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ON THE BOUUNDEDNESS OF

FRACTIONAL B-MAXIMAL OPERATORS

IN THE LORENTZ SPACES Lp,q,γ(R
n
+) ∗

Canay Aykol and Ayhan Serbetci

Abstract

In this study, sharp rearrangement inequalities for the fractional B-

maximal function Mα,γf are obtained in the Lorentz spaces Lp,q,γ and

by using these inequalities the boundedness conditions of the operator

Mα,γ are found. Then, the conditions for the boundedness of the B-

maximal operator Mγ are obtained in Lp,q,γ .

1 Introduction

Let R
n
+ = {x = (x1, ..., xn) ∈ R

n, xn > 0}. Denote by Lp,γ ≡ Lp,γ(Rn
+), γ > 0,

the set of all classes of measurable functions with finite norm

‖f‖Lp,γ
≡
(∫

R
n

+

|f(x)|pxγ
ndx

)1/p

< ∞,

If p = ∞, we assume

L∞,γ(Rn
+) = L∞(Rn

+) = {f : ‖f‖L∞
= ess sup

x∈R
n

+

|f(x)| < ∞}.
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The generalized translation operator T y, y ∈ R
n
+, is defined (see [8, 9, 10]) for

smooth functions on R
n
+ by

T yf(x) = Cγ

∫ π

0

f(x′ − y′,
√

x2
n + y2

n − 2xnyncos θ )sinγ−1θdθ,

where x′, y′ ∈ R
n−1 and Cγ = Γ((γ + 1)/2)[

√
π Γ(γ/2)]−1.

It is well-known that the generalized shift operator T y is closely related to
the Laplace-Bessel differential operator

∆B =

n∑

k=1

∂2

∂x2
k

+
γ

xn

∂

∂xn
.

Further, if f belongs to Lp,γ , 1 ≤ p ≤ ∞, then for all y ∈ R
n
+, the function

T yf belongs to Lp,γ , and

‖T yf‖Lp,γ
≤ ‖f‖Lp,γ

.

For 0 ≤ α < n + γ, the fractional maximal function associated with ∆B

(fractional B-maximal function) is defined at f ∈ Lloc
1,γ(Rn

+) by

(Mα,γf)(x) = sup
r>0

|B(0, r)|
α

n+γ
−1

γ

∫

B(0,r)

T y |f(x)| yγ
ndy, x ∈ R

n
+,

where B(0, r) = {y ∈ R
n
+ : |y| < r}. For α = 0 we get the maximal func-

tion Mγf associated with the Laplace-Bessel differential operator (B-maximal
function, see [6]).

The aim of this paper is to obtain sharp rearrangement estimates for the
fractional B-maximal function Mα,γf . We give the necessary and sufficient
conditions for the boundedness of the operator Mα,γ in the Lorentz spaces
Lp,q,γ(Rn

+) by using the obtained sharp rearrangement estimates. As conse-
quence of these results we find the boundedness conditions for the B-maximal
operator Mγ in the Lorentz spaces Lp,q,γ(Rn

+).
It is well known that for the classical Hardy-Littlewood maximal operator

the rearrangement inequality

cf∗∗(t) ≤ (Mf)∗(t) ≤ Cf∗∗(t), t ∈ (0,∞)

holds, where f∗(t) is the nonincreasing rearrangement of f and f∗∗(t) =
1
t

∫ t

0
f∗(t)dt.

For f ∈ Lloc
1 (Rn), similar sharp rearrangement estimates are obtained for

the maximal function of f in [1] and for the fractional maximal function of



ON THE BOUUNDEDNESS OF FRACTIONAL B-MAXIMAL OPERATORS IN THE

LORENTZ SPACES Lp,q,γ(Rn

+
) 29

f in [3], and for the fractional maximal function of f ∈ Lp,γ(Rn
+), γ > 0,

associated with the Laplace-Bessel differential operator in [7]. These estimates
are of great importance in the study of operators on rearrangement-invariant
spaces as well as in interpolation theory.

Throughout the paper, we denote M+(0,∞) the set of all non-negative
measurable functions on (0,∞) with respect to the measure xγ

ndx, and
M+(0,∞; ↓) the set of all non-increasing functions from M+(0,∞). We use
the letter C for a positive constant, independent of appropriate parameters
and not necessary the same at each occurrence.

2 Preliminaries

Let f : R
n
+ → R be a measurable function and for any measurable set E,

|E|γ =
∫

E
xγ

ndx. We define γ-rearrangement of f in decreasing order by

f∗
γ (t) = inf {s > 0 : f∗,γ(s) ≤ t}, ∀t ∈ (0,∞),

wheref∗,γ(s) denotes the γ-distribution function of f given by

f∗,γ(s) =
∣∣{x ∈ (Rn

+) : |f(x)| > s}
∣∣
γ

.

Some properties of γ-rearrangement of functions are given as follows (see
[2, 4, 12]):

1) if 0 < p < ∞, then

∫

R
n

+

|f(x)|pxγ
ndx =

∫ ∞

0

(
f∗

γ (t)
)p

dt;

2) for any t > 0,

sup
|E|γ=t

∫

E

|f(x)|xγ
ndx =

∫ t

0

f∗
γ (s)ds; (1)

3) ∫

R
n

+

|f(x)g(x)|xγ
ndx ≤

∫ ∞

0

f∗
γ (t)g∗γ(t)dt;

It is well known that
4)

(f + g)∗γ(t) ≤ f∗
γ (

t

2
) + g∗γ(

t

2
) (2)
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holds.
We denote by WLp,γ(0,∞) the weak Lp,γ space of all measurable functions

f with finite norm

‖f‖WLp,γ
= sup

t>0
t1/pf∗

γ (t), 1 ≤ p < ∞.

The function f∗∗
γ : (0,∞) → [0,∞] is defined as

f∗∗
γ (t) =

1

t

∫ t

0

f∗
γ (s)ds.

Definition 1. The Lorentz space Lp,q,γ(Rn
+) is the collection of all measurable

functions f on R
n
+ such that the quantity

‖f‖p,q,γ =





(∫∞

0

(
t

1
p f∗

γ (t)
)q

dt
t

)1/q

, 0 < p < ∞, 0 < q < ∞
sup
t>0

t
1
p f∗

γ (t), 0 < p ≤ ∞, q = ∞

is finite.
If 0 < p ≤ ∞, q = ∞, then Lp,∞,γ(Rn

+) = WLp,γ(Rn
+).

If 1 ≤ q ≤ p or p = q = ∞, then the functional ‖f‖p,q,γ is a norm. (see
[2], [5], [12]).

If p = q = ∞, then the space L∞,∞,γ(Rn
+) is denoted by L∞,γ(Rn

+).

In the case 1 < p, q < ∞, we give a functional ‖.‖∗p,q,γ by

‖f‖∗p,q,γ =





(∫∞

0

(
t

1
p f∗∗

γ (t)
)q

dt
t

)1/q

, 0 < p < ∞, 0 < q < ∞
sup
t>0

t
1
p f∗∗

γ (t), 0 < p ≤ ∞, q = ∞

(with the usual modification if 0 < p ≤ ∞, q = ∞) which is a norm on
Lp,q,γ(Rn

+) for 1 < p < ∞, 1 ≤ q ≤ ∞ or p = q = ∞.

If 1 < p ≤ ∞, 1 ≤ q ≤ ∞, then

‖f‖p,q,γ ≤ ‖f‖∗p,q,γ ≤ p

p − 1
‖f‖p,q,γ ,

that is, the quasi-norms ‖f‖p,q,γ and ‖f‖∗p,q,γ are equivalent.
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Lemma 1. For any measurable set A = (A′,An) ⊂ R
n
+, An ⊂ (0,∞), A

′ =
A1 × ... × An−1 ⊂ R

n−1, and y ∈ R
n
+, then the following equality holds

∫

A

T yg(x)yγ
ndy = Cγ

∫

(x,0)+ eA g

(
z′,
√

z2
n + z2

n+1

)
dµ (z, zn+1) ,

where Ã = A
′ × (−m,m) × [0,m), m = supAn and dµ (z, zn+1) =

zγ−1
n+1dz1dz2...dzndzn+1.

The proof of Lemma 1 is straightforward, after applying the following
substitutions

z′ = y′ − x′, zn = xn − yn cos α, zn+1 = yn sin α. (3)

In the following lemma we give a relation between the generalized shift
operator T y and the γ-rearrangement of the function f .

Lemma 2. For any measurable set A ⊂ R
n
+ and for any y ∈ R

n
+, the following

equality holds

sup
|A|γ=t

∫

A

T y|f(x)|yγ
ndy = Cγ

∫ t

0

f∗
γ (s)ds. (4)

Proof. From Lemma 1 we have

∫

A

T y|f(x)|yγ
ndy = Cγ

∫

(x,0)+Ã

f

(√
z2
n + z2

n+1

)
dµ (z, zn+1) , (5)

where Ã = A′ × (−m,m) × [0,m), m = supAn and dµ (z, zn+1) =
zγ−1
n+1dz1dz2...dzndzn+1. For the function f̃(z, z1) = f(

√
z2 + z2

1), the analogue
of the equality (1) is valid

sup
µ(Ã)=t

∫

(x,0)+Ã

|f̃(z, zn+1)|dµ(z, zn+1) =

∫ t

0

(f̃)∗µ(s)ds, (6)

where (f̃)∗µ(s) = inf{t > 0 : µ({(z, zn+1) : |f̃(z, zn+1)| > t}) ≤ s}.
Note that µ((x, 0) + Ã)) = |A|γ and (f̃)∗µ(s) = f∗

γ (s).
Indeed, taking into account (3), we have

µ({(z, zn+1) ∈ Rn
+ : |f̃(z, zn+1)| > t}) =

∫

{x∈R+:|f(x)|>t}

xγ
ndx = f∗,γ(t).

Consequently,

(f̃)∗µ(s) = inf{t > 0 : f∗,γ(t) ≤ s} = f∗
γ (s).
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From (5) and (6) we have

sup
|A|γ=t

∫

A

T y|f(x)|yγ
ndy = Cγ sup

µ(Ã)=t

∫

(x,0)+Ã

|f̃(z, zn+1)|dµ(z, zn+1)

= Cγ

∫ t

0

(f̃)∗µ(s)ds = Cγ

∫ t

0

f∗
γ (s)ds.

Thus Lemma 2 is proved.

3 Main results

We need the following lemma which is used in the proof of Theorem 1.

Lemma 3. Let 0 ≤ α < n + γ . Then there exists a positive constant C,
depending on α, n and γ, such that

sup
t>0

t1−
α

n+γ (Mα,γf)∗γ(t) ≤ C

∫

R
n

+

|f(x)|xγ
ndx (7)

and
sup
t>0

(Mα,γf)∗γ(t) ≤ C sup
t>0

t
α

n+γ f∗
γ (t). (8)

Proof. The estimate (7) follows from the Corollary 4 in [7].
For the estimate (8), by using (4), for every B(0, r) ⊂ R

n
+, we get

|B(0, r)|
α

n+γ
−1

γ

∫

B(0,r)

T y|f(x)|yγ
ndy

≤ Cγ |B(0, r)|
α

n+γ
−1

γ

∫ |B(0,r)|γ

0

t
α

n+γ f∗
γ (t)t−

α

n+γ dt

≤ C sup
t>0

t
α

n+γ f∗
γ (t),

where C = Cγ

(
n+γ

n+γ−α

)
.

Theorem 1. Let 0 ≤ α < n + γ. Then there is a positive constant C such
that

(Mα,γf)∗γ(t) ≤ C sup
t<τ<∞

τ
α

n+γ f∗∗
γ (τ), t > 0 (9)

holds for all f ∈ Lloc
1 (Rn

+), where C depends on α, n and γ. The inequality
(9) is sharp for all ϕ ∈ M

+(0,∞; ↓) and there exists a function f on R
n
+ such

that f∗
α = ϕ a.e. on (0,∞) and

(Mα,γf)∗γ(t) ≥ Cγ sup
t<τ<∞

τ
α

n+γ f∗∗
γ (τ), t > 0. (10)
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Proof. To prove (9), we may assume that

sup
t<τ<∞

τ
α

n+γ f∗∗
γ (τ) < ∞ (11)

otherwise there is nothing to prove. Then

∫

E

|f(x)|xγ
ndx ≤

t∫

0

f∗
γ (s)ds

holds for for all E ⊂ R
n
+ with |E|γ ≤ t. In particular, if we put E = {x ∈ R

n
+ :

|f(x)| > f∗
γ (t)} then |E|γ ≤ t and so f ∈ L1,γ(E).

Then the function

gt(x) = max{|f(x)| − f∗
γ (t), 0}sgnf(x), x ∈ R

n
+

belongs to L1,γ(Rn
+). Also the function

ht(x) = min{|f(x)|, f∗
γ (t)}sgnf(x), x ∈ R

n
+

satisfies

h∗
tγ

(τ) = min{f∗
γ (τ), f∗

γ (t)}, τ ∈ (0,∞).

Hence,

sup
τ>0

τ
α

n+γ (ht)
∗
γ(τ) = max{ sup

0<τ<t
τ

α

n+γ f∗
γ (t), sup

t≤τ<∞
τ

α

n+γ f∗
γ (τ)}

= sup
t≤τ<∞

τ
α

n+γ f∗
γ (τ) ≤ sup

t≤τ<∞
τ

α

n+γ f∗∗
γ (t) (12)

which, together with (11), implies that ht ∈ WLn+γ

α
,γ(Rn

+).

Furthermore, since f = gt + ht and

g∗t (τ) = χ[0,t)(τ)(f∗
γ (τ) − f∗

γ (t)), τ ∈ (0,∞). (13)

by using (2), (7), (8), (12) and (13), we get

(Mα,γf)∗γ(t) ≤ (Mα,γgt)
∗
γ

(
t

2

)
+ (Mα,γht)

∗
γ

(
t

2

)

≤ C

((
t

2

) α

n+γ
−1 ∫

Rn

+

gt(y)yγ
ndy + sup

τ>0
τ

α

n+γ (ht)
∗
α (τ)

)
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≤ C

(
t

α

n+γ
−1

∫ t

0

((
f∗

γ (τ) − f∗
γ (t)

)
dτ + sup

t<τ<∞
τ

α

n+γ f∗∗
γ (τ)

))

≤ C sup
t<τ<∞

τ
α

n+γ f∗∗
γ (τ)

and (9) follows.

Furthermore, (10) holds for all t ∈ (0,∞). Let ϕ ∈ M
+(0,∞; ↓).

Putting f(x) = ϕ(ωn|x|n), ωn is the volume of the unit ball in R
n
+, ωn =

|B(0, 1)|γ ; and x ∈ R
n
+, we have f∗

γ = ϕ(0,∞). Moreover, given y ∈ R
n
+,

denote by B(|y|) the ball with its center at the origin and having radius |y|.
Then, for x, y ∈ R

n
+ such that |y| > |x|,

(Mα,γf)(x) = sup
r>0

|B(0, r)|
α

n+γ
−1

γ

∫

B(0,r)

T y|f(x)|yγ
ndy

≥ |B(0, |y|)|
α

n+γ
−1

γ

∫

B(0,|y|)

T y|f(x)|yγ
ndy

= Cγ |(B(0, |y|)|
α

n+γ
−1

γ

∫ ωn|y|n

0

f∗
γ (τ)dτ

= CγH (ωn|y|n) ,

where H (t) = t
α

n+γ
−1
∫ t

0
ϕ(τ)dτ, t ∈ (0,∞).

Consequently,
(Mα,γf)(x) ≥ Cγ sup

τ>ωn|x|n
H(τ)

whence (10) follows on taking rearrangements.

From these estimates we find that Mα,γf is bounded from L1,γ(Rn
+) to

WL n+γ

n+γ−α
,γ(Rn

+) and from WL n+γ

n+γ−α
,γ(Rn

+) to L∞,γ(Rn
+) .

In Theorem 1 if we take the limit as α → 0, then we get

lim
α→0

(Mα,γf)∗γ(t) = (Mγf)∗γ(t)

and
lim
α→0

sup
t<τ<∞

τ
α

n+γ f∗∗
γ (τ) = f∗∗

γ (t),

and therefore we have the following:

Corollary 1. There exists a positive constant C, depending on α, n and γ,
such that

(Mγf)∗γ(t) ≤ Cf∗∗
γ (t), t > 0, (14)
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for every f ∈ Lloc
1 (0,∞). Inequality (14) is sharp in the sense that for every

ϕ ∈ M+(0,∞; ↓) there exists a function f on (0,∞) such that f∗
α = ϕ a.e. on

(0,∞) and

(Mγf)∗γ(t) ≥ Cγf∗∗
γ (t), t > 0. (15)

Theorem 2. For 0 ≤ α < n + γ the following estimates are equivalent:

(i) For 1 < p ≤ q < ∞, 1 ≤ r ≤ s ≤ ∞, fractional B-maximal operator
Mα,γ : Lp,r,γ(Rn

+) → Lq,s,γ(Rn
+) is bounded.

(ii) For all ϕ ∈ M
+(0,∞; ↓),

[∫ ∞

0

(
sup

t<τ<∞
τ

α

n+γ
−1

∫ τ

0

ϕ(σ)dσ

)s

t
s

q
−1dt

]1/s

≤ C

(∫ ∞

0

ϕp(t)t
r

p
−1dt

)1/r

.

(iii) 1
p − 1

q = α
n+γ .

Proof. The equivalence of (ii) and (iii) follows from [11].

It suffices to prove (i) ⇔ (ii).
Assume Mα,γ : Lp,r,γ(Rn

+) → Lq,s,γ(Rn
+) is bounded. Then

‖Mα,γf‖Lq,s,γ(Rn

+
) ≤ C‖f‖Lp,r,γ(Rn

+
)

holds. From Theorem 1 and by the definition of quasi-norm in Lorentz spaces,
for every ϕ = f∗

γ (t) ∈ M+(0,∞; ↓), f∗
γ = ϕ a.e. on (0,∞),

[∫ ∞

0

(
Cγ sup

t<τ<∞
τ

α

n+γ
−1

∫ τ

0

f∗
γ (σ)dσ

)s

t
s

q
−1dt

]1/s

=

(∫ ∞

0

(
Cγ sup

t<τ<∞
τ

α

n+γ f∗∗
γ (τ)

)s

t
s

q
−1dt

)1/s

≤
(∫ ∞

0

((Mα,γf)∗γ(t))st
s

q
−1dt

)1/s

≤ C

(∫ ∞

0

f∗
γ (t)pt

r

p
−1dt

)1/r

.
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Conversely, for every ϕ = f∗
γ (t) ∈ M

+(0,∞; ↓), f∗
γ = ϕ a.e. on (0,∞),

(∫ ∞

0

(
(
Mα,γf)∗γ(t)

)s
t

s

q
−1dt

)1/s

≤
(∫ ∞

0

(
C sup

t<τ<∞
τ

α

n+γ f∗∗
γ (τ)

)s

t
s

q
−1dt

)1/s

=

(∫ ∞

0

(
C sup

t<τ<∞
τ

α

n+γ
−1

∫ τ

0

f∗
γ (σ)dσ

)s

t
s

q
−1dt

)1/s

≤ C

(∫ ∞

0

f∗
γ (t)pt

r

p
−1dt

)1/r

and

‖Mα,γf‖Lq,s,γ(Rn

+
) ≤ C‖f‖Lp,r,γ(Rn

+
)

holds.

From Theorem 2 and Corollary 1, we can now give the boundedness con-
ditions of maximal operator

(Mγf)(x) = sup
r>0

|B(0, r)|−1
γ

∫

B(0,r)

T y |f(x)| yγ
ndy, x ∈ R

n
+,

in Lp,q,γ(Rn
+) spaces.

Theorem 3. For f ∈ L1,γ(Rn
+) and C being a positive constant independent

of f ,
‖Mγf‖1,∞,γ ≤ C‖f‖1,γ

holds.

Proof. For f ∈ L1,γ(Rn
+) we have

‖Mγf‖1,∞,γ = sup
t>0

t(Mγf)∗γ(t)

≤ C sup
t>0

tf∗∗
γ (t)

= C sup
t>0

∫ t

0

f∗
γ (s)ds

≤ C‖f‖L1,γ
.
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Theorem 4. If 1 < p < ∞ and 1 ≤ q ≤ ∞ or p = q = ∞, then there is a
positive constant C independent of f and for all f ∈ Lp,q,γ such that

‖Mγf‖p,q,γ ≤ C‖f‖p,q,γ .

Proof. In the case 1 < p < ∞ and 1 ≤ q < ∞, we have

‖Mγf‖p,q,γ =

(∫ ∞

0

(
t

1
p (Mγf)∗γ(t)

)q dt

t

)1/q

≤ C1

(∫ ∞

0

(
t

1
p f∗∗

γ (t)
)q dt

t

)1/q

= C1‖f‖∗p,q,γ

≤ C1
p

p − 1
‖f‖p,q,γ ,

= C‖f‖p,q,γ .

In the case 1 < p < ∞ and q = ∞,

‖Mγf‖p,q,γ = sup
t>0

t
1
p (Mγf)∗γ(t)

≤ C2 sup
t>0

t
1
p f∗∗

γ (t) = C2‖f‖∗p,q,γ

≤ C2
p

p − 1
‖f‖p,q,γ = C‖f‖p,q,γ .

If p = q = ∞, then the following inequalities hold

sup
t>0

(Mγf)∗γ(t) ≤ sup
t>0

Cf∗∗
γ (t)

= C‖f‖∗p,q,γ ≤ C‖f‖p,q,γ .

This completes the proof.
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