) (i.e., (29)) we consider an h-discretization of [0, T ] and denot-
ing in (29)

ηh
i = β∗(θh

i ), G(ηh
i ) := (β∗)−1(ηh

i ), KG(ηh
i ) := K(G(ηh

i )) (45)

we are led to the transformed elliptic boundary value problem

mG(ηh
i ) − h∆ηh

i + h∇ · KG(ηh
i ) =

∫ ti

ti−1

f(s)ds + mθh
i−1 in Ω, (46)

ηh
i = hφ0 on Γ,
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for each i = 1, ..., n, where

G(r) := (β∗)−1(r). (47)

For i = 1 we solve the system with θh
0 = θ0, we obtain θh

1 from (46) and
this becomes the new θh

i−1 in the system for i = 2. The procedure is continued
up to i = n. For each i, the semilinear elliptic system is solved by a COMSOL
Multiphysics 3.4 package (see [6]). Then, having computed ηh

i , the solution
θh

i is obtained as
θh

i := (β∗)−1(ηh
i ). (48)

The values θh
i represent the discrete values of the solution to (1)-(3) at the

times ti = ih.

Having the model (1)-(3) already written in dimensionless form, we shall
perform numerical tests for a 2D case for

β(r) =
1

(1 − r)p
, ∀r, p ≥ 1,

corresponding to a very fast diffusion. This case arises as a limit case of
infiltration in porous media. Recently it has been found to reveal important
diffusion features to dynamic population and biology flows.

In what concerns K we consider it of the form

K(r) = r2, ∀r. (49)

The domain is a square defined by Ω = {(x, y);x ∈ [0, 5], y ∈ [0, 5]}, Γ is
the soil boundary and the the other data are

θ0(x, y) = 0.1 for x, y ∈ [2, 3], g(x) = 0.2, f(t, x, y) = 0.1,

m(x) =







0.1, x, y ∈ [1, 2]
0.2, x, y ∈ [3, 4]
0, otherwise.

System (46) was solved with Comsol Multiphysyics and Matlab (see [7])
for i = 1, ...n, with h = 0.01.
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In these figures we represent the projection plots of the approximate solu-
tion θh in the plane xOy at three moments of time chosen in such a way to
put into evidence the influence of m(x, y). In (Fig.1a) and (Fig. 2a) we can
observe the formation of two regions corresponding to the positive values of
m(x, y). The lighter areas correspond to higher values of the solution (higher
moisture) and the dark areas indicate smaller ones. We observe that at small
moments of time ( t = 0.2 - figures b) ), the region with the highest value of
the porosity corresponds to small values for the moisture. At larger moments
of time, the moisture moves towards the center of the domain. After t = 1,
the solution becomes stationary.
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