LARGE EQUIVALENCE OF d^{h}-MEASURES

Jinjun Li

Abstract

We extend the definition of d^{h}-measures introduced by Lee and Baek to the more general setting of compact metric spaces and prove that two d^{h}-measures are equivalent if and only if their respective measure functions are equivalent.

1 Introduction

Let us begin with the definition of the $d^{\rho, h}$-measure introduced by Lee and $\operatorname{Baek}[4,5]$. Let E be a bounded set in \mathbb{R}^{n} and h be a measure function, i.e. $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a non-decreasing and continuous function with $h(0+)=0$. The pre d^{h}-measure of E is:

$$
D^{h}(E)=\liminf _{r \rightarrow 0} N_{r}(E) h(r),
$$

where $N_{r}(E)$ is the minimum number of closed balls with diameter r, needed to cover E. Then we employ Method I by Munroe to obtain an outer measure d^{h} of $E \subset X$:

$$
d^{h}(E)=\inf \left\{\sum_{i=1}^{\infty} D^{h}\left(E_{i}\right) \mid E \subset \cup E_{i}, E_{i} \subset \mathbb{R}^{n}\right\}
$$

If $h(t)=t^{s}$, then the d^{h}-measure induces the modified lower box dimension $[4,5]$.

Key Words: equivalence, measure function, d^{h}-measure.
Mathematics Subject Classification: 28A80
December, 2008
September, 2009

In this paper, we extend the definition of d^{h}-measures to the more general setting of compact metric spaces and prove that two d^{h}-measures are equivalent if and only if their respective measure functions are equivalent. Let (X, ρ) be a compact metric space. We define the pre $d^{\rho, h}$-measure of E with respect to the metric ρ, by

$$
D^{\rho, h}(E)=\liminf _{r \rightarrow 0} N_{r}(E) h\left(|B(x, r)|_{\rho}\right),
$$

where $N_{r}(E)$ is the minimum number of closed balls $\{B(x, r)\}$ with radius r, needed to cover E and $|B(x, r)|_{\rho}$ denotes the diameter of $B(x, r)$ with respect to the metric ρ. Then we employ Method I by Munroe to obtain an outer measure $d^{\rho, h}$ of $E \subset X$:

$$
d^{\rho, h}(E)=\inf \left\{\sum_{i=1}^{\infty} D^{\rho, h}\left(E_{i}\right) \mid E \subset \cup E_{i}, E_{i} \subset X\right\}
$$

Remark 1 The definition of $d^{\rho, h}$ remains unchanged if we put $E=\cup E_{i}$ in the place of $E \subset \cup E_{i}$.

Remark 2 By the definitions, we can see that $d^{\rho, h} \leq D^{\rho, h}$.
Recall that two measure functions g and h are said to be equivalent if there are constants $c \geq 1$ and $\delta>0$ such that

$$
c^{-1} h(t) \leq g(t) \leq \operatorname{ch}(t)
$$

for any $0<t \leq \delta$. Two Borel measures μ and ν on (X, ρ) are said to be equivalent if there is a constant $c \geq 1$ such that

$$
c^{-1} \mu(A) \leq \nu(A) \leq c \mu(A)
$$

for all Borel sets A.

2 Main results and proofs

Proposition $1 d^{\rho, h}$ is a metric outer measure.
Proof. It is sufficient to proof that $d^{\rho, h}(E \cup F)=d^{\rho, h}(E)+d^{\rho, h}(F)$ whenever $E, F \subset X$ with $\operatorname{dist}(E, F)>0$. Suppose that $\operatorname{dist}(E, F)>0$ for $E, F \subset X$. Then $\operatorname{dist}(E, F)>2 \varepsilon>0$ for some positive constant ε. Noting that $N_{\varepsilon}(E \cup F)=N_{\varepsilon}(E)+N_{\varepsilon}(F)$, we have

$$
\begin{equation*}
D^{\rho, h}(E \cup F) \geq D^{\rho, h}(E)+D^{\rho, h}(F) . \tag{1}
\end{equation*}
$$

Hence, for E and F with $\operatorname{dist}(E, F)>0$,

$$
\begin{aligned}
d^{\rho, h}(E \cup F) & =\inf \left\{\sum_{i=1}^{\infty} D^{\rho, h}\left(E_{i}\right) \mid E \cup F=\cup E_{i}, E_{i} \subset X\right\} \\
& =\inf \left\{\sum_{i=1}^{\infty} D^{\rho, h}\left(\left(E_{i} \cap E\right) \cup\left(E_{i} \cap F\right)\right) \mid E \cup F=\cup E_{i}, E_{i} \subset X\right\} \\
& \geq \inf \left\{\sum_{i=1}^{\infty} D^{\rho, h}\left(E_{i} \cap E\right)+D^{\rho, h}\left(E_{i} \cap F\right) \mid E \cup F=\cup E_{i}, E_{i} \subset X\right\} \\
& \geq \inf \left\{\sum_{i=1}^{\infty} D^{\rho, h}\left(E_{i} \cap E\right) \mid E \cup F=\cup E_{i}, E_{i} \subset X\right\} \\
& +\inf \left\{\sum_{i=1}^{\infty} D^{\rho, h}\left(E_{i} \cap E\right) \mid E \cup F=\cup E_{i}, E_{i} \subset X\right\} \\
& \geq d^{\rho, h}(E)+d^{\rho, h}(F) .
\end{aligned}
$$

The second inequality is obtained by (1).
On the other hand, we have $d^{\rho, h}(E \cup F) \leq d^{\rho, h}(E)+d^{\rho, h}(F)$ by subadditivity of $d^{\rho, h}$. This completes the proof.

The measure $d^{\rho, h}$ is close related to Hausdorff measure. More precisely, we have the following proposition which can be deduced by the definitions(see also [5]).

Proposition 2 For a subset E of $(X, \rho), \mathcal{H}^{\rho, h}(E) \leq d^{\rho, h}(E)$, where $\mathcal{H}^{\rho, h}(E)$ denotes the Hausdorff h-measure of E.

For details about Hausdorff h-measure, see $[1,2,3,8]$.
By the definitions, $d^{\rho, g}$ and $d^{\rho, h}$ are equivalent, if g and h are equivalent measure functions. Conversely, can we get from the equivalence of $d^{\rho, g}$ and $d^{\rho, h}$ that g and h are equivalent?

The theorem below answers this question.
Theorem A Let g, h be any two measure functions. If $d^{\rho, g}$ and $d^{\rho, h}$ are equivalent for any compact metric space (X, ρ), then g and h are equivalent.

Proof. Suppose g and h are not equivalent. We are going to construct a compact metric space (X, ρ) such that $0<d^{\rho, h}(X)<\infty$ and $d^{\rho, g}(X)=0$, which shows that $d^{\rho, g}$ and $d^{\rho, g}$ are not equivalent. The proof consists of four steps.

Step 1. Constructing (X, ρ). Let $\frac{1}{2}<\lambda<1$ and $a_{n}=\lambda^{2^{-n}}(n \in \mathbb{N})$, then $a_{1} a_{2} \cdots a_{n}>\lambda$ for any $n \geq 1$. Assume that g and h are not equivalent, then by the definition, there exists a sequence $\left\{\delta_{n}\right\}_{n \geq 0} \searrow 0$ such that

$$
\text { either } \lim _{n \rightarrow \infty} \frac{g\left(\delta_{n}\right)}{h\left(\delta_{n}\right)}=0 \text { or } \lim _{n \rightarrow \infty} \frac{g\left(\delta_{n}\right)}{h\left(\delta_{n}\right)}=\infty
$$

We only discuss the case $\lim _{n \rightarrow \infty} \frac{g\left(\delta_{n}\right)}{h\left(\delta_{n}\right)}=0$. The case $\lim _{n \rightarrow \infty} \frac{g\left(\delta_{n}\right)}{h\left(\delta_{n}\right)}=\infty$ can be treated in the same way.

Since $\lim _{n \rightarrow \infty} h\left(\delta_{n}\right)=0$, we may suppose further the sequence $\left\{\delta_{n}\right\}$ is chosen to satisfy

$$
h\left(\delta_{n}\right) \leq\left(1-a_{n}\right) h\left(\delta_{n-1}\right), \quad n \in \mathbb{N} .
$$

Take

$$
k_{n}=\left[\frac{h\left(\delta_{n-1}\right)}{h\left(\delta_{n}\right)}\right], \quad n \in \mathbb{N}
$$

where $[x]$ denotes the integer part of x, then we have

$$
\begin{equation*}
k_{n} \geq\left[\frac{1}{1-a_{n}}\right] \geq 2, \quad k_{1} \cdots k_{n} \leq \frac{h\left(\delta_{0}\right)}{h\left(\delta_{n}\right)} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{1} k_{2} \cdots k_{n} \geq\left(\frac{h\left(\delta_{0}\right)}{h\left(\delta_{1}\right)}-1\right)\left(\frac{h\left(\delta_{1}\right)}{h\left(\delta_{2}\right)}-1\right) \cdots\left(\frac{h\left(\delta_{n-1}\right)}{h\left(\delta_{n}\right)}-1\right) \geq \frac{\lambda h\left(\delta_{0}\right)}{h\left(\delta_{n}\right)} \tag{3}
\end{equation*}
$$

Let $F_{0}=[0,1]$. We construct a compact subset X of the interval $[0,1]$ in the following way. Take k_{1} disjoint closed subintervals of the unit interval $[0,1]$ of positive length, and denote by F_{1} the union of these k_{1} intervals. For every element I of F_{1}, take k_{2} disjoint closed subintervals of I of positive length to obtain $k_{1} k_{2}$ disjoint closed intervals of $[0,1]$, and denote by F_{2} the union of these $k_{1} k_{2}$ intervals. Continuing the above procedure, we obtain a sequence $F_{0} \supset F_{1} \supset \cdots \supset F_{n} \cdots$. Set

$$
X=\cap_{n=1}^{\infty} F_{n}
$$

By the above construction, X is a nonempty compact subset of $[0,1]$. Every element of F_{n} is called a basic interval of level- n. Denote by d_{n} the largest length of the basic intervals of level- n, we may require

$$
\lim _{n \rightarrow \infty} d_{n}=0
$$

Let $x, y \in X$ with $x \neq y$. Denote by $n(x, y)$ the highest level of the basic interval containing x and y, thus, there exists an interval I of level $n(x, y)$ which
contains both x and y, but any basic interval does not contain simultaneously x and y, if its level is higher than $n(x, y)$. We define another metric ρ on X by letting

$$
\rho(x, y)=\left\{\begin{array}{cc}
0, & \text { if } x=y \\
\delta_{n(x, y)}, & \text { if } x \neq y .
\end{array}\right.
$$

Step 2. (X, ρ) is a compact metric space.
Now X has two topologies, the relative topology as a subset of the real line and the metric topology defined by the metric ρ. Let $(X,|\cdot|)$ be the subspace of real line and it is a compact metric space. Consider the identical mapping, $I(x)$, from $(X,|\cdot|)$ to (X, ρ). We will prove $I(x)$ is continuous and obtain (X, ρ) is compact by the fact that the continuous image of compact metric space is compact. Let $x \in X$ and $\varepsilon>0$. We can choose n so large that $d_{n}<\varepsilon$. Then all point y of X with $|x-y| \leq d_{n}$ lie in the same basic interval of level- n as x, and so satisfy $\rho(I(x), I(y)) \leq d_{n}<\varepsilon$, which implies $I(x)$ is continuous.

Step 3. Estimating $d^{\rho, h}(X)$.
Let $n \geq 1$ and let I be a basic interval of level- n. Let $|I \cap X|_{\rho}$ denote the diameter of $I \cap X$ under the metric ρ, then we have $|I \cap X|_{\rho}=\delta_{n}$. In fact, for any $x, y \in I$, since $n(x, y)$ is the highest level of the basic interval containing x and y, we have $n(x, y) \geq n$ and in which the equality holds for some pair $x, y \in I$, so $|I \cap X|_{\rho}=\delta_{n}$ by the definition of the metric ρ.

First, we conclude that $d^{\rho, h}(X)<\infty$. It is sufficient to prove $D^{\rho, h}(X)<$ ∞. Indeed,
$D^{\rho, h}(X) \leq \lim _{n \rightarrow \infty} N_{\delta_{n}}(E) h\left(\delta_{n}\right) \leq \lim _{n \rightarrow \infty} k_{1} \cdots k_{n} h\left(\delta_{n}\right) \leq \frac{h\left(\delta_{0}\right)}{h\left(\delta_{n}\right)} \cdot h\left(\delta_{n}\right)=h\left(\delta_{0}\right)<\infty$.

So

$$
\begin{equation*}
d^{\rho, h}(X) \leq h\left(\delta_{0}\right)<\infty \tag{4}
\end{equation*}
$$

Let μ be the natural measure on X, that is, μ is the unique probability measure satisfying

$$
\mu\left(I_{n}\right)=\frac{1}{k_{1} \cdots k_{n}}
$$

for all basic intervals I_{n} of level- n and for all n. Let U be a subset of X with $0<|U|<\delta_{0}$ and n the positive integer with $\delta_{n} \leq|U|<\delta_{n-1}$. By the definition of the metric ρ, we have $|U|=\delta_{n}$, so there is a basic interval of level- $n I_{n}$ such that $U \subset I_{n}$. Thus we have from(3)

$$
\mu(U) \leq \mu\left(I_{n}\right)=\frac{1}{k_{1} \cdots k_{n}} \leq \frac{h(|U|)}{\lambda h\left(\delta_{0}\right)}
$$

which yields from mass distribution principle

$$
\lambda h\left(\delta_{0}\right) \leq \mathcal{H}^{\rho, h}(X)
$$

Then by proposition2 and (4), we have

$$
0<\lambda h\left(\delta_{0}\right) \leq d^{\rho, h}(X) \leq h\left(\delta_{0}\right)<\infty .
$$

Step 4. Estimating $d^{\rho, g}(X) . D^{\rho, g}(X) \leq \lim _{n \rightarrow \infty} N_{\delta_{n}}(E) g\left(\delta_{n}\right) \leq \lim _{n \rightarrow \infty} k_{1} \cdots$ $k_{n} g\left(\delta_{n}\right) \leq \lim _{n \rightarrow \infty} \frac{h\left(\delta_{0}\right)}{h\left(\delta_{n}\right)} \cdot g\left(\delta_{n}\right)=\lim _{n \rightarrow \infty} \frac{g\left(\delta_{n}\right)}{h\left(\delta_{n}\right)} \cdot h\left(\delta_{0}\right)=0$. So $d^{\rho, g}(X)=0$.

Acknowledgements. The author would like to thank the anonymous referees for their valuable comments and suggestions that lead to the improvement of the manuscript. This project is supported by the Education Committee of Fujian Province(JA08155).

References

[1] A.Bărbulescu, On the h-measure of a set, Revue Roumaine de Mathématique Pures and Appliquées, 47(2002), 547-552.
[2] A.Bǎrbulescu, New results about the h-measure of a set, in Analysis and Optimization of Differential Systems, Kluwer Academic Publishers, 2003, 43-48.
[3] A.Bǎrbulescu, About the h-measure of a set.II, An.St.Univ.Ovidius Constanta, 9(2)(2001), 5-8.
[4] H.H.Lee and I.S.Baek, On d-measure and d-dimension, Real Analysis Exchange, 17(1991-1992),590-596.
[5] H.K.Baek and H.H.Lee, Regularity of d-measure, Acta Math.Hungar, 99(1-2)(2003), 25-32.
[6] J.J.Li and S.Y.Wen, On diameter-type packing measures with respect to equivalent metrics, J.of Math.(PRC), 2(27)(2007), 153-156.
[7] P.Mattila, Geometry of sets and measures in Euclidean space. Cambridge: Cambridge University Press, 1995.
[8] S.Y.Wen and Z.Y.Wen, Relations among gauge functions, metrics and Hausdorff measures, Progress in Natural Sci. 2003,13: 254-258.

Zhangzhou Normal University,
Department of Mathematics
Zhangzhou, 363000, P.R.China.
Email: li-jinjun@163.com

