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LARGE EQUIVALENCE OF d
h-MEASURES

Jinjun Li

Abstract

We extend the definition of d
h-measures introduced by Lee and Baek

to the more general setting of compact metric spaces and prove that

two d
h-measures are equivalent if and only if their respective measure

functions are equivalent.

1 Introduction

Let us begin with the definition of the dρ,h-measure introduced by Lee and
Baek[4, 5]. Let E be a bounded set in R

n and h be a measure function, i.e.
h : R

+ → R
+ is a non-decreasing and continuous function with h(0+) = 0.

The pre dh-measure of E is:

Dh(E) = lim inf
r→0

Nr(E)h(r),

where Nr(E) is the minimum number of closed balls with diameter r, needed
to cover E. Then we employ Method I by Munroe to obtain an outer measure
dh of E ⊂ X:

dh(E) = inf{
∞
∑

i=1

Dh(Ei)|E ⊂ ∪Ei, Ei ⊂ R
n}.

If h(t) = ts, then the dh-measure induces the modified lower box dimension
[4, 5].
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In this paper, we extend the definition of dh-measures to the more general
setting of compact metric spaces and prove that two dh-measures are equiva-
lent if and only if their respective measure functions are equivalent. Let (X, ρ)
be a compact metric space. We define the pre dρ,h-measure of E with respect
to the metric ρ, by

Dρ,h(E) = lim inf
r→0

Nr(E)h(|B(x, r)|ρ),

where Nr(E) is the minimum number of closed balls{B(x, r)} with radius r,
needed to cover E and |B(x, r)|ρ denotes the diameter of B(x, r) with respect
to the metric ρ. Then we employ Method I by Munroe to obtain an outer
measure dρ,h of E ⊂ X:

dρ,h(E) = inf{
∞
∑

i=1

Dρ,h(Ei)|E ⊂ ∪Ei, Ei ⊂ X}.

Remark 1 The definition of dρ,h remains unchanged if we put E = ∪Ei

in the place of E ⊂ ∪Ei.
Remark 2 By the definitions, we can see that dρ,h ≤ Dρ,h.

Recall that two measure functions g and h are said to be equivalent if there
are constants c ≥ 1 and δ > 0 such that

c−1h(t) ≤ g(t) ≤ ch(t)

for any 0 < t ≤ δ. Two Borel measures µ and ν on (X, ρ) are said to be
equivalent if there is a constant c ≥ 1 such that

c−1µ(A) ≤ ν(A) ≤ cµ(A)

for all Borel sets A.

2 Main results and proofs

Proposition 1 dρ,h is a metric outer measure.

Proof. It is sufficient to proof that dρ,h(E ∪ F ) = dρ,h(E) + dρ,h(F )
whenever E,F ⊂ X with dist(E,F ) > 0. Suppose that dist(E,F ) > 0 for
E,F ⊂ X. Then dist(E,F ) > 2ε > 0 for some positive constant ε. Noting
that Nε(E ∪ F ) = Nε(E) + Nε(F ), we have

Dρ,h(E ∪ F ) ≥ Dρ,h(E) + Dρ,h(F ). (1)
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Hence, for E and F with dist(E,F ) > 0,

dρ,h(E ∪ F ) = inf{

∞
∑

i=1

Dρ,h(Ei)|E ∪ F = ∪Ei, Ei ⊂ X}

= inf{
∞
∑

i=1

Dρ,h((Ei ∩ E) ∪ (Ei ∩ F ))|E ∪ F = ∪Ei, Ei ⊂ X}

≥ inf{

∞
∑

i=1

Dρ,h(Ei ∩ E) + Dρ,h(Ei ∩ F )|E ∪ F = ∪Ei, Ei ⊂ X}

≥ inf{
∞
∑

i=1

Dρ,h(Ei ∩ E)|E ∪ F = ∪Ei, Ei ⊂ X}

+ inf{

∞
∑

i=1

Dρ,h(Ei ∩ E)|E ∪ F = ∪Ei, Ei ⊂ X}

≥ dρ,h(E) + dρ,h(F ).

The second inequality is obtained by (1).
On the other hand, we have dρ,h(E ∪ F ) ≤ dρ,h(E) + dρ,h(F ) by subaddi-

tivity of dρ,h. This completes the proof. �

The measure dρ,h is close related to Hausdorff measure. More precisely,
we have the following proposition which can be deduced by the definitions(see
also [5]).

Proposition 2 For a subset E of (X, ρ), H
ρ,h(E) ≤ dρ,h(E), where

H
ρ,h(E)denotes the Hausdorff h-measure of E.

For details about Hausdorff h-measure, see [1, 2, 3, 8].
By the definitions, dρ,g and dρ,h are equivalent, if g and h are equivalent

measure functions. Conversely, can we get from the equivalence of dρ,g and
dρ,h that g and h are equivalent?

The theorem below answers this question.

Theorem A Let g, h be any two measure functions. If dρ,g and dρ,h are

equivalent for any compact metric space (X, ρ), then g and h are equivalent.

Proof. Suppose g and h are not equivalent. We are going to construct
a compact metric space (X, ρ) such that 0 < dρ,h(X) < ∞ and dρ,g(X) = 0,
which shows that dρ,g and dρ,g are not equivalent. The proof consists of four
steps.
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Step 1. Constructing (X, ρ). Let 1
2 < λ < 1 and an = λ2−n

(n ∈ N), then
a1a2 · · · an > λ for any n ≥ 1. Assume that g and h are not equivalent, then
by the definition, there exists a sequence {δn}n≥0 ց 0 such that

either lim
n→∞

g(δn)

h(δn)
= 0 or lim

n→∞

g(δn)

h(δn)
= ∞.

We only discuss the case lim
n→∞

g(δn)
h(δn) = 0. The case lim

n→∞

g(δn)
h(δn) = ∞ can be

treated in the same way.
Since lim

n→∞
h(δn) = 0, we may suppose further the sequence {δn} is chosen

to satisfy
h(δn) ≤ (1 − an)h(δn−1), n ∈ N.

Take

kn = [
h(δn−1)

h(δn)
], n ∈ N,

where [x] denotes the integer part of x, then we have

kn ≥ [
1

1 − an

] ≥ 2, k1 · · · kn ≤
h(δ0)

h(δn)
(2)

and

k1k2 · · · kn ≥ (
h(δ0)

h(δ1)
− 1)(

h(δ1)

h(δ2)
− 1) · · · (

h(δn−1)

h(δn)
− 1) ≥

λh(δ0)

h(δn)
. (3)

Let F0 = [0, 1]. We construct a compact subset X of the interval [0, 1] in
the following way. Take k1 disjoint closed subintervals of the unit interval [0, 1]
of positive length, and denote by F1 the union of these k1 intervals. For every
element I of F1, take k2 disjoint closed subintervals of I of positive length to
obtain k1k2 disjoint closed intervals of [0, 1], and denote by F2 the union of
these k1k2 intervals. Continuing the above procedure, we obtain a sequence
F0 ⊃ F1 ⊃ · · · ⊃ Fn · · · . Set

X = ∩∞
n=1Fn.

By the above construction, X is a nonempty compact subset of [0,1]. Every
element of Fn is called a basic interval of level-n. Denote by dn the largest
length of the basic intervals of level-n, we may require

lim
n→∞

dn = 0.

Let x, y ∈ X with x 6= y. Denote by n(x, y) the highest level of the basic in-
terval containing x and y, thus, there exists an interval I of level n(x, y) which
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contains both x and y, but any basic interval does not contain simultaneously
x and y, if its level is higher than n(x, y). We define another metric ρ on X

by letting

ρ(x, y) =

{

0, if x = y,

δn(x,y), if x 6= y.

Step 2. (X, ρ) is a compact metric space.

Now X has two topologies, the relative topology as a subset of the real
line and the metric topology defined by the metric ρ. Let (X, | · |) be the
subspace of real line and it is a compact metric space. Consider the identical
mapping, I(x), from (X, | · |) to (X, ρ). We will prove I(x) is continuous and
obtain (X, ρ) is compact by the fact that the continuous image of compact
metric space is compact. Let x ∈ X and ε > 0. We can choose n so large that
dn < ε. Then all point y of X with |x − y| ≤ dn lie in the same basic interval
of level-n as x, and so satisfy ρ(I(x), I(y)) ≤ dn < ε, which implies I(x) is
continuous.

Step 3. Estimating dρ,h(X).

Let n ≥ 1 and let I be a basic interval of level-n. Let |I ∩ X|ρ denote the
diameter of I ∩X under the metric ρ, then we have |I ∩X|ρ = δn. In fact, for
any x, y ∈ I, since n(x, y) is the highest level of the basic interval containing
x and y, we have n(x, y) ≥ n and in which the equality holds for some pair
x, y ∈ I, so |I ∩ X|ρ = δn by the definition of the metric ρ.

First, we conclude that dρ,h(X) < ∞. It is sufficient to prove Dρ,h(X) <

∞. Indeed,

Dρ,h(X) ≤ lim
n→∞

Nδn
(E)h(δn) ≤ lim

n→∞
k1···knh(δn) ≤

h(δ0)

h(δn)
·h(δn) = h(δ0) < ∞.

So

dρ,h(X) ≤ h(δ0) < ∞. (4)

Let µ be the natural measure on X, that is, µ is the unique probability
measure satisfying

µ(In) =
1

k1 · · · kn

for all basic intervals In of level-n and for all n. Let U be a subset of X

with 0 < |U | < δ0 and n the positive integer with δn ≤ |U | < δn−1. By
the definition of the metric ρ,we have |U | = δn, so there is a basic interval of
level-n In such that U ⊂ In. Thus we have from(3)

µ(U) ≤ µ(In) =
1

k1 · · · kn

≤
h(|U |)

λh(δ0)
,
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which yields from mass distribution principle

λh(δ0) ≤ H
ρ,h(X).

Then by proposition2 and (4), we have

0 < λh(δ0) ≤ dρ,h(X) ≤ h(δ0) < ∞.

Step 4. Estimating dρ,g(X). Dρ,g(X) ≤ lim
n→∞

Nδn
(E)g(δn) ≤ lim

n→∞
k1 · · ·

kng(δn) ≤ lim
n→∞

h(δ0)
h(δn) · g(δn) = lim

n→∞

g(δn)
h(δn) · h(δ0) = 0. So dρ,g(X) = 0.
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