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QREGULARITY AND TENSOR PRODUCTS

OF VECTOR BUNDLES ON SMOOTH

QUADRIC HYPERSURFACES

Edoardo Ballico and Francesco Malaspina

Abstract

Let Qn ⊂ P
n+1 be a smooth quadric hypersurface. Here we prove

that the tensor product of an m-Qregular sheaf on Qn and an l-Qregular
vector bundle on Qn is (m + l)-Qregular.

1 Introduction

Let Qn ⊂ P
n+1 be a smooth quadric hypersurface. We use the unified notation

Σ∗ meaning that for even n both the spinor bundles Σ1 and Σ2 are considered,
while Σ∗ = Σ if n is odd. We recall the definition of Qregularity for a coherent
sheaf on Qn given in [2]:

Definition 1.1. A coherent sheaf F on Qn (n ≥ 2) is said to be m-Qregular
if one of the following equivalent conditions are satisfied:

1. Hi(F (m − i)) = 0 for i = 1, . . . , n − 1, and Hn(F (m) ⊗ Σ∗(−n)) = 0.

2. Hi(F (m − i)) = 0 for i = 1, . . . , n − 1, Hn−1(F (m) ⊗ Σ∗(−n + 1)) = 0,
and Hn(F (m − n + 1)) = 0.

In [2] we defined the Qregularity of F , Qreg(F ), as the least integer m

such that F is m-Qregular. We set Qreg(F ) = −∞ if there is no such an
integer.
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Here we prove the following property of Qregularity.

Theorem 1.2. Let F and G be m-Qregular and l-Qregular coherent sheaves
such that Tori(F,G) = 0 for i > 0. Then F ⊗ G is (m + l)-Qregular. In
particular this holds if one of them is locally free.

The corresponding result is true taking as regularity either the Castelnuovo-
Mumford regularity or (for sheaves on a Grassmannian) the Grassmann regu-
larity defined by J. V. Chipalkatti ([3], Theorem 1.9). The corresponding result
is not true (not even if G is a line bundle) on many varieties with respect to
geometric collections or n-block collections (very general and very important
definitions of regularity discovered by L. Costa and R.-M. Miró-Roig) ([4],
[5], [6]). Our definition of Qregularity on smooth quadric hypersurfaces was
taylor-made to get splitting theorems and to be well-behaved with respect to
smooth hyperplane sections. Theorem 1.2 gives another good property of it.
To get Theorem 1.2 we easily adapt Chicalpatti’s proof of [3], Theorem 1.9,
except that we found that in our set-up we need one more vanishing. Our proof
of this vanishing shows that on smooth quadric hypersurfaces our definition
of Qregularity easily gives splitting results (see Lemma 2.2).

2 The proof

Set O := OQn

.

Lemma 2.1. Let F be a 0-Qregular coherent sheaf on Qn. Then F admits a
finite locally free resolution of the form:

0 → Kn → · · · → K0 → F → 0,

where Kj (0 ≤ j < n) is a finite direct sum of line bundles O(−j) and Kn is
an n-Qregular locally free sheaf.

Proof. Since F is globally generated ([2], proposition 2.5), there is a surjective
map

H0(F ) ⊗ O → F.

The kernel K is a coherent sheaf and we have the exact sequence

0 → K → H0(F ) ⊗ O → F → 0.

Since the evaluation map H0(F ) ⊗ O → F → 0 induces a bijection of global
sections, H1(K) = 0 . From the sequences

Hi−1(F (−i + 1)) → Hi(K(−i + 1)) → H0(F ) ⊗ Hi(O(−i + 1)) → 0,
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we see that Hi(K(−i + 1)) = 0 for any i (1 < i < n).
From the sequences

Hn−1(F )⊗Σ∗(−n+1) → Hn(K(1)⊗Σ∗(−n)) → H0(F )⊗Hn(Σ∗(−n+1)) → 0,

we see that Hn(K(1) ⊗ Σ∗(−n)) = 0. We conclude that K is 1-Qregular.
We apply the same argument to K and we obtain a surjective map

H0(K(1)) ⊗ O(−1) → K

with a 2-Qregular kernel. By the syzygies Theorem we obtain the claimed
resolution.

Lemma 2.2. Let G an m-Qregular coherent sheaf on Qn such that hn(G(−m−

n)) 6= 0. Then G has O(−m) as a direct factor.

Proof. Since hn(G(−m − n)) 6= 0, h0(G∗(m)) 6= 0 ([1], theorem at page 1).
Hence there is a non-zero map τ : G(m) → O. Since G(m) is 0-Qregular, it is
spanned ([2], proposition 2.5), i.e. there are an integer N > 0 and a surjection
u : ON → G(m). Every non-zero map O → O is an isomorphism. Hence τ ◦ u

is surjective and there is v : O → ON such that (τ ◦ u) ◦ v is the identity map
of O. Hence the maps τ and v ◦u : O → G(m) show that G(m) ∼= O⊕G′ with
G′ ∼= Ker(τ).

Proof of Theorem 1.2. We first reduce to the case in which G is
indecomposable. Indeed, if G ∼= G1 ⊕ G2 where G1 is l-Qregular and G2 is
l′-Qregular (l′ ≤ l), then F ⊗ G1 is (l + m)-Qregular and F ⊗ G2 is (l′ + m)-
Qregular (l′ +m ≤ l+m) so F ⊗G ∼= (F ⊗G1)⊕ (F ⊗G2) is (l+m)-Qregular.
We can assume that G is not O(−l), because the statement is obviously true
in this case. Hence by Lemma 2.2 we may assume Hn(G(l − n)) = 0. Let us
tensorize by G(l) the resolution of F (m). We obtain the following resolution
of F ⊗ G:

0 → Kn ⊗ G(l) → · · · → K0 ⊗ G(l) → F ⊗ G(m + l) → 0,

where Kj (0 ≤ j < n) is a finite direct sum of line bundles O(−j) and Kn is
a n-Qregular locally free sheaf.
Since

Hn(G(l − n)) = · · · = H1(G(l − 1)) = 0,

we have H1(F ⊗ G(m + l − 1)) = 0.
Since

Hn(G(l − n)) = · · · = H2(G(l − 2)) = 0,
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we have H2(F ⊗ G(m + l − 2)) = 0 and so on.
Moreover, Hn(G(l) ⊗ Σ∗(−n)) = 0 implies Hn(F ⊗ G(m + l) ⊗ Σ∗(−n)) = 0.
Thus F ⊗ G is (m + l)-Qregular.

Proposition 2.3. Let F and G be m-Qregular and l-Qregular vector bundles
on Qn. If F is not (m− 1)-Qregular and G is not (l− 1)-Qregular then F ⊗G

is not (m + l − 1)-Qregular. In particular Qreg(F ) = Qreg(G) = 0 implies
Qreg(F ⊗ G) = 0.

Proof. By the above argument we can prove the result just for F and G inde-
composable. Let us assume that G is not (l−1)-Qregular. We can assume that
G is not O(−l), because the statement is obviously true in this case. Hence
by Lemma 2.2 we may assume Hn(G(l − n)) = 0.
If Hi(G(l − i − 1)) 6= 0 for some i (0 > i > n), and

Hi+1(G(l − 1 − i − 1)) = · · · = Hn(G(l − n)) = 0,

we have an injective map

Hi(G(l − i − 1)) → Hi(F ⊗ G(m + l − i − 1))

and so Hi(F ⊗G(m+ l− i−1)) 6= 0. This means that F ⊗G is not (m+ l−1)-
Qregular.
If Hi(G(l − i − 1)) = 0 for any i (0 > i > n) but Hn−1(G ⊗ Σ∗(−n)) = 0
by [2] Proof of Theorem 1.2., we have that G ∼= Σ∗(−l). By a symmetric
argument we may assume that F ∼= Σ∗(−m). Now we only need to show that
Σ∗(−m)⊗Σ∗(−l) is not (m+l−1)-Qregular. Indeed since h0(Σ∗⊗Σ∗(−1)) = 0,
[2] Proposition 2.5 implies that Σ∗ ⊗ Σ∗ is not (−1)-Qregular.

Remark 2.4. On P
n if F is a regular coherent sheaf according Castelnuovo-

Mumford, then it admits a finite locally free resolution of the form:

0 → Kn → · · · → K0 → F → 0,

where Kj (0 ≤ j < n) is a finite direct sum of line bundles O(−j) and Kn

is an n-regular locally free sheaf. Now arguing as above we can deduce that
Theorem 1.2 and Proposition 2.3 hold also on P

n for Castelnuovo-Mumford
regularity.
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[4] L. Costa and R. M. Miró-Roig, Geometric collections and
Castelnuovo-Mumford regularity, Math. Proc. Cambridge Phil. Soc. 143
(2007), no. 3, 557–578.
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