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GEOMETRIC METHODS IN STUDY OF

THE STABILITY OF SOME DYNAMICAL

SYSTEMS

Dumitru Bala

Abstract

In this paper we aim to analyse the stability of two dynamical sys-
tems given by differential equations or by systems of differential equa-
tions. The first model is a mechanical system which is described by a
system of differential equations of the first degree. We study the sta-
bility of this system using the method of the Lyapunov function. The
second studied model is the model of a vibrant tool machine described
by a differential equation of second degree with two delay arguments.
For the study of the stability of these models, we use the stage analysis
of the differential equations systems with delayed arguments.

1 The Study of the Stability of a Dynamical System

Let us consider the dynamical system presented in Figure 1:
This mechanical system is described by the dynamical system of first degree














ẏ1 = y3
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The vector field determined by the system (1) is X : R
4 → R
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Figure 1: Dynamical system
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For the system (1), we find the prime integral

G(y1, y2, y3, y4) = [m(y3+y4)+c(y1+y2)] (3)

and the Lyapunov function

V (y1, y2, y3, y4) = [m(y3+y4)+c(y1+y2)]
2, V (0, 0, 0, 0) = 0. (4)

The set on which V is positively defined is R
4\M where

M = {(y1, y2, y3, y4)I(y1, y2, y3, y4) ∈ R
4, (y1, y2, y3, y4) 6= (0, 0, 0, 0),m(y3+

+y4) + c(y1 + y2) = 0}.

We study the stability on the set R
4\M . Applying the Lyapunov theo-

rem for autonomous systems, it results that the system (1) is stable in x0 =
= (0, 0, 0, 0). For the system (1), we have:

f = 1
2 (1 + c2

m2 )(y2
3 + y2

4) + k
m2 (y1 − y2)[k(y1 − y2) + c(y3 − y4)],
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We calculate the Lagrangian L, the Hamiltonian H and the energy density
f because these functions can be used to build the Lyapunov function. Also,
there are theorems giving us the mathematical relations between L, H, f, prime
integrals and the Lyapunov function.
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2 Studying the stability of a regenerative vibrant ma-

chine tool with two delay arguments

The model of the regenerative machine tool with two delay arguments is given
by the differential equation of second degree

ẍ(t) + 2δ0x(t) + ζ1x(t − τ1)+

+µ(x(t)− x(t− τ2)− εσ2(x(t)− x(t− τ2))
2 − εσ3(x(t)− x(t− τ2))

3 = 0, (5)

where δ0, σ2, σ3 are real parameters (δ0 characterises the amortization of the
tool machine), 0 ≤ ε ≪ 1, µ is a real parameter, and τ1, τ2 are delay arguments
with τ1 < τ2. We study the equation (5) by investigating the system of
differential equations with two delay arguments, given by

ẋ1(t) = x2(t) (6)

ẋ2 = −2δ0x2(t) − ζ1x1(t − τ1) − µ(x1(t) − x1(t − τ2)) + εσ2(x1(t)−
−x1(t − τ2))

2 + εσ3(x1(t) − x1(t − τ2))
3,

which is equivalent with the equation (5).
Let us consider X(t) = (x1(t), x2(t))

T and the matrices

A =

(

0 1
−µ −2δ0

)

, B1 =

(

0 0
−ζ1 0

)

, B2 =

(

0 0
µ 0

)

. (7)

Then we get the function

F (x1(t), x1(t − τ2)) =

= ε

(

0
σ2(x1(t) − x1(t − τ2))

2 + σ3(x1(t) − x1(t − τ2))
3

)

. (8)

From (6), (7), (8) , it results the matrix system

Ẋ(t) = AX(t) + B1X(t − τ1) + B2X(t − τ2) + F (x1(t), x(t − τ2)), (9)

which is a nonlinear differential equation system with two delay arguments
τ1, τ2. From the fact that, for the system (9), the right member is described
by continuous functions that satisfy the Lipschitz condition, the system (9) has
unique solution for an initial condition given by X(θ) = Φ(θ), θ ∈
∈ [−τ2, 0]. From (9), it results that the point 0 = (0, 0)T is an equilibrium
point. This equilibrium point represents the stationary solution of the sys-
tem (9). The investigation of the system (9) is done in the neighborhood of
this equilibrium point, using the stage analysis of the equation systems with
delayed arguments from [2].

The linearized system in the equilibrium point O = (0, 0)T is

Ẏ (t) = AY (t) + B1Y (t − τ1) + B2Y (t − τ2). (10)
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The characteristic equation of (10) is

D(λ) = det(λI − A − e−λτ1B1 − e−λτ2B2), (11)

where I is the identity matrix of the type 2× 2. From (11), we get a transcen-
dent equation

D(λ) = λ2 + 2δ0λ + ξ1e
−λτ1 + µ(1 − e−λτ2) = 0. (12)

Using Theorem 3.22 [3], we obtain the following:

Proposition 1.1. If δ0 >
|ξ1| + |µ|

2|ξ2|
, then the roots of the equation (12)

have negative real parts, for any τ1, τ2 ∈ [0,∞).
From Proposition 1.1. and the variant of the Hartman - Coarbman theorem

for our system of equations with delayed arguments, we obtain

Proposition 1.2. If δ0 >
|ξ1| + |µ|

2|ξ2|
, then the stationary solution X(t) =

0, for all t, of the system (9), and also of the equation (5), is asimptotically
stable for any τ1, τ2 ∈ [0,∞).

We determine the D-curves that describe the boundaries of the stability re-
gions in terms of the parameters ξ1, µ,for a fixed δ0. These curves are obtained
by setting the condition that the equation (12) admits purely imaginary roots,
that depends upon the parameters ξ1, µ. Let us take λ = ±i̟, where, ̟ =
̟(ξ1, µ) > 0 root of (12). By replacing this in (12) and cancelling the real part
and the imaginary part of the obtained relation, it results the system of equa-

tions:
ξ1 cos ̟τ1 + µ(1 − cos ̟τ2) − ̟2 = 0,
ξ1 sin̟τ1 + µ sin ̟τ2 − 2δ0̟ = 0.

(13)

From (13) we obtain

ξ1 =
2δ0̟(1 − cos ̟τ2) + ̟2 sin ̟τ2

cos ̟τ1 sin̟τ2 + (1 − cos ̟τ2) sin ̟τ1
,

µ =
̟2 sin ̟τ1 − 2δ0̟ cos ̟τ1

cos ̟τ1 sin̟τ2 + (1 − cos ̟τ2) sin ̟τ1
.

(14)

By fixing τ1, τ2, and taking variable, the formulae (14) give the coordinates
of a point in the plan (ξ1µ) that describes the curves of the equation (12).

For the values δ0 = 0, 085, 0, 1035 ≤ τ1 ≤ 0, 1045, and τ2 = 1, 03τ1, the
stability domain is given by the black region in the Figure 2. The coordinates
of the points on the D-curves in Figure 2 represent values of µ for which the
equation (12) has the roots i̟ . Further on, we will consider a fixed value
̟ = ̟0 for which, from (14), it results the values ξ1 = ξ0

1 , respectively µ = µ0.

We analyse the system (10), for δ0, ξ1 = ξ0
1 , τ1, τ2 fixed and µ = µ0 +

εµ, where µ is a paramether |µ| < 1. The coefficient µ is a parameter that
intervenes in the stationary solution of the nonlinear system (9).
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Figure 2: The stability domain–the black region

It is called a Hopf bifurcation with respect to the parameter µ, a value of
the parameter µ0, for which

Re λ(µc) = 0 Re

(

dx (µ)

dµ

)

|µE=µc
6= 0 . (15)

The orbit (t, x(t1)) of the differential equation (5) in the neighborhood of
the stationary solution x(t) = 0 for all t is

x(t) = 2x1(t)+r
(0)
20 (x1(t)

2−y1(t)
2)+r

(0)
11 (x1(t)

2−y1(t)
2)+2i

(0)
20 x1(t)y1(t), (16)

where (x1(t), y1(t)) is a solution of the differential system with the initial
conditions

x1(0) = Re(Ψ̄∗(s), ϕ(θ)),

y1(0) = Im(Ψ̄∗(s), ϕ(θ)).

Here x(θ) = ϕ(θ), θ ∈ [−τ2, 0] is the initial condition of the equation (5),
and ry = Re(Wy(0 )), y(0 ) = Im(Wij , 0 ).

The orbit (t, x(t− τ1)) of the differential equation (5) in the neighborhood
of the stationary solution x(t) = 0, for all t, is

x(t − τ1) = 2x1(t) cos ̟0τ1 + 2y
′

1(t) sin ̟0τ1 + r20(−τ1)(x1(t)
2 − y1(t)

2)+

+r11(−τ1)(x1(t)
2 − y1(t)

2) − 2i20(−τ1)x1(t) − y1(t), (17)

where rij(−τ) = Re(Wij (−τ1 )), iij (−τ) = Im(Wij (−τ1 )).
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The orbit (t, x(t, t−τ2)) of the differential equation (5) in the neighborhood
of the stationary solution x(t) = 0, for all t, is given by the next formula:

x(t − τ2) = 2x1(t) cos ̟0τ2 + 2y1(t) sin ̟0τ2 + r20(−τ2)(x1(t)
2 − y1(t)

2)+
+r11(−τ2)(x1(t)

2 − y1(t)
2) − 2i20(−τ2)x1(t) − y1(t), (18)

where xrij(−τ) = Re(Wij (−τ2 )), iij (−τ) = Im(Wij (−τ2 )).
The Hopf bifurcation given by µ = µ0 is called supercritical (subcritical)

if, for µ > µ0(µ < µ0), the equation (5) has periodical solutions. The Hopf
bifurcation given by µ = µ0 it is called orbitally stable (unstable) if the orbit
(t, x(t))of the equation (5) is stable (unstable).

Following the theory of the normal forms, the characterization of the Hopf
bifurcation is done by using the coefficients µ2, β2, T2 given by

µ2 = −
Re(C1 )

Re(M )
, T2 =

Im(C1 ) + µ2 Im(M )

̟0
, β2 = Re(C1 ), (19)

where

C1 =
i

2̟0

(

g20g11 − 2|g11|
2 −

1

3
|g02|

2

)

+
1

2
g21

M =
e−i̟0τ2 − 1

2i̟0 + 2δ0 − µ0τ2e−i̟0τ2 + ξτ2e−i̟0τ1

.

Proposition 2.1. [2] The following statements are true:
i) If µ2 > 0(< 0), then the Hopf bifurcation is supercritical (subcritical)

and there are periodical solutions of the bifurcation for µ > µ0(µ < µ0).

ii) If β2 < 0(> 0), then the orbits of the bifurcation are orbitally stable
(unstable).

iii) If T2 > 0(< 0), then the periods of the orbit of the bifurcation are
increasing (decreasing).

For µ = µ0 + εµ, the equation (5) is written as
.
x (t)+2δ0x(t)+ ξ1x(t− τ1)+µ0(x(t)−x(t− τ2))− εσ2(x(t)−x(t− τ2))

2−
−εσ3(x(t) − x(t − τ2))

3 + εµ̃(x(t − τ2)) = 0. (20)

The matriceal system associated to the equation (20) is given by
.

X (t) = AX(t)+B1X(t−τ1)+B2X(t−τ2)+F̃ (x1(t), x1(t−τ2)), (21)

where A,B1B2 are given by (7) and F̃ is defined by

F̃ (x1(t), x1(t−τ2)) = F (x1(t), x1(t−τ2))−εµ̃

(

0
x1(t) − x1(t − τ2)

)

. (22)

The normal form of the system (21) on the central variety WC(µ0) is

z
′

(t) = (i̟0 − εµ̃(1 − e−i̟0τ2))z(t) +
1

2
g̃20z(t)2 + g̃11z(t)z̄(t)2+

+
1

2
g̃02z̄(t)2 +

1

2
g̃11z(t)2z̄(t), (23)
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where z(t) = x1(t) + iy1(t).

The equation (23) is written under the form

x
′

1(t) = −εµ̃(1− cos ̟0τ2)x1(t)− (̟0− εµ̃ sin̟0τ2)y1(t)+
1

2
(R̃20 +2R̃11+

+R̃02)x1(t)
2 −

1

2
(R̃20 + 2R̃11 + R̃02)y1(t)

2 + (Ĩ02 − Ĩ20)x2(t)y1(t)+

+
1

2
R̃21x1(t)(x1(t)

2 + y1(t)
2) −

1

2
Ĩ21y1(t)(x1(t)

2 + y1(t)
2) (24)

y
′

1(t) = (̟0 − εµ̃ sin ̟0τ2)x1(t) − εµ̃(1 − cos ̟0τ2)y1(t) +
1

2
(Ĩ20 + 2Ĩ11+

+Ĩ02)y1(t) −
1

2
(Ĩ20 + 2Ĩ11 + Ĩ02)x1(t)

2 + (R̃02 − R̃20)x2(t)y1(t)+

+
1

2
R̃21y1(t)(x1(t)

2 +y1(t)
2)−

1

2
Ĩ21y1(t)(x1(t)

2 +y1(t)
2), (25)

where

Rij = Re(g̃ij ), Iij = Im(g̃ij ).

The orbit (t, x(t)) of the differential equation (20) is given by (16), x1(t), y1(t1)
being a solution of the ordinary differential system (24).

The orbit (t, x(t− τ1)), (t, x(t− τ2)) of the differential equation (20) in the
variants of the stationary solutions x(t) = 0,∀t, is given by (17), respectively
(18), with (x1(t), y1(t)) a solution of (24).

Using the program realised with the soft Maple 9, we obtained the figures
presented below.

Figure 3: Orbit (t, x(t))
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Figure 4: Orbit (t, x(t − τ1))

Figure 5: Orbit (x(t), x(t − τ1))

Figure 6: Orbit (x(t), x(t − τ2))
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Figure 7: Orbit (t, x(t − τ2))
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