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ON MONOTONE SOLUTIONS FOR A

NONCONVEX SECOND-ORDER

FUNCTIONAL DIFFERENTIAL INCLUSION

Aurelian Cernea

Abstract

The existence of monotone solutions for a second-order functional

differential inclusion is obtained in the case when the multifunction that

define the inclusion is upper semicontinuous compact valued and con-

tained in the Fréchet subdifferential of a φ-convex function of order two.

1 Introduction

Functional differential inclusions, known also as differential inclusions with
memory, express the fact that the velocity of the system depends not only on
the state of the system at a given instant but depends upon the history of the
trajectory until this instant. The class of differential inclusions with memory
encompasses a large variety of differential inclusions and control systems. In
particular, this class covers the differential inclusions, the differential inclusions
with delay and the Volterra inclusions. A detailed discussion on this topic may
be found in [1].

Let Rn be the n-dimensional Euclidean space with the norm ||.|| and the
scalar product 〈., .〉. Let σ > 0 and Cσ := C([−σ, 0],Rn) the Banach space of
continuous functions from [−σ, 0] into Rn with the norm given by ||x(.)||σ :=
sup{||x(t)||; t ∈ [−σ, 0]}. For each t ∈ [0, τ ], we define the operator T (t) :
C([−σ, τ ],Rn) → Cσ as follows: (T (t)x)(s) := x(t + s), s ∈ [−σ, 0]. T (t)x
represents the history of the state from the time t − σ to the present time t.
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Let K ⊂ Rn be a closed set, Ω ⊂ Rn an open set and P a lower semicon-
tinuous multifunction from K into the family of all nonempty subsets of K
with closed graph satisfying the following two conditions

∀ x ∈ K, x ∈ P (x),

∀ x, y ∈ K, y ∈ P (x) ⇒ P (y) ⊆ P (x).

Under these conditions, a preorder (reflexive and transitive relation) on K is
defined by x ¹ y iff y ∈ P (x).

Let K0 := {ϕ ∈ Cσ;ϕ(0) ∈ K}, let F be a multifunction defined from
K0 × Ω into the family of nonempty compact subsets of Rn and (ϕ0, y0) ∈
K0 × Ω be given that define the second-order functional differential inclusion

x′′ ∈ F (T (t)x, x′) a.e. ([0, τ ])
x(t) = ϕ0(t) ∀t ∈ [−σ, 0], x′(0) = y0,
x(t) ∈ P (x(t)) ⊂ K ∀t ∈ [0, τ ], x(s) ¹ x(t) ∀ 0 ≤ s ≤ t ≤ τ.

(1.1)

Existence of solutions of problem (1.1) has been studied my many authors,
mainly in the case when the multifunction is convex valued, P (x) ≡ K and
T (t) = I ([2,5,7,10,11] etc.). Recently in [9], the situation when the multi-
function is not convex valued is considered. More exactly, in [9] it is proved
the existence of solutions of problem (1.1) when F is an upper semicontinuous
multifunction contained in the subdifferential of a proper convex function.

The aim of the present paper is to relax the convexity assumption on the
function V (.) that appear in [9], in the sense that we assume that F (.) is
contained in the Fréchet subdifferential of a φ-convex function of order two.
Since the class of proper convex functions is strictly contained into the class
of φ- convex functions of order two, our result generalizes the one in [9].

On the other hand, the result in the present paper is an extension of
the result in [5] obtained for differential inclusions. At the same time, our
result may be considered as an extension of the result in [6] obtained for first
order functional differential inclusions to second-order functional differential
inclusions of form (1.1). The proof follows the general ideas in [5] and [9].

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

We denote by P(Rn) the set of all subsets of Rn, by cl(A) we denote the
closure of the set A ⊂ Rn and by co(A) we denote the convex hull of A. For
x ∈ Rn and r > 0 let B(x, r) := {y ∈ Rn; ||y − x|| < r} be the open ball



ON MONOTONE SOLUTIONS 71

centered in x with radius r, and let B(x, r) be its closure. For ϕ ∈ Cσ let
Bσ(ϕ, r) := {ψ ∈ Cσ; ||ψ −ϕ||σ < r} and Bσ(ϕ, r) := {ψ ∈ Cσ; ||ψ −ϕ||σ ≤ r}.

Let Ω ⊂ Rn be an open set and let V : Ω → R∪{+∞} be a function with
domain D(V ) = {x ∈ Rn; V (x) < +∞}.

Definition 2.1. The multifunction ∂F V : Ω → P(Rn), defined as

∂F V (x) = {α ∈ Rn, lim inf
y→x

V (y) − V (x)− < α, y − x >

||y − x||
≥ 0} ifV (x) < +∞

and ∂F V (x) = ∅ if V (x) = +∞ is called the Fréchet subdifferential of V .
We also put D(∂F V ) = {x ∈ Rn; ∂F V (x) 6= ∅}.
According to [8] the values of ∂F V (.) are closed and convex.
Definition 2.2. Let V : Ω → R ∪ {+∞} be a lower semicontinuous

function. We say that V is a φ-convex of order 2 if there exists a continuous
map φV : (D(V ))2 × R2 → R+ such that for every x, y ∈ D(∂F V ) and every
α ∈ ∂F V (x) we have

V (y) ≥ V (x)+ < α, x − y > −φV (x, y, V (x), V (y))(1 + ||α||2)||x − y||2.

In [4], [8] there are several examples and properties of such maps. For
example, according to [4], if K ⊂ R2 is a closed and bounded domain, whose
boundary is a C2 regular Jordan curve, the indicator function of K

V (x) = IK(x) =

{

0, if x ∈ K
+∞, otherwise

is φ- convex of order 2.
The second-order contingent set of a closed subset C ⊂ Rn at (x, y) ∈

C × Rn is defined by:

T 2
C(x, y) = {v ∈ Rn; lim inf

h→0+

d(x + hy + h2

2 v,M)

h2/2
= 0}.

For properties of second-order contingent set see, for example, [2].
A multifunction F : K0 → P(Rn) is upper semicontinuous at (ϕ, y) ∈ K0

if for every ε > 0 there exists δ > 0 such that

F (ψ, z) ⊂ F (ϕ, y) + B(0, ε), ∀(ψ, z) ∈ Bσ(ϕ, δ) × B(y, δ).

We recall that a continuous function x(.) : [−σ, τ ] → Rn is said to be
a solution of (1.1) if x(.) is absolutely continuous on [0, τ ] with absolutely
continuous derivative x′(.), T (t)x ∈ K0,∀t ∈ [0, τ ], x′(t) ∈ Ω a.e. [0, τ ] and
(1.1) is satisfied.
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The next technical result is proved in [9].

Lemma 2.3 ([9]). Let K ⊂ Rn be a closed set, Ω ⊂ Rn be an open set
and P : K → P(K) a lower semicontinuous multifunction with closed values,
K0 := {ϕ ∈ Cσ;ϕ(0) ∈ K}, F : K0 × Ω → P(Rn) upper semicontinuous with
nonempty compact values and (ϕ0, y0) ∈ K0 × Ω.

Assume also that ∀x ∈ K, x ∈ P (x); there exist r,M ≥ 0 such that
sup{||z||; z ∈ F (ψ, y)} ≤ M , ∀(ψ, y) ∈ (K0 ∩ Bσ(ϕ0, r)) × B(y0, r); F (ϕ, y) ⊂
T 2

P (ϕ(0))(ϕ(0), y), ∀(ϕ, y) ∈ K0 × Ω.
Then there exists τ > 0 such that for any m ∈ N there exist lm ∈ N, a set

of points {tm0 = 0 < tm1 < ... < tmlm−1 ≤ τ < tmlm}; the points xm
p , ym

p , zm
p ∈ Rn,

p = 0, 1, ..., lm − 1 with xm
0 = ϕ0(0) and ym

0 = y0; a continuous function
xm(.) : [−σ, τ ] → Rn with xm(t) = ϕ0(t) ∀t ∈ [−σ, 0] and with the following
properties for p = 0, 1, ..., lm − 1

(i) hm
p+1 := tmp+1 − tmp < 1

m
,

(ii) zm
p = um

p + wm
p , with um

p ∈ F (T (tmp )xm, ym
p ) and wm

p ∈ B(0, 1
m

),

(iii) xm(t) = xm
p + (t − tmp )ym

p + 1
2 (t − tmp )2zm

p , t ∈ [tmp , tmp+1],

(iv) xm
p+1 = xm

p + hm
p+1y

m
p + 1

2 (hm
p+1)

2zm
p = xm(tmp+1),

(v) xm
p+1 ∈ P (xm

p )∩B(ϕ0(0), r) ⊂ K, ym
p+1 = ym

p +hm
p+1z

m
p ∈ B(y0, r) ⊂ Ω,

(vi) xm(t) ∈ B(ϕ0(0), r), ∀t ∈ [tmp , tmp+1],
(vii) T (tmp+1)xm ∈ Bσ(ϕ0, r) ∩ K0.

3 The main result

We are now able to prove our main result.

Theorem 3.1. Let K,Ω and P (.) as in Lemma 2.3. In addition, assume
that K0 is locally compact, P (.) has closed graph and ∀x ∈ K, y ∈ P (x) it
follows P (y) ⊆ P (x).

Consider F : K0 × Ω → P(Rn) an upper semicontinuous multifunction
with nonempty compact values such that F (ϕ, y) ⊂ T 2

P (ϕ(0))(ϕ(0), y) ∀(ϕ, y) ∈
K0 × Ω and there exists a proper lower semicontinuous function of order two
V : Rn → R ∪ {∞} with F (ϕ, y) ⊆ ∂F V (y) ∀(ϕ, y) ∈ K0 × Ω.

Then for any (ϕ0, y0) ∈ K0 × Ω there exists τ > 0 and x(.) : [0, τ ] → K a
solution to problem (1.1)

Proof. Let (ϕ0, y0) ∈ K0 × Ω. Since K0 is locally compact there exists
r > 0 such that K0 ∩ Bσ(ϕ0, r) is compact and B(y0, r) ⊂ Ω. Using the fact
that F (., .) is upper semicontinuous with compact values, by Proposition 1.1.3
in [1] F ((K0 ∩ Bσ(ϕ0, r)) × B(y0, r)) is compact. Take M := sup{||z||; z ∈
F (ψ, y); (ψ, y) ∈ (K0 ∩ Bσ(ϕ0, r)) × B(y0, r)}.
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Let φV the continuous function appearing in Definition 2.2. Since V (.) is
continuous on D(V ) (e.g. [8]), by possibly decreasing r one can assume that
for all y ∈ Br(y0)∩D(V ), |V (y)− V (y0)| ≤ 1. Set S := sup{φv(y1, y2, z1, z2);
yi ∈ Br(y0), zi ∈ [V (y0) − 1, V (y0) + 1], i = 1, 2}.

One may apply Lemma 2.3 and according to the definition of xm for all
m ≥ 1, all p = 0, 1, ..., lm − 1 and all t ∈ [tmp , tmp+1] we have

x′

m(t) = ym
p + (t − tmp )zm

p , x′′

m(t) = zm
p ∈ F (T (tmp )xm, ym

p ) + B(0,
1

m
).

From (ii) and (v) of Lemma 2.3 one has

||x′

m(t)|| ≤ ||ym
p || + hm

p+1||z
m
p || ≤ ||y0|| +

5r

4
∀t ∈ [0, τ ], (3.1)

||x′′

m(t)|| ≤ M +
1

m
∀t ∈ [0, τ ]. (3.2)

Then the sequences {xm} and {x′

m} are echicontinuous in C([0, τ ],Rn).
Applying Arzela-Ascoli theorem, there exists a subsequence (again denoted)
{xm(.)} and an absolutely continuous function x(.) : [0, τ ] → Rn with ab-
solutely continuous derivative x′(.) such that xm(.) converges uniformly to
x(.) on [0, τ ], x′

m(.) converges uniformly to x′(.) on [0, τ ] and x′′

m(.) converges
weakly to x′′(.) in L2([0, τ ],Rn). Furthermore, since all the functions xm(.)
are equal with ϕ0(.) on [−σ, 0], then xm(.) converges uniformly to x(.) on
[−σ, τ ], where xm = ϕ0) on [−σ, 0].

For each t ∈ [0, τ ] and each m ≥ 1 let δm(t) = tmp , θm(t) = tmp+1 if
t ∈ (tmp , tmp+1] and δm(0) = θm(0) = 0. If t ∈ (tmp , tmp+1] we get

x′′

m(t) = zm
p ∈ F (T (tmp )xm, ym

p ) + B(0,
1

m
)

and for all m ≥ 1 and a.e. on [0, τ ]

x′′

m(t) ∈ F (T (δm(t))xm, x′

m(δm(t))) + B(0,
1

m
).

Also for all m ≥ 1 and a.e. on [0, τ ] T (θm(t))xm ∈ Bσ(ϕ0, r) ∩ K0, xm(t) ∈
B(ϕ0(0), r), xm(θm(t)) ∈ P (xm(δm(t)) ⊂ K.

Note that ∀t ∈ [0, τ ], limm→∞ T (θm(t))xm = T (t)x in Cσ and
limm→∞ x′

m(δm(t)) = x′(t) (e.g., [9]).
Taking into account the upper semicontinuity of F (., .), Theorem 1.4.1 in

[1] and (3.1) one deduces

x′′(t) ∈ coF (T (t)x, x′(t)) ⊂ ∂F V (x′(t)) a.e. ([0, τ ]). (3.3)
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The next step of the proof shows that x′′

m(.) has a subsequences that con-
verges pointwise to x′′(.). From property (ii) of Lemma 2.3

zm
p − wm

p ∈ F (T (tmp )xm, ym
p ) ⊂ ∂F V (ym

p ) = ∂F V (x′

m(tmp ))

for p = 0, 1, 2, ..., lm − 2.
From the definition of the Fréchet subdifferential for p = 0, 1, 2, ..., lm − 2

one has

V (x′

m(tmp+1)) − V (x′

m(tmp )) ≥< zm
p − wm

p , x′

m(tmp+1) − x′

m(tmp ) > −
φV (x′

m(tmp+1), x
′

m(tmp ), V (x′

m(tmp+1)), V (x′

m(tmp )))(1 + ||zm
p − wm

p ||2).
.||x′

m(tmp+1) − x′

m(tmp )||2
(3.4)

and

V (x′

m(τ)) − V (x′

m(tmlm−1)) ≥< zm
lm−1 − wm

lm−1, x
′

m(τ) − x′

m(tmlm−1) >
−φV (x′

m(τ)), x′

m(tmlm−1), V (x′

m(τ)), V (x′

m(tmlm−1)))(1 + ||zm
lm−1 − wm

lm−1||
2).

.||x′

m(τ) − x′

m(tmlm−1)||
2

(3.5)
By adding the lm − 1 inequalities from (3.4) and the inequality from (3.5),

one has

V (x′

m(τ)) − V (x′

m(0)) ≥

∫ τ

0

||x′′

m(t)||2dt + α(m) + β(m),

where

α(m) = −
lm−2
∑

p=0

< wm
p ,

∫ tm
p+1

tm
p

x′′

m(t)dt > − < wm
lm−1,

∫ τ

tm
lm−1

x′′

m(t)dt >,

β(m) = −
∑lm−2

p=0 φV (x′

m(tmp+1), x
′

m(tmp ), V (x′

m(tmp+1)), V (x′

m(tmp )))(1+

||zm
p − wm

p ||2)||x′

m(tmp+1) − xk(tmp )||2 − φV (x′

m(τ), x′

m(tmlm−1), V (x′

m(τ)),
V (x′

m(tmlm−1)))(1 + ||zm
lm−1 − wm

lm−1||
2)||x′

m(τ) − x′

m(tmlm−1)||
2.

One may write

|α(m)| ≤

(M + 1)[
∑lm−2

p=0 ||wm
p ||(tmp+1 − tmp ) + ||wm

lm−1||(τ − tmlm−1)] ≤
τ(M+1)

m
,

|β(m)| ≤ S(1 + M2)[
∑lm−2

p=0 ||
∫ tm

p+1

tm
p

x′′

m(t)dt||2 + ||
∫ τ

tm
lm−1

x′′

m(t)dt||2]

≤ S(1 + M2)[
∑lm−2

p=0
1
m

∫ tm
p+1

tm
p

||x′′

m(t)||2dt + 1
m

∫ τ

tm
lm−1

||x′′

m(t)||2dt]

≤ 1
m

S(1 + M2)
∫ τ

0
||x′′

m(t)||2dt ≤ 1
m

S(1 + M2)τ(M + 1)2.
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Therefore, limm→∞ α(m) = limm→∞ β(m) = 0 and thus

V (x′

m(τ)) − V (y0) ≥ lim sup
m→∞

∫ τ

0

||x′′

m(t)||2dt. (3.6)

From (3.3) and Theorem 2.2 in [4] we deduce that there exists τ1 > 0 such
that the mapping t → V (x′(t)) is absolutely continuous on [0,min{τ, τ1}] and

(V (x′(t)))′ =< x′′(t), x′′(t) > a.e. ([0,min{τ, τ1}]).

Without loss of generality we may assume that τ = min{τ, τ1}. Hence,
V (x′(τ))
− V (x′(0)) =

∫ τ

0
||x′′(t)||2dt; therefore from (3.2) one has

∫ τ

0

||x′′(t)||2dt ≥ lim sup
m→∞

∫ τ

0

||x′′

m(t)||2dt

and, since x′′

m(.) converges weakly in L2([0, τ ],Rm) to x′′(.), by the lower
semicontinuity of the norm in L2([0, τ ],Rn) (e.g., Proposition III 30 in [3]),
we obtain that x′′

m(.) converges strongly in L2([0, τ ],Rm) to x′′(.), hence a
subsequence (again denote by) x′′

m(.) converges pointwise a.e. to x′′(.).
On the other hand, since F (., .) is upper semicontinuous with close values,

then graph(F (., .) is closed (e.g., Proposition 1.1.2 in [1]) and by the facts that
T (t)xm converges uniformly to T (t)x, x′

m converges uniformly to x′ and x′′

m

converges pointwise o x′′ it follows that x′′(t) ∈ F (T (t)x, x′(t)) a.e. [0, τ ].
It remains to prove that

(x(t), x′(t)) ∈ K × Ω, ∀t ∈ [0, τ ],

x(s) ∈ P (x(t)) ∀t, s ∈ [0, τ ], t ≤ s.

First, from property (iii) of Lemma 2.3 it follows that xm(δm(t)) ∈
B(ϕ0(0), r) and x′

m(δm(t)) ∈ B(y0, r) ∩ Ω. Since limm→∞ xm(δm(t)) = x(t)
and limm→∞ x′

m(δm(t)) = x′(t) then x(t) ∈ B(ϕ0(0), r) and x′(t) ∈ B(y0, r)∩
Ω.

Secondly, let t, s ∈ [0, τ ], t ≤ s. For m large enough we can find p, q ∈
{0, 1, 2, ..., lm − 2} such that p > q, t ∈ [tmq , tmq+1], s ∈ [tmp , tmp+1]. If j = p − q,
then property (v) of Lemma 2.3 gives

P (xm(tmp )) ⊆ P (xm(tmp−1)) ⊆ P (xm(tmp−2)) ⊆ ... ⊆ P (xm(tmq )).

This implies P (xm(δm(s))) ⊆ P (xm(δm(t))) and since xm(δm(s)) ∈
P (xm(δm(s))) it follows xm(δm(s)) ∈ P (xm(δm(t))) which completes the proof.
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Remark 3.2. If V (.) : Rn → R is a proper lower semicontinuous convex
function then (e.g. [8]) ∂F V (x) = ∂V (x), where ∂V (.) is the subdifferential in
the sense of convex analysis of V (.), and Theorem 3.1 yields the main result
in [9]. On the other hand, if P (x) ≡ K and T (t) = I then Theorem 3.1 yields
the main result in [5], namely Theorem 3.2.
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