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ON MONOTONE SOLUTIONS FOR A
NONCONVEX SECOND-ORDER
FUNCTIONAL DIFFERENTIAL INCLUSION

Aurelian Cernea

Abstract

The existence of monotone solutions for a second-order functional
differential inclusion is obtained in the case when the multifunction that
define the inclusion is upper semicontinuous compact valued and con-
tained in the Fréchet subdifferential of a ¢-convex function of order two.

1 Introduction

Functional differential inclusions, known also as differential inclusions with
memory, express the fact that the velocity of the system depends not only on
the state of the system at a given instant but depends upon the history of the
trajectory until this instant. The class of differential inclusions with memory
encompasses a large variety of differential inclusions and control systems. In
particular, this class covers the differential inclusions, the differential inclusions
with delay and the Volterra inclusions. A detailed discussion on this topic may
be found in [1].

Let R™ be the n-dimensional Euclidean space with the norm ||.|| and the
scalar product (.,.). Let ¢ > 0 and C, := C([—0,0], R™) the Banach space of
continuous functions from [—o, 0] into R™ with the norm given by ||z(.)||s :=
sup{||z(t)||;t € [—0,0]}. For each t € [0,7], we define the operator T'(t) :
C([-o,7],R™) — C, as follows: (T(t)z)(s) := x(t + s), s € [—0,0]. T(t)x
represents the history of the state from the time ¢ — o to the present time t.
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Let K C R” be a closed set, 2 C R™ an open set and P a lower semicon-
tinuous multifunction from K into the family of all nonempty subsets of K
with closed graph satisfying the following two conditions

VeeK, zé€P(x),

Ve,ye K,ye P(x) = P(y) C P(x).

Under these conditions, a preorder (reflexive and transitive relation) on K is
defined by z <y iff y € P(z).

Let Ko := {¢ € Co;¢(0) € K}, let F be a multifunction defined from
Ky x Q into the family of nonempty compact subsets of R™ and (pq,y0) €
Ky x Q be given that define the second-order functional differential inclusion

a" € F(T(t)x,2")  a.e. ([0,7])
z(t) = po(t) Vte[-0,0], 2'(0)=yo, (1.1)
xz(t) € P(z(t)) Cc K Vtel0,7], z(s)<z(t) VO<s<t<T

Existence of solutions of problem (1.1) has been studied my many authors,
mainly in the case when the multifunction is convex valued, P(z) = K and
T(t) = I ([2,5,7,10,11] etc.). Recently in [9], the situation when the multi-
function is not convex valued is considered. More exactly, in [9] it is proved
the existence of solutions of problem (1.1) when F is an upper semicontinuous
multifunction contained in the subdifferential of a proper convex function.

The aim of the present paper is to relax the convexity assumption on the
function V(.) that appear in [9], in the sense that we assume that F(.) is
contained in the Fréchet subdifferential of a ¢-convex function of order two.
Since the class of proper convex functions is strictly contained into the class
of ¢- convex functions of order two, our result generalizes the one in [9].

On the other hand, the result in the present paper is an extension of
the result in [5] obtained for differential inclusions. At the same time, our
result may be considered as an extension of the result in [6] obtained for first
order functional differential inclusions to second-order functional differential
inclusions of form (1.1). The proof follows the general ideas in [5] and [9].

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

We denote by P(R"™) the set of all subsets of R"™, by cl(A) we denote the
closure of the set A C R™ and by co(A) we denote the convex hull of A. For
z € R" and r > 0 let B(z,r) := {y € R™; ||y — z|| < r} be the open ball
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centered in x with radius », and let B(x,7) be its closure. For ¢ € C, let
Bo(,7) = {1 € Coi [t — lls < 7} and By(,7) i= {16 € Coi [ — ll, < 7.
Let © C R™ be an open set and let V' : @ — RU {400} be a function with
domain D(V) = {x € R™; V(x) < +o0}.
Definition 2.1. The multifunction 9V : Q@ — P(R"), defined as

Viy) - V() - <ay—z>
ly — =|

OV (z) ={a € R",ligl_jﬂrﬁlf >0} ifV(x) < +o00
and OpV (z) = 0 if V() = +oo is called the Fréchet subdifferential of V.

We also put D(9pV) = {z € R";0rV (z) # 0}.

According to [8] the values of 0V (.) are closed and convex.

Definition 2.2. Let V : Q@ — R U {400} be a lower semicontinuous
function. We say that V is a ¢-convex of order 2 if there exists a continuous
map ¢y : (D(V))? x R? — Ry such that for every z,y € D(9rV) and every
a € OpV (x) we have

V(y) 2 V(z)+ < a,z—y > —ov(z,y,V(z), V()L + ||z - y]*.

In [4], [8] there are several examples and properties of such maps. For
example, according to [4], if K C R? is a closed and bounded domain, whose
boundary is a C? regular Jordan curve, the indicator function of K

0, if rekK
Viw) = Ix(x) = { +00, otherwise
is ¢- convex of order 2.
The second-order contingent set of a closed subset C' C R™ at (z,y) €
C x R"™ is defined by:

d(z + hy + v, M)
2 o n. . . 2 Y _
Té(x,y) = {veR™ I}LIE(I)I_H‘ e =0}.

For properties of second-order contingent set see, for example, [2].
A multifunction F': Ky — P(R"™) is upper semicontinuous at (¢,y) € Ko
if for every € > 0 there exists § > 0 such that

F(y,z) C F(p,y) + B(0,¢), V(4,2) € Bo(p,6) x B(y,9).

We recall that a continuous function z(.) : [—o,7] — R™ is said to be
a solution of (1.1) if z(.) is absolutely continuous on [0, 7] with absolutely
continuous derivative z'(.), T(t)x € Ko,Vt € [0,7], 2/(t) € Q a.e. [0,7] and
(1.1) is satisfied.
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The next technical result is proved in [9].

Lemma 2.3 ([9]). Let K C R"™ be a closed set, & C R™ be an open set
and P : K — P(K) a lower semicontinuous multifunction with closed values,
Ky :={p€Cs;p(0) € K}, F: Ky xQ— PR"™) upper semicontinuous with
nonempty compact values and (¢o,yo) € Ko x Q.

Assume also that Vo € K, x € P(x); there exist r,M > 0 such that
sup{||z|; z € F(¢,y)} < M, ¥(¢,y) € (Ko N Bo(o,7)) X Blyo,7); Flp,y) C
TI%(SO(O))(‘P(O%ZU)’ V(p,y) € Ko x Q.

Then there exists 7 > 0 such that for any m € N there exist I, € N, a set
of points {tg* =0 <" <. <t | <7 <" }; the points x))', y;", 2" € R™,
p = 0,1, 0, —1 with f" = ¢o(0) and y§* = yo; a continuous functzon
Tm () : [—o,7] = R™ with x,,(t) = po(t) YVt € [—0,0] and with the following
properties forp=0,1,.... 0, — 1

(i) h;n+1 =t~ < o

(i) 2" = w4+ wy, with w € F(T(A)Tm, yy') and w) € B(0, =),
(ifl) @ (t) = 27" + (t — tm)yp +3(t— tm)2 mote [t;"7t;”+1]

(iv) = p+1 =a, +hyy) + 5 (h;n+1) zy = (t$+1) B

(v) 244 € P( p)INB(po(0),7) C K, ypty = yp' +hpty2y" € B(yo,r) C €,
(Vi) (1) € Blio(0),7), Vt € [ténat;nﬂ]

(vil) T(tp%1)2m € Bo(po, ) N Ko.

3 The main result
We are now able to prove our main result.

Theorem 3.1. Let K,Q and P(.) as in Lemma 2.3. In addition, assume
that Ko is locally compact, P(.) has closed graph and Vx € K, y € P(z) it
follows P(y) C P(x).

Consider F : Ko x Q — P(R™) an upper semicontinuous multifunction
with nonempty compact values such that F(p,y) C TI%(W(O))(ap(O),y) Y(p,y) €
Ky x Q and there exists a proper lower semicontinuous function of order two
V:R"™ — RU{oo} with F(p,y) COrV(y) V(p,y) € Ko x Q.

Then for any (o, yo) € Ko x Q there exists T > 0 and z(.) : [0,7] — K a
solution to problem (1.1)

Proof. Let (¢0,y0) € Ko x Q. Since K is locally compact there exists
r > 0 such that Ko N B, (go,r) is compact and B(yg,r) C 2. Using the fact
that F(.,.) is upper semicontinuous with compact values, by Proposition 1.1.3
in [1] F((Ko N By(po,7)) %X B(yo,r)) is compact. Take M := sup{||z||;z €
F(1,y); (¥, y) € (Ko N By (wo,7)) X B(yo,7)}-
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Let ¢y the continuous function appearing in Definition 2.2. Since V(.) is
continuous on D(V) (e.g. [8]), by possibly decreasing r one can assume that
for all y € B,(yo) N D(V), [V(y) — V(yo)| < 1. Set S := sup{dv(y1,y2, 21, 22);
Yi € Br(y0>7zi € [V<y0) - LV(yO) + 1]’i = 172}'

One may apply Lemma 2.3 and according to the definition of z,, for all
m>1,allp=0,1,....0, — 1 and all t € [t7, ™ ;] we have

P "pt+1
1
Tm(t) =y + (=170 () = 2" € F(T(E)zm, ') + B0, ).
From (ii) and (v) of Lemma 2.3 one has
/ m m m 57”
llem @I < M1y || + hphallz' ] < llyoll + = vt € [0,7], (3.1)
1 1
|z, ()| < M + . vt € [0, 7]. (3.2)

Then the sequences {z,,} and {],} are echicontinuous in C([0,7],R"™).
Applying Arzela-Ascoli theorem, there exists a subsequence (again denoted)
{zm(.)} and an absolutely continuous function z(.) : [0,7] — R™ with ab-
solutely continuous derivative 2/(.) such that x,,(.) converges uniformly to
z(.) on [0,7], «},(.) converges uniformly to z’(.) on [0, 7] and z// (.) converges
weakly to z”(.) in L?([0,7],R™). Furthermore, since all the functions x,,(.)
are equal with ¢o(.) on [—o,0], then z,,(.) converges uniformly to z(.) on
[0, 7], where z,, = ¢o) on [—0o,0].

For each t € [0,7] and each m > 1 let 6,,(t) = 7}, O (t) = 77 if

te (ty,tyq] and 6,,(0) = 0,,(0) = 0. If t € (¢, 47" 1] we get

1
z (t) = z,' € F(T(t;”)xmw;") + B(0, E)

m

and for all m > 1 and a.e. on [0, 7]

2 (8) € BTG (0)m, 2,6 (1))) + BO, ).

Also for all m > 1 and a.e. on [0,7] T(0,,(t))xm € By(po,7) N Ko, zm(t) €
B(#0(0),7); 2m(0m(t)) € P(2m(6m(t)) C K.

Note that Vt € [0, 7], limy,— 00 T (0 (t))@m = T(t)x in C, and
lim 00 27, (0m (8)) = 2'(2) (e-g, [9]).

Taking into account the upper semicontinuity of F'(.,.), Theorem 1.4.1 in
[1] and (3.1) one deduces

2" (t) € coF (T(t)z, ' (t)) C OV (2'(t)) a.e. ([0,7]). (3.3)
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The next step of the proof shows that z// (.) has a subsequences that con-
verges pointwise to z”(.). From property (ii) of Lemma 2.3

2 —wyt € F(T(t) )zm,yy') C OrV(yy') = 0rV (z,, (1))

forp=0,1,2,....,1,, — 2.
From the definition of the Fréchet subdifferential for p = 0,1,2,...;0,, — 2
one has
Vi(x, (t;”+1)) V(ffin(t;")) =< 2y —wy @y, (t
ov (2, (tp1), 20 (851), V() (t;@rl))’v(x;n ')
e, (654 1) — wﬁn(t;”)IIQ

and

V(Iin(f)z — V(@) 1) <z = Wi, 1 T (T) — @, (8 ) >

=y (@3, (7)), 20, (7 ), V (20, (7)), V (@, (67 _))) (X + (127 g — w4 ).
Nl (7) = a2, (87 )|

(3.5)
By adding the [,,, — 1 inequalities from (3.4) and the inequality from (3.5),
one has

V (@, (7)) = V(2;,(0)) = /OT [l (B)[[Pdt + a(m) + B(m),

lvn_2
a(m) = — Z <w;",/
t

.
i (t)dt > — < w}j}z,h/ x (t)dt >,
p=0 > trfnf1

m
tp+1

B(m) = —Zi, o OV (@ (t0), @l (170), V (0, (1720)), V (), (£7))) (1
12 = witl )|, (54 0) — 2x ()17 — v (a7, (1), 27, (87 1), V (20, (7)),
v(z, (t?“_l)))(lJrHsz_l—wz’?n,_le)llw’m(T)—w DI

One may write

|a(m)| = l 2 M+1
(M + 1) [Tl g e — 25+ g ol = )] < 8D,

m

1B(m)| < S(L+ M || [t @i (O] + | Jim @ (0)dt][?]
S(L+ M) [ e? & ft;;“ [l (¢ )||2dt+ Jim Hx Ol

<
= p=0 m _
< S+ M?) [ |l (B)]Pdt < S(1+ M?)T (B + 12,

1
m



ON MONOTONE SOLUTIONS 75

Therefore, lim,, o a(m) = lim,, o, B(m) = 0 and thus

V(' (1) — V(yo) > limsup / 12 (8)][2dt. (3.6)

m— 00

From (3.3) and Theorem 2.2 in [4] we deduce that there exists 74 > 0 such
that the mapping ¢t — V' (2/(¢)) is absolutely continuous on [0, min{r, 71 }] and

(V(2'(t)) =< 2"(t),z"(t) > a.e. ([0,min{7,71}]).

Without loss of generality we may assume that 7 = min{7,7}. Hence,
V(%’(T))
- V(z = [, I|2"(t)||*dt; therefore from (3.2) one has

[l iar > msw [t )ar
0 m—o0 0

and, since z,(.) converges weakly in L?([0,7],R™) to z”(.), by the lower
semicontinuity of the norm in L?([0,7],R") (e.g., Proposition III 30 in [3]),
we obtain that z!/(.) converges strongly in L?([0,7],R™) to 2”(.), hence a
subsequence (again denote by) z// (.) converges pointwise a.e. to z’(.).

On the other hand, since F(.,.) is upper semicontinuous with close values,
then graph(F(.,.) is closed (e.g., Proposition 1.1.2 in [1]) and by the facts that
T(t)x,, converges uniformly to T'(¢)x, =, converges uniformly to z’ and z!/,
converges pointwise o &’ it follows that z”(t) € F(T(t)x,2'(t)) a.e. [0,7].

It remains to prove that

(x(t),2'(t)) € K xQ, Vtelo,7],

x(s) € P(x(t)) Vt,se€[0,7], t<s.

First, from property (iii) of Lemma 2.3 it follows that x,, (6, (t)) €
B(po(0),7) and z!,(6m(t)) € B(yo,7) N Q. Since lim, oo Trm (6 (t)) = x(t)
and limy, oo 2/, (6 (t)) = 2/(¢) then x(t) € B(po(0),r) and 2’(t) € B(yo,r) N
Q.

Secondly7 let t,s € [0,7], ¢ < s. For m large enough we can find p,q €
{0,1,2,..., 1, — 2} such that p > q, t € [t;", ;% ], s € [t tp4q] fj =p—q,
then property (v) of Lemma 2.3 gives

P(am(ty')) € Plam(ty 1)) € P(m(tys)) S ... € Plzm(t")).

This implies P(Z,(0:,(8))) C P(2m (0, (1)) and since x,,(0,,(s)) €
P (2, (dm(5))) it follows @, (91, (8)) € P(@m (0, (t))) which completes the proof.
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Remark 3.2. If V(.) : R™ — R is a proper lower semicontinuous convex

function then (e.g. [8]) dpV (x) = OV (x), where V() is the subdifferential in
the sense of convex analysis of V(.), and Theorem 3.1 yields the main result
in [9]. On the other hand, if P(x) = K and T'(t) = I then Theorem 3.1 yields
the main result in [5], namely Theorem 3.2.
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