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DYNAMICAL PROPERTIES FOR A

RELAXATION SCHEME APPLIED TO A

WEAKLY DAMPED NON LOCAL

NONLINEAR SCHRÖDINGER EQUATION

Olivier Goubet and Manal Hussein

Abstract

We apply a semi-discrete in time relaxation scheme to a weakly

damped forced nonlinear Schrödinger system. This provides us with a

discrete infinite-dimensional dynamical system. We prove the existence

of a global attractor for this dynamical system.

1 Introduction

The Davey-Stewartson systems (DS) are asymptotical models for water waves
(see [8], [9], [11]). Loosely speaking, the Davey-Stewartson systems are Schrödinger
equations with a non-local nonlinear term. Here we are concerned with a
simplified 1-D model of a weakly damped forced Davey-Stewartson equation,
which gives an infinite-dimensional dynamical system, in the framework de-
scribed in [21], [14], [19], [18]. This equation reads as follows

iut + iγu + uxx = buE(|u|2) + f(x), (1)

where γ > 0, b ∈ R are parameters, where f the forcing term does not depend
on t and belongs to L2(R), and where E = E∗ is a self-adjoint bounded
operator in L2(R) that satisfies the following properties
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• E is a bounded linear mapping from Lp(R) into Lp(R) for any p such
that 1 < p < +∞.

• For a function ρ in the Schwartz class which takes values in R, then E(ρ)
takes values in R.

• E commutes with differential operators, for ρ in the Schwartz class S(R),
∂xE(ρ) = E(ρx).

E is very similar to the Hilbert transform except for the second assumption;
for instance we may consider E = Id (nonlinear cubic Schrödinger equation)

or E(ρ) = F−1( |ξ|√
1+ξ2

ρ̂(ξ)), where F is the Fourier transform.

In [15], using similar methods as in [3], we have proved that the dynam-
ical system provided by (1) and with initial condition in H1(R) has a global
attractor that is a compact subset of H2(R). In this article, we will consider a
time discretization of this PDE and we will study the dynamical properties of
the discrete infinite dimensional dynamical system provided by this scheme.

Since the simplified model (1) can be viewed as a generalization of the cubic
nonlinear Schrödinger equation (NLS), let us give an overview of numerical
studies for NLS equations. For the conservative case i.e where γ = 0, and
f = 0, there are many numerical schemes for this equation as the Crank-
Nicolson scheme (see [10], [20]), the Runge-Kutta scheme (see [2], [1], [16]),
and the splitting scheme (see [22], [6]). For the dissipative case, we refer to
[13] where the authors use the Crank-Nicolson scheme to discretize in time
the weakly damped forced NLS equation, and then prove the existence of a
global attractor for this equation in 1-D, (for 2-D we refer to [12]). Another
numerical method, splitting methods, have been adressed in [5] for solving
damped nonlinear Schrödinger equation. The semi discrete in time relaxation
scheme (for DS and NLS equations) was introduced by C. Besse (see [7]). The
C. Besse relaxation scheme consists in considering the DS equation in 2-D, in
the conservative case, as a system of two equations

ϕ = E(|u|2),
iut + ∆u = buϕ.

(2)

Introduce a time step τ = δt. Let now consider an order 2 time scheme for
this system considering un ∼ u(nτ) and ϕn+ 1

2 ∼ ϕ((n + 1
2 )τ) (hence the two

equations are computed in staggered grids). Then the scheme reads

i
un+1 − un

τ
+ ∆

un+1 + un

2
= b

un+1 + un

2
ϕn+ 1

2 ,

E(|un|2) =
ϕn+ 1

2 + ϕn− 1
2

2
.

(3)
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In this article, we are interested into a relaxation scheme in the dissipative
case. Let us specify the relaxation scheme under consideration. We write (1)
as

i(eγtu)t + eγtuxx = beγtuϕ + eγtf(x),

e2γtϕ = e2γtE(|u|2).
(4)

Set τ = δt for the time step, for u0 = u0 ∈ H1(R), and δ = e−γτ . Let

us pretend that eγtu|t=(n+ 1
2 )τ ∼ eγ(n+1)τ un+1+δun

2 and that e2γtϕ|t=nτ =

e2γnτ δ−1ϕ
n+ 1

2 +δϕ
n−

1
2

2 . Then the dissipative relaxation scheme reads as

i
un+1 − δun

τ
+ ∆

un+1 + δun

2
= b

un+1 + δun

2
ϕn+ 1

2 + f, (5)

E(|un|2) =
δ−1ϕn+ 1

2 + δϕn− 1
2

2
, (6)

with u0 = u0 and δϕ− 1
2 = δ−1ϕ+ 1

2 = E(|u0|2). This system is order 2 in time.

We now state our main results for the dissipative properties of the scheme.
To begin with, we prove that for any τ , the scheme provides a discrete semi-
group

Sτ : H1(R) → H1(R)

un 7→ un+1,

that states as follows

Theorem 1 The operator Sτ is a bounded one-to-one operator in H1(R).

Our second result reads as follows

Theorem 2 Assume without loss of generality that γτ is small enough. The
discrete semi-group Sτ possesses an absorbing set β that captures any trajec-
tory and that is positively invariant by Sτ , i.e for any bounded set B there
exists a time n(B) such that for n ≥ n(B), Sn

τ B ⊂ β, and Sk
τ β ⊂ β for k ≥ 0.

Our third result is concerned with the existence and the regularity of the global
attractor.

Theorem 3 The discrete semi-group Sτ possesses a compact global attractor
in H1(R), that is actually compact in H2(R).
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This article is organized as follows: in a second section we prove the well-
posedeness of the scheme. The third section is devoted to prove Theorem 2.
In a fourth section we focus on the proof of Theorem 3.

Throughout this article, we use c to denote a positive numerical constant,
and use k, ki; i = 1, 2, ... to denote some positive constants which depend on
γ, |f |L2 . The constants c, k, ki; i = 1, 2, ... can take different values at different
lines. Let us recall that the scalar product of two functions u and v is defined
as Re

∫

R
u(x)v(x)dx.

2 Well-posedness of the scheme

In this section, we prove that the dissipative relaxation scheme is well-posed.
For that purpose we first prove that the map Sτ : un 7→ un+1 is one-to-one in
H1(R), and then prove that Sτ is a continuous mapping in H1(R).

Proposition 1 For a given u0 ∈ H1(R), the sequence un+1 defined recursively
by (5)-(6) is well defined.

Proof. Assume that u0 belongs to H1(R). Then ϕ− 1
2 and ϕ

1
2 belongs to

H1(R). We prove by induction on n that (ϕn− 1
2 , un) 7→ (ϕn+ 1

2 , un+1) is one-

to-one. Going back to the (6), we see that ϕn+ 1
2 belongs to H1(R), since E

maps H1(R) into H1(R) and since H1(R) is an algebra. Solving recursively
the scheme amounts to solve the linear equation

(Id − i
τ

2
∆ + i

τ

2
bϕn+ 1

2 )un+1 = δ(Id + i
τ

2
∆ − i

τ

2
bϕn+ 1

2 )un − iτf. (7)

Since ϕn+ 1
2 belongs to L∞(R), then the unbounded self adjoint operator τ

2∆−
τ
2 bφn+ 1

2 on L2(R) has is spectrum in (−∞, C] and then (Id− i τ
2∆+ i τ

2 bϕn+ 1
2 )

is invertible in L2(R). Then (7) reads also

un+1 = δUn+ 1
2 un − iτ

δ + 1

2
(Id − i

τ

2
∆ + i

τ

2
bϕn+ 1

2 )−1f, (8)

where Un+ 1
2 = (Id − i τ

2∆ + i τ
2 bϕn+ 1

2 )−1(Id + i τ
2∆ − i τ

2 bϕn+ 1
2 ) is a unitary

operator on L2(R); let us check this point. Set v = Un+ 1
2 u. Then

i
v − u

τ
+ ∆

v + u

2
= bφn+ 1

2
v + u

2
. (9)

Consider the scalar product of this equation with i(u + v). Then straightfor-
wardly |v|L2(R) = |u|L2(R). On the other hand, consider the scalar product of
this equation with v − u. Then
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0 = |vx|2L2(R) − |ux|2L2(R) + b

∫

R

φn+ 1
2 (x)(|v(x)|2 − |u(x)|2)dx. (10)

Then v belongs to H1(R) if u does and the proof of the proposition is com-
pleted.

We now state

Proposition 2 For any fixed τ Sτ : un 7→ un+1 is a continuous mapping in
H1(R).

Proof. We prove by induction on n that if a sequence u0
ε converges to u0 in

H1(R), then un
ε converges to un in H1(R). For the sake of conciseness, we

just prove the first step, the induction step being very similar. Since ϕ
− 1

2
ε

converges to ϕ− 1
2 in H1(R), then going back to (6) ϕ

1
2
ε converges to ϕ

1
2 in

H1(R). Setting wn
ε = un

ε − un, we then have

i

τ
(w1

ε − δw0
ε) + ∆

w1
ε + δw0

ε

2
= b(ϕ

1
2
ε − ϕ

1
2 )

u1 + δu0

2
+ bϕ

1
2
w1

ε + δw0
ε

2
. (11)

Consider first the scalar product of this equation with i(w1
ε + δw0

ε). Then

|w1
ε |2L2(R) = δ2|w0

ε |2L2(R) + τ Imb

∫

R

(ϕ
1
2
ε − ϕ

1
2 )

u1 + δu0

2
w1

ε + δw0
εdx.

Then |w1
ε |2L2(R) converges to 0 in L2(R) since |w0

ε |2L2(R) does and since ϕ
1
2
ε −ϕ

1
2

converges uniformly to 0. For the H1(R) convergence, consider the scalar
product of (11) with w1

ε − δw0
ε and proceed similarly, using the L2(R) conver-

gence.

3 Proof of Theorem 2

In this section we want to prove the existence of an absorbing set in H1(R),
since the existence of such a set is a consequence of the dissipative nature of
the equation. To begin with, we prove the following lemma which gives the
existence of an absorbing set in L2(R).

Lemma 1 The system (5)-(6) admits an absorbing set in L2(R), namely the

ball of radius 2
|f |

L2(R)

γ
, which is positively invariant by Sτ .
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Proof. Multiply (5) by un+1 + δun, and integrate the imaginary part of the
resulting equation to obtain

|un+1|2L2 − δ2|un|2L2 = τIm

∫

fun+1 + δun ≤ τ |f |L2(R)|un+1 + δun|L2(R).

Then

|un+1|L2 − δ|un|L2 ≤ τ |f |L2(R). (12)

Assuming now without loss of generality that γτ is mall enough to ensure that
γτ ≤ 2(1 − e−γτ ), we then have

|un+1|L2 ≤ δ|un|L2 + 2(1 − δ)
|f |L2(R)

γ
. (13)

We conclude by the Gronwall lemma.

Now, since we want to get the H1(R) estimate, we plan to bound φn+ 1
2

in H−1(R). Since we are interested in the long time behavior of solutions, we
may assume without loss of generality that un belongs to the L2(R) absorbing
ball for any n ≥ 0. So we state

Lemma 2 For un in the absorbing set of L2(R), there exists a constant k

depending on γ, |f |L2 such that

|ϕn+ 1
2 |H−1(R) ≤

k

τ
. (14)

Proof. Going back to (6) we have that

δ−1|ϕn+ 1
2 |H−1(R) ≤ δ|ϕn− 1

2 |H−1(R) + 2|E(|un|2)|H−1(R). (15)

Since E is a bounded map in H1(R) and is self-adjoint, it also extends to a
bounded linear operator in H−1(R). Then, using the embedding L1(R) →֒
H−1(R) we thus obtain

|ϕn+ 1
2 |H−1(R) ≤ δ2|ϕn− 1

2 |H−1(R) + Cδ||un|2|L1(R) =

δ2|ϕn− 1
2 |H−1(R) + Cδ|un|2L2(R) ≤ δ(|ϕn− 1

2 |H−1(R) + k).
(16)

We conclude by the Gronwall lemma that this gives

|ϕn+ 1
2 |H−1(R) ≤

k

1 − δ
≤ k

τ
.
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We now complete the proof of Theorem 2 by an L2(R) upper bound on
un

x . Let us assume once more without loss of generality that un for n ≥ 0
is trapped into the L2(R) absorbing ball. Consider the scalar product of (5)
with −(un+1 − δun). Then

|un+1
x |2L2(R) = δ2|un

x |2L2(R)−b

∫

R

ϕn+ 1
2 (|un+1|2−δ2|un|2)−Re

∫

R

(un+1 − δun)f.

(17)

Using the H−1(R) bound on ϕn+ 1
2 we then have for instance

|
∫

R

ϕn+ 1
2 |un|2| ≤ k

τ
||un|2|H1(R) ≤

k

τ
|un|L∞(R)|un|H1(R). (18)

Using now Agmon’s inequality |un|2L∞(R) ≤ c|un|L2(R)|un
x |L2(R) and the fact

that un remains bounded in L2(R) we then have

|
∫

R

ϕn+ 1
2 |un|2| ≤ k

τ
(1 + |un

x |L2(R))
3
2 . (19)

This yields to (with a constant k1 that depends on the data as |b| and that is
independent of τ)

|un+1
x |2L2(R) − δ2|un

x |2L2(R) ≤
k

τ
(1 + |un+1

x |
3
2

L2(R) + δ2|un
x |

3
2

L2(R)). (20)

Using the inequality a2 − c2 ≥ (
√

a−√
c)(a + c)

3
2 , with a =

√

1
2 + |un+1

x |L2(R)

and c = δ
1
2

√

1
2 + |un

x |L2(R), we then infer from (20) that

√

1

2
+ |un+1

x |L2(R) − δ
1
2

√

1

2
+ |un

x |L2(R) ≤
k

τ
. (21)

Then the proof of Theorem 2 is completed, due to the discrete Gronwall
lemma.

Remark 1 It is worth to point out that the H1(R) bounds on the absorbing
set depends on τ .

4 Proof of Theorem 3

The proof is divided into several steps. To begin with, we prove that the
trajectories are asymptotically compact in L2(R); actually, we prove that there
exists a bounded set in H2(R) that attracts the solutions. We then apply
Theorem I-1-1 in [21] to obtain the existence of the global attractor, which
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is compact in H1(R) and bounded in H2(R). Due to the famous J. Ball
argument, it turns out that this global attractor is also a compact subset in
H2(R). In this section, without loss of generality, we will consider trajectories
that remain in the L2(R) absorbing ball.

To begin with, let us state and prove

Proposition 3 For any η > 0, a trajectory un splits as un = vn + wn where,
for n large enough depending only on the L2(R) absorbing ball, |wn|L2(R) ≤ 3η

γ
,

and, for any n, vn is trapped into a bounded set of H1(R)∩L2(R; (1+x2)dx).

Remark 2 The Hilbert space L2(R; (1 + x2)dx) is the space of functions v

such that
∫

R

(1 + x2)|v(x)|2dx < +∞;

since the embedding H1(R) ∩ L2(R; (1 + x2)dx) →֒ L2(R) is compact, then it
follows from Proposition 3 that the semi-group Sτ is asymptotically compact
in L2(R).

Proof. We use a splitting first introduced in [17] in the continuous case.
Consider fη in the Schwartz class S(R) such that |f − fη|L2(R) ≤ η. Split
Sn

τ u0 = un = vn + wn, where

i
vn+1 − δvn

τ
+ ∆

vn+1 + δvn

2
= bϕn+ 1

2
vn+1 + δvn

2
+ fη, (22)

i
wn+1 − δwn

τ
+ ∆

wn+1 + δwn

2
= bϕn+ 1

2
wn+1 + δwn

2
+ f − fη, (23)

supplemented with v0 = 0, w0 = u0, and such that for any n (6) holds true
(actually we can prove by induction on n that un = vn + wn). On the one
hand, if we take the scalar product of (23) with i(wn+1 +δwn), we thus obtain

|wn+1|2L2(R) − δ2|wn|2L2(R) = τ Im

∫

R

(f − fη)wn+1 + δwndx. (24)

Then, by Cauchy-Schwarz inequality we have

|wn+1|L2(R) ≤ δ|wn|L2(R) + τη. (25)

A straightforward application of the discrete Gronwall lemma gives

|wn|L2(R) ≤ δn|u0|L2(R) +
τη

1 − δ
≤ 3η

γ
, (26)
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for n large enough such that δn 2|f |
L2(R)

γ
≤ η

γ
.

The next step is to check that vn
x remains bounded in L2(R); for that purpose

we can copy line by line the end of the Proof of Theorem 2; we skip the details
for the sake of conciseness.

On the other hand, considering the scalar product of (22) with ix2(vn+1+δvn)
leads to

|xvn+1|2L2(R) − δ2|xvn|2L2(R) = τ Im

∫

R

(vn+1
x + δvn

x )xvn+1 + δxvndx+

τ Im

∫

R

(xfη)xvn+1 + δxvndx.

(27)

We then have, using the fact that vn
x remains in a bounded set of L2(R),

|xvn|L2(R) ≤
τ

1 − δ
|xfη|L2(R) ≤

2

γ
|xfη|L2(R). (28)

We now move to the estimate on ∆vn. Consider the scalar product of (22)
with ∆(vn+1 − δvn). Then

|∆vn+1|2L2(R) = δ2|∆vn|2L2(R)+

Re

∫

R

ϕn+ 1
2 (vn+1 + δvn)∆(vn+1 − δvn)dx + 2Re

∫

R

fη∆(vn+1 − δvn)dx.

(29)

As soon as un is in the H1(R) absorbing ball, then due to (6) ϕn+ 1
2 is also

trapped into some bounded set in H1(R). Therefore (29) yields

|∆vn+1|2L2(R) − δ2|∆vn|2L2(R) ≤ k(τ)|∆(vn+1 − δvn)|L2(R). (30)

Once again, we conclude by the Gronwall lemma.

At this stage we have proven the existence of a global attractor Aτ in H1(R)
that is a bounded set in H2(R). The compactness of the global attractor in
H2(R) follows the J. Ball argument (see [4]). Consider uj a sequence in Aτ

and un
j = Sn

τ uj the corresponding trajectory. Up to a subsequence, we may

consider that uj converges weakly in H2(R) and strongly in H1(R) towards
u; set un = Sn

τ u that is also a complete trajectory in the global attractor. To
begin with, we establish an energy equality. Consider the scalar product of
(5) with ∆(un+1

j − δun
j ). We thus obtain
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|∆un+1
j |2L2(R) = δ2|∆un

j |2L2(R)+

bRe

∫

R

ϕ
n+ 1

2
j (un+1

j + δun
j )∆(un+1

j − δun
j )dx + 2Re

∫

R

f∆(un+1
j − δun

j )dx.

(31)

Set

Xn
j = bRe

∫

R

ϕ
n+ 1

2
j (un+1

j + δun
j )∆(un+1

j −δun
j )dx+2Re

∫

R

f∆(un+1
j −δun

j )dx.

If the sequence uj converges weakly in H2(R) and strongly in H1(R) (then

ϕ
n+ 1

2
j converges also in H1(R)), then Xn

j → Xn. Going backward in time, we
then have

|∆uj |2L2(R) = δ2m|∆u−m
j |2L2(R) +

0
∑

n=−m

δ−2(n+1)Xn
j . (32)

We then have, since the sequence |∆u−m
j |2L2(R) is bounded by k(τ)

lim sup
j→+∞

|∆uj |2L2(R) ≤ δ2mk(τ) +

0
∑

n=−m

δ−2(n+1)Xn. (33)

Since by the same energy equality as (32)

0
∑

n=−m

δ−2(n+1)Xn = |∆u|2L2(R) − δ2m|∆u−m|2L2(R),

then

lim sup
j→+∞

|∆uj |2L2(R) ≤ 2δ2mk(τ) + |∆u|2L2(R). (34)

Let m goes to the infinity. Then lim supj→+∞ |∆uj |2L2(R) ≤ |∆u|2L2(R) and uj

converges strongly towards u in H2(R). The proof of Theorem 3 is complete.
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