

An. Şt. Univ. Ovidius Constanța

ON MONOTONE SOLUTIONS FOR A NONCONVEX SECOND-ORDER FUNCTIONAL DIFFERENTIAL INCLUSION

Aurelian Cernea

Abstract

The existence of monotone solutions for a second-order functional differential inclusion is obtained in the case when the multifunction that define the inclusion is upper semicontinuous compact valued and contained in the Fréchet subdifferential of a ϕ -convex function of order two.

1 Introduction

Functional differential inclusions, known also as differential inclusions with memory, express the fact that the velocity of the system depends not only on the state of the system at a given instant but depends upon the history of the trajectory until this instant. The class of differential inclusions with memory encompasses a large variety of differential inclusions and control systems. In particular, this class covers the differential inclusions, the differential inclusions with delay and the Volterra inclusions. A detailed discussion on this topic may be found in [1].

Let \mathbf{R}^n be the *n*-dimensional Euclidean space with the norm ||.|| and the scalar product $\langle ., . \rangle$. Let $\sigma > 0$ and $\mathcal{C}_{\sigma} := \mathcal{C}([-\sigma, 0], \mathbf{R}^n)$ the Banach space of continuous functions from $[-\sigma, 0]$ into \mathbf{R}^n with the norm given by $||x(.)||_{\sigma} := \sup\{||x(t)||; t \in [-\sigma, 0]\}$. For each $t \in [0, \tau]$, we define the operator $T(t) : \mathcal{C}([-\sigma, \tau], \mathbf{R}^n) \to \mathcal{C}_{\sigma}$ as follows: $(T(t)x)(s) := x(t+s), s \in [-\sigma, 0]$. T(t)x represents the history of the state from the time $t - \sigma$ to the present time t.

Key Words: monotone solutions, ϕ - monotone operators, differential inclusion. Mathematics Subject Classification: 334A60.

Received: April 2009

Accepted: October 2009

⁶⁹

Let $K \subset \mathbf{R}^n$ be a closed set, $\Omega \subset \mathbf{R}^n$ an open set and P a lower semicontinuous multifunction from K into the family of all nonempty subsets of Kwith closed graph satisfying the following two conditions

$$\label{eq:relation} \begin{array}{ll} \forall \; x \in K, & x \in P(x), \\ \\ \forall \; x, y \in K, y \in P(x) & \Rightarrow & P(y) \subseteq P(x). \end{array}$$

Under these conditions, a preorder (reflexive and transitive relation) on K is defined by $x \leq y$ iff $y \in P(x)$.

Let $K_0 := \{ \varphi \in \mathcal{C}_{\sigma}; \varphi(0) \in K \}$, let F be a multifunction defined from $K_0 \times \Omega$ into the family of nonempty compact subsets of \mathbf{R}^n and $(\varphi_0, y_0) \in K_0 \times \Omega$ be given that define the second-order functional differential inclusion

$$\begin{aligned}
x'' \in F(T(t)x, x') & a.e. ([0, \tau]) \\
x(t) &= \varphi_0(t) \quad \forall t \in [-\sigma, 0], \quad x'(0) = y_0, \\
x(t) \in P(x(t)) \subset K \quad \forall t \in [0, \tau], \quad x(s) \leq x(t) \quad \forall \ 0 \leq s \leq t \leq \tau.
\end{aligned}$$
(1.1)

Existence of solutions of problem (1.1) has been studied my many authors, mainly in the case when the multifunction is convex valued, $P(x) \equiv K$ and T(t) = I ([2,5,7,10,11] etc.). Recently in [9], the situation when the multifunction is not convex valued is considered. More exactly, in [9] it is proved the existence of solutions of problem (1.1) when F is an upper semicontinuous multifunction contained in the subdifferential of a proper convex function.

The aim of the present paper is to relax the convexity assumption on the function V(.) that appear in [9], in the sense that we assume that F(.) is contained in the Fréchet subdifferential of a ϕ -convex function of order two. Since the class of proper convex functions is strictly contained into the class of ϕ - convex functions of order two, our result generalizes the one in [9].

On the other hand, the result in the present paper is an extension of the result in [5] obtained for differential inclusions. At the same time, our result may be considered as an extension of the result in [6] obtained for first order functional differential inclusions to second-order functional differential inclusions of form (1.1). The proof follows the general ideas in [5] and [9].

The paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

We denote by $\mathcal{P}(\mathbf{R}^n)$ the set of all subsets of \mathbf{R}^n , by cl(A) we denote the closure of the set $A \subset \mathbb{R}^n$ and by co(A) we denote the convex hull of A. For $x \in \mathbf{R}^n$ and r > 0 let $B(x, r) := \{y \in \mathbf{R}^n; ||y - x|| < r\}$ be the open ball

centered in x with radius r, and let $\overline{B}(x,r)$ be its closure. For $\varphi \in \mathcal{C}_{\sigma}$ let $B_{\sigma}(\varphi,r) := \{\psi \in \mathcal{C}_{\sigma}; ||\psi - \varphi||_{\sigma} < r\}$ and $\overline{B}_{\sigma}(\varphi,r) := \{\psi \in \mathcal{C}_{\sigma}; ||\psi - \varphi||_{\sigma} \le r\}$. Let $\Omega \subset \mathbf{R}^n$ be an open set and let $V : \Omega \to \mathbf{R} \cup \{+\infty\}$ be a function with domain $D(V) = \{x \in \mathbf{R}^n; V(x) < +\infty\}$.

Definition 2.1. The multifunction $\partial_F V : \Omega \to \mathcal{P}(\mathbf{R}^n)$, defined as

$$\partial_F V(x) = \{ \alpha \in \mathbf{R}^n, \liminf_{y \to x} \frac{V(y) - V(x) - \langle \alpha, y - x \rangle}{||y - x||} \ge 0 \} \text{ if } V(x) < +\infty$$

and $\partial_F V(x) = \emptyset$ if $V(x) = +\infty$ is called the *Fréchet subdifferential* of V. We also put $D(\partial_F V) = \{x \in \mathbf{R}^n; \partial_F V(x) \neq \emptyset\}.$

According to [8] the values of $\partial_F V(.)$ are closed and convex.

Definition 2.2. Let $V : \Omega \to \mathbf{R} \cup \{+\infty\}$ be a lower semicontinuous function. We say that V is a ϕ -convex of order 2 if there exists a continuous map $\phi_V : (D(V))^2 \times \mathbf{R}^2 \to \mathbf{R}_+$ such that for every $x, y \in D(\partial_F V)$ and every $\alpha \in \partial_F V(x)$ we have

$$V(y) \ge V(x) + <\alpha, x - y > -\phi_V(x, y, V(x), V(y))(1 + ||\alpha||^2)||x - y||^2.$$

In [4], [8] there are several examples and properties of such maps. For example, according to [4], if $K \subset \mathbf{R}^2$ is a closed and bounded domain, whose boundary is a C^2 regular Jordan curve, the indicator function of K

$$V(x) = I_K(x) = \begin{cases} 0, & \text{if } x \in K \\ +\infty, & \text{otherwise} \end{cases}$$

is ϕ - convex of order 2.

The second-order contingent set of a closed subset $C \subset \mathbf{R}^n$ at $(x, y) \in C \times \mathbf{R}^n$ is defined by:

$$T_C^2(x,y) = \{ v \in \mathbf{R}^n; \quad \liminf_{h \to 0+} \frac{d(x+hy+\frac{h^2}{2}v,M)}{h^2/2} = 0 \}.$$

For properties of second-order contingent set see, for example, [2].

A multifunction $F: K_0 \to \mathcal{P}(\mathbf{R}^n)$ is upper semicontinuous at $(\varphi, y) \in K_0$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$F(\psi, z) \subset F(\varphi, y) + B(0, \varepsilon), \quad \forall (\psi, z) \in B_{\sigma}(\varphi, \delta) \times B(y, \delta).$$

We recall that a continuous function $x(.) : [-\sigma, \tau] \to \mathbf{R}^n$ is said to be a solution of (1.1) if x(.) is absolutely continuous on $[0, \tau]$ with absolutely continuous derivative $x'(.), T(t)x \in K_0, \forall t \in [0, \tau], x'(t) \in \Omega$ a.e. $[0, \tau]$ and (1.1) is satisfied. The next technical result is proved in [9].

Lemma 2.3 ([9]). Let $K \subset \mathbf{R}^n$ be a closed set, $\Omega \subset \mathbf{R}^n$ be an open set and $P: K \to \mathcal{P}(K)$ a lower semicontinuous multifunction with closed values, $K_0 := \{\varphi \in \mathcal{C}_{\sigma}; \varphi(0) \in K\}, F: K_0 \times \Omega \to \mathcal{P}(\mathbf{R}^n)$ upper semicontinuous with nonempty compact values and $(\varphi_0, y_0) \in K_0 \times \Omega$.

Assume also that $\forall x \in K, x \in P(x)$; there exist $r, M \geq 0$ such that $\sup\{||z||; z \in F(\psi, y)\} \leq M, \forall (\psi, y) \in (K_0 \cap B_{\sigma}(\varphi_0, r)) \times \overline{B}(y_0, r); F(\varphi, y) \subset T^2_{P(\varphi(0))}(\varphi(0), y), \forall (\varphi, y) \in K_0 \times \Omega.$

Then there exists $\tau > 0$ such that for any $m \in \mathbf{N}$ there exist $l_m \in \mathbf{N}$, a set of points $\{t_0^m = 0 < t_1^m < ... < t_{l_m-1}^m \leq \tau < t_{l_m}^m\}$; the points $x_p^m, y_p^m, z_p^m \in \mathbf{R}^n$, $p = 0, 1, ..., l_m - 1$ with $x_0^m = \varphi_0(0)$ and $y_0^m = y_0$; a continuous function $x_m(.) : [-\sigma, \tau] \to \mathbf{R}^n$ with $x_m(t) = \varphi_0(t) \ \forall t \in [-\sigma, 0]$ and with the following properties for $p = 0, 1, ..., l_m - 1$

 $\begin{array}{l} (\mathrm{i}) \ h_{p+1}^m := t_{p+1}^m - t_p^m < \frac{1}{m}, \\ (\mathrm{ii}) \ z_p^m = u_p^m + w_p^m, \ with \ u_p^m \in F(T(t_p^m)x_m, y_p^m) \ and \ w_p^m \in B(0, \frac{1}{m}), \\ (\mathrm{iii}) \ x_m(t) = x_p^m + (t - t_p^m)y_p^m + \frac{1}{2}(t - t_p^m)^2 z_p^m, \ t \in [t_p^m, t_{p+1}^m], \\ (\mathrm{iv}) \ x_{p+1}^m = x_p^m + h_{p+1}^m y_p^m + \frac{1}{2}(h_{p+1}^m)^2 z_p^m = x_m(t_{p+1}^m), \\ (\mathrm{v}) \ x_{p+1}^m \in P(x_p^m) \cap B(\varphi_0(0), r) \subset K, \ y_{p+1}^m = y_p^m + h_{p+1}^m z_p^m \in \overline{B}(y_0, r) \subset \Omega, \\ (\mathrm{vi}) \ x_m(t) \in B(\varphi_0(0), r), \ \forall t \in [t_p^m, t_{p+1}^m], \\ (\mathrm{vii}) \ T(t_{p+1}^m)x_m \in B_{\sigma}(\varphi_0, r) \cap K_0. \end{array}$

3 The main result

We are now able to prove our main result.

Theorem 3.1. Let K, Ω and P(.) as in Lemma 2.3. In addition, assume that K_0 is locally compact, P(.) has closed graph and $\forall x \in K, y \in P(x)$ it follows $P(y) \subseteq P(x)$.

Consider $F : K_0 \times \Omega \to \mathcal{P}(\mathbf{R}^n)$ an upper semicontinuous multifunction with nonempty compact values such that $F(\varphi, y) \subset T^2_{P(\varphi(0))}(\varphi(0), y) \ \forall (\varphi, y) \in K_0 \times \Omega$ and there exists a proper lower semicontinuous function of order two $V : \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$ with $F(\varphi, y) \subseteq \partial_F V(y) \ \forall (\varphi, y) \in K_0 \times \Omega$.

Then for any $(\varphi_0, y_0) \in K_0 \times \Omega$ there exists $\tau > 0$ and $x(.) : [0, \tau] \to K$ a solution to problem (1.1)

Proof. Let $(\varphi_0, y_0) \in K_0 \times \Omega$. Since K_0 is locally compact there exists r > 0 such that $K_0 \cap B_{\sigma}(\varphi_0, r)$ is compact and $\overline{B}(y_0, r) \subset \Omega$. Using the fact that F(.,.) is upper semicontinuous with compact values, by Proposition 1.1.3 in [1] $F((K_0 \cap B_{\sigma}(\varphi_0, r)) \times \overline{B}(y_0, r))$ is compact. Take $M := \sup\{||z||; z \in F(\psi, y); (\psi, y) \in (K_0 \cap B_{\sigma}(\varphi_0, r)) \times \overline{B}(y_0, r)\}$.

Let ϕ_V the continuous function appearing in Definition 2.2. Since V(.) is continuous on D(V) (e.g. [8]), by possibly decreasing r one can assume that for all $y \in B_r(y_0) \cap D(V)$, $|V(y) - V(y_0)| \leq 1$. Set $S := \sup\{\phi_v(y_1, y_2, z_1, z_2); y_i \in \overline{B}_r(y_0), z_i \in [V(y_0) - 1, V(y_0) + 1], i = 1, 2\}.$

One may apply Lemma 2.3 and according to the definition of x_m for all $m \ge 1$, all $p = 0, 1, ..., l_m - 1$ and all $t \in [t_p^m, t_{p+1}^m]$ we have

$$x'_{m}(t) = y_{p}^{m} + (t - t_{p}^{m})z_{p}^{m}, \quad x''_{m}(t) = z_{p}^{m} \in F(T(t_{p}^{m})x_{m}, y_{p}^{m}) + B(0, \frac{1}{m}).$$

From (ii) and (v) of Lemma 2.3 one has

$$||x'_{m}(t)|| \leq ||y_{p}^{m}|| + h_{p+1}^{m}||z_{p}^{m}|| \leq ||y_{0}|| + \frac{5r}{4} \quad \forall t \in [0,\tau],$$
(3.1)

$$||x_m''(t)|| \le M + \frac{1}{m} \quad \forall t \in [0, \tau].$$
 (3.2)

Then the sequences $\{x_m\}$ and $\{x'_m\}$ are echicontinuous in $C([0, \tau], \mathbf{R}^n)$. Applying Arzela-Ascoli theorem, there exists a subsequence (again denoted) $\{x_m(.)\}$ and an absolutely continuous function $x(.) : [0, \tau] \to \mathbf{R}^n$ with absolutely continuous derivative x'(.) such that $x_m(.)$ converges uniformly to x(.) on $[0, \tau], x'_m(.)$ converges uniformly to x'(.) on $[0, \tau]$ and $x''_m(.)$ converges weakly to x''(.) in $L^2([0, \tau], \mathbf{R}^n)$. Furthermore, since all the functions $x_m(.)$ are equal with $\varphi_0(.)$ on $[-\sigma, 0]$, then $x_m(.)$ converges uniformly to x(.) on $[-\sigma, \tau]$, where $x_m = \varphi_0$ on $[-\sigma, 0]$.

For each $t \in [0, \tau]$ and each $m \ge 1$ let $\delta_m(t) = t_p^m$, $\theta_m(t) = t_{p+1}^m$ if $t \in (t_p^m, t_{p+1}^m]$ and $\delta_m(0) = \theta_m(0) = 0$. If $t \in (t_p^m, t_{p+1}^m]$ we get

$$x''_{m}(t) = z_{p}^{m} \in F(T(t_{p}^{m})x_{m}, y_{p}^{m}) + B(0, \frac{1}{m})$$

and for all $m \ge 1$ and a.e. on $[0, \tau]$

$$x''_{m}(t) \in F(T(\delta_{m}(t))x_{m}, x'_{m}(\delta_{m}(t))) + B(0, \frac{1}{m}).$$

Also for all $m \ge 1$ and a.e. on $[0, \tau]$ $T(\theta_m(t))x_m \in B_{\sigma}(\varphi_0, r) \cap K_0, x_m(t) \in B(\varphi_0(0), r), x_m(\theta_m(t)) \in P(x_m(\delta_m(t)) \subset K.$

Note that $\forall t \in [0, \tau]$, $\lim_{m \to \infty} T(\theta_m(t)) x_m = T(t) x$ in \mathcal{C}_{σ} and $\lim_{m \to \infty} x'_m(\delta_m(t)) = x'(t)$ (e.g., [9]).

Taking into account the upper semicontinuity of F(.,.), Theorem 1.4.1 in [1] and (3.1) one deduces

$$x''(t) \in \operatorname{co}F(T(t)x, x'(t)) \subset \partial_F V(x'(t))$$
 a.e. ([0, τ]). (3.3)

The next step of the proof shows that $x''_m(.)$ has a subsequences that converges pointwise to x''(.). From property (ii) of Lemma 2.3

$$z_p^m - w_p^m \in F(T(t_p^m)x_m, y_p^m) \subset \partial_F V(y_p^m) = \partial_F V(x_m'(t_p^m))$$

for $p = 0, 1, 2, ..., l_m - 2$.

From the definition of the Fréchet subdifferential for $p = 0, 1, 2, ..., l_m - 2$ one has

$$V(x'_{m}(t^{m}_{p+1})) - V(x'_{m}(t^{m}_{p})) \geq \langle z^{m}_{p} - w^{m}_{p}, x'_{m}(t^{m}_{p+1}) - x'_{m}(t^{m}_{p}) \rangle - \phi_{V}(x'_{m}(t^{m}_{p+1}), x'_{m}(t^{m}_{p}), V(x'_{m}(t^{m}_{p+1})), V(x'_{m}(t^{m}_{p})))(1 + ||z^{m}_{p} - w^{m}_{p}||^{2}). \quad (3.4)$$
$$.||x'_{m}(t^{m}_{p+1}) - x'_{m}(t^{m}_{p})||^{2}$$

and

$$V(x'_{m}(\tau)) - V(x'_{m}(t^{m}_{l_{m}-1})) \geq \langle z^{m}_{l_{m}-1} - w^{m}_{l_{m}-1}, x'_{m}(\tau) - x'_{m}(t^{m}_{l_{m}-1}) \rangle \\ -\phi_{V}(x'_{m}(\tau)), x'_{m}(t^{m}_{l_{m}-1}), V(x'_{m}(\tau)), V(x'_{m}(t^{m}_{l_{m}-1})))(1 + ||z^{m}_{l_{m}-1} - w^{m}_{l_{m}-1}||^{2}). \\ .||x'_{m}(\tau) - x'_{m}(t^{m}_{l_{m}-1})||^{2}$$

$$(3.5)$$

By adding the $l_m - 1$ inequalities from (3.4) and the inequality from (3.5), one has

$$V(x'_m(\tau)) - V(x'_m(0)) \ge \int_0^\tau ||x''_m(t)||^2 dt + \alpha(m) + \beta(m),$$

where

$$\begin{split} \alpha(m) &= -\sum_{p=0}^{l_m-2} < w_p^m, \int_{t_p^m}^{t_{p+1}^m} x_m''(t) dt > - < w_{l_m-1}^m, \int_{t_{l_m-1}^m}^{\tau} x_m''(t) dt >, \\ \beta(m) &= -\sum_{p=0}^{l_m-2} \phi_V(x_m'(t_{p+1}^m), x_m'(t_p^m), V(x_m'(t_{p+1}^m)), V(x_m'(t_p^m)))(1+||z_p^m - w_p^m||^2)||x_m'(t_{p+1}^m) - x_k(t_p^m)||^2 - \phi_V(x_m'(\tau), x_m'(t_{l_m-1}^m), V(x_m'(\tau)), \\ V(x_m'(t_{l_m-1}^m)))(1+||z_{l_m-1}^m - w_{l_m-1}^m||^2)||x_m'(\tau) - x_m'(t_{l_m-1}^m)||^2. \end{split}$$

One may write

$$\begin{split} |\alpha(m)| &\leq \\ (M+1)[\sum_{p=0}^{l_m-2} ||w_p^m||(t_{p+1}^m - t_p^m) + ||w_{l_m-1}^m||(\tau - t_{l_m-1}^m)] \leq \frac{\tau(M+1)}{m}, \\ |\beta(m)| &\leq S(1+M^2)[\sum_{p=0}^{l_m-2} ||\int_{t_p^m}^{t_{p+1}^m} x_m''(t)dt||^2 + ||\int_{t_{l_m-1}^m}^{\tau} x_m''(t)dt||^2] \\ &\leq S(1+M^2)[\sum_{p=0}^{l_m-2} \frac{1}{m} \int_{t_p^m}^{t_{p+1}^m} ||x_m''(t)||^2 dt + \frac{1}{m} \int_{t_{l_m-1}^m}^{\tau} ||x_m''(t)||^2 dt] \\ &\leq \frac{1}{m} S(1+M^2) \int_0^{\tau} ||x_m''(t)||^2 dt \leq \frac{1}{m} S(1+M^2) \tau(M+1)^2. \end{split}$$

Therefore, $\lim_{m\to\infty} \alpha(m) = \lim_{m\to\infty} \beta(m) = 0$ and thus

$$V(x'_{m}(\tau)) - V(y_{0}) \ge \limsup_{m \to \infty} \int_{0}^{\tau} ||x''_{m}(t)||^{2} dt.$$
(3.6)

From (3.3) and Theorem 2.2 in [4] we deduce that there exists $\tau_1 > 0$ such that the mapping $t \to V(x'(t))$ is absolutely continuous on $[0, \min\{\tau, \tau_1\}]$ and

$$(V(x'(t)))' = \langle x''(t), x''(t) \rangle \quad a.e. \ ([0, \min\{\tau, \tau_1\}]).$$

Without loss of generality we may assume that $\tau = \min\{\tau, \tau_1\}$. Hence, $V(x'(\tau))$

$$-V(x'(0)) = \int_0^1 ||x''(t)||^2 dt$$
; therefore from (3.2) one has

$$\int_0^\tau ||x''(t)||^2 dt \ge \limsup_{m \to \infty} \int_0^\tau ||x''_m(t)||^2 dt$$

and, since $x''_m(.)$ converges weakly in $L^2([0,\tau], \mathbf{R}^m)$ to x''(.), by the lower semicontinuity of the norm in $L^2([0,\tau], \mathbf{R}^n)$ (e.g., Proposition III 30 in [3]), we obtain that $x''_m(.)$ converges strongly in $L^2([0,\tau], \mathbf{R}^m)$ to x''(.), hence a subsequence (again denote by) $x''_m(.)$ converges pointwise a.e. to x''(.).

On the other hand, since F(.,.) is upper semicontinuous with close values, then graph(F(.,.)) is closed (e.g., Proposition 1.1.2 in [1]) and by the facts that $T(t)x_m$ converges uniformly to T(t)x, x'_m converges uniformly to x' and x''_m converges pointwise o x'' it follows that $x''(t) \in F(T(t)x, x'(t))$ a.e. $[0, \tau]$.

It remains to prove that

$$(x(t), x'(t)) \in K \times \Omega, \quad \forall t \in [0, \tau],$$
$$x(s) \in P(x(t)) \quad \forall t, s \in [0, \tau], \quad t \le s.$$

First, from property (iii) of Lemma 2.3 it follows that $x_m(\delta_m(t)) \in \overline{B}(\varphi_0(0), r)$ and $x'_m(\delta_m(t)) \in \overline{B}(y_0, r) \cap \Omega$. Since $\lim_{m \to \infty} x_m(\delta_m(t)) = x(t)$ and $\lim_{m \to \infty} x'_m(\delta_m(t)) = x'(t)$ then $x(t) \in \overline{B}(\varphi_0(0), r)$ and $x'(t) \in \overline{B}(y_0, r) \cap \Omega$.

Secondly, let $t, s \in [0, \tau]$, $t \leq s$. For m large enough we can find $p, q \in \{0, 1, 2, ..., l_m - 2\}$ such that p > q, $t \in [t_q^m, t_{q+1}^m]$, $s \in [t_p^m, t_{p+1}^m]$. If j = p - q, then property (v) of Lemma 2.3 gives

$$P(x_m(t_p^m)) \subseteq P(x_m(t_{p-1}^m)) \subseteq P(x_m(t_{p-2}^m)) \subseteq \dots \subseteq P(x_m(t_q^m)).$$

This implies $P(x_m(\delta_m(s))) \subseteq P(x_m(\delta_m(t)))$ and since $x_m(\delta_m(s)) \in P(x_m(\delta_m(s)))$ it follows $x_m(\delta_m(s)) \in P(x_m(\delta_m(t)))$ which completes the proof.

Remark 3.2. If $V(.) : \mathbf{R}^n \to \mathbf{R}$ is a proper lower semicontinuous convex function then (e.g. [8]) $\partial_F V(x) = \partial V(x)$, where $\partial V(.)$ is the subdifferential in the sense of convex analysis of V(.), and Theorem 3.1 yields the main result in [9]. On the other hand, if $P(x) \equiv K$ and T(t) = I then Theorem 3.1 yields the main result in result in [5], namely Theorem 3.2.

References

- [1] J.P. Aubin and A. Cellina, *Differential Inclusions*, Springer, Berlin, 1984.
- [2] A. Auslender and J. Mechler, Second order viability problems for differential inclusions, J. Math. Anal. Appl., 181 (1984), 205-218.
- [3] H. Brezis, Analyse fonctionelle, theorie et applications, Masson, Paris, 1983.
- [4] T. Cardinali, G. Colombo, F. Papalini and M. Tosques, On a class of evolution equations without convexity, Nonlinear Anal., 28 (1996), 217-234.
- [5] A. Cernea, On the existence of viable solutions for a class of second order differential inclusions, Discuss. Math., Diff. Incl. Control Optim., 22 (2002), 67-78.
- [6] A. Cernea and V. Lupulescu, Existence of viable solutions for a class of nonconvex differential inclusions with memory, Mathematica (Cluj), 49(72) (2007), 21-28.
- [7] B. Cornet and B. Haddad, Théoreme de viabilité pour inclusions differentielles du second order, Israel J. Math., 57 (1987), 225-238.
- [8] M. Degiovanni, A. Marino and M. Tosques, Evolution equations with lack of convexity, Nonlinear Anal., 9 (1995), 1401-1443.
- [9] A.G. Ibrahim and F.A. Adsani, Monotone solutions for a nonconvex functional differential inclusion of second order, Electronic J. Diff. Eqns., 144 (2008), 1-16.
- [10] T. X. D. Ha and M. Marques, Nonconvex second order differential inclusions with memory, Set-valued Anal., 5 (1995), 71-86.
- [11] L. Marco and J. A. Murillo, Viability theorems for higher-order differential inclusions, Set-valued Anal., 6 (1998), 21-37.

[12] M. Tosques, Quasi-autonomus parabolic evolution equations associated with a class of non linear operators, Ricerche Mat., 38 (1989), 63-92.

Aurelian Cernea Faculty of Mathematics and Informatics, University of Bucharest, Academiei 14, 010014 Bucharest, Romania e-mail: acernea@fmi.unibuc.ro