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ON THE BOUUNDEDNESS OF
FRACTIONAL B-MAXIMAL OPERATORS
IN THE LORENTZ SPACES L, (R") *

Canay Aykol and Ayhan Serbetci

Abstract

In this study, sharp rearrangement inequalities for the fractional B-
maximal function M, f are obtained in the Lorentz spaces L, 4,4 and
by using these inequalities the boundedness conditions of the operator
Mo, are found. Then, the conditions for the boundedness of the B-
maximal operator M., are obtained in Ly g, ~.

1 Introduction

Let R} = {z = (x1,...,x,) € R",z,, > 0}. Denote by L, , = L, ,(R}), v > 0,
the set of all classes of measurable functions with finite norm

I£0e,., = ( /|

+

1/p
If(ﬂf)l”l'ldx> < o0,

If p = 00, we assume

Loon(RE) = Loo(RE) = {f : lflliee = ess sup|f(w)] < oo}
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The generalized translation operator TV, y € R, is defined (see [8, 9, 10]) for
smooth functions on R’ by

TYf(x) = Ov/ f@ =y, /22 + 92 — 2x,yncos 0 )sin? 1046,
0
where 2,y € R"™! and C, = T'((y + 1)/2)[v/7 T'(v/2)] .

It is well-known that the generalized shift operator TV is closely related to
the Laplace-Bessel differential operator

AB:ZiQ—F 7 9

2 - T .
ox;  x, 0z,

Further, if f belongs to L, y, 1 < p < oo, then for all y € R}, the function
TY f belongs to Ly ., and

1T fllc,., < Iflz,.-

For 0 < o < n + 7, the fractional maximal function associated with Ap
(fractional B-maximal function) is defined at f € Lll"; (R%) by

a9 n
(Mo f)(2) = sup |BO, )| / V| f(x)| y)dy, = € R,
r>0 B(0,r)

where B(0,7) = {y € R} : |y| < r}. For a = 0 we get the maximal func-
tion M, f associated with the Laplace-Bessel differential operator (B-maximal
function, see [6]).

The aim of this paper is to obtain sharp rearrangement estimates for the
fractional B-maximal function M, ,f. We give the necessary and sufficient
conditions for the boundedness of the operator M, , in the Lorentz spaces
Ly q~(R%) by using the obtained sharp rearrangement estimates. As conse-
quence of these results we find the boundedness conditions for the B-maximal
operator M., in the Lorentz spaces Ly, 4 (R").

It is well known that for the classical Hardy-Littlewood maximal operator
the rearrangement inequality

cf 7 (8) < (Mf)*(t) <Cf(#), te(0,00)
holds, where f*(¢) is the nonincreasing rearrangement of f and f**(t) =
L
T+ Jo [r(t)dt.
For f € L!°¢(R™), similar sharp rearrangement estimates are obtained for
the maximal function of f in [1] and for the fractional maximal function of
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f in [3], and for the fractional maximal function of f € L, (R%), v > 0,
associated with the Laplace-Bessel differential operator in [7]. These estimates
are of great importance in the study of operators on rearrangement-invariant
spaces as well as in interpolation theory.

Throughout the paper, we denote MT(0,00) the set of all non-negative
measurable functions on (0, co) with respect to the measure z) dz, and
M™(0,00; |) the set of all non-increasing functions from M™(0,00). We use
the letter C for a positive constant, independent of appropriate parameters
and not necessary the same at each occurrence.

2 Preliminaries

Let f : R — R be a measurable function and for any measurable set I,
|Ely = [ g Thdr. We define y-rearrangement of f in decreasing order by

@) =inf {s >0 : fi~(s) <t}, Vte(0,00),

Y

wheref, ,(s) denotes the y-distribution function of f given by
Fen(s) = [{z € (R}) : [f(2)] > s} -

Some properties of v-rearrangement of functions are given as follows (see
(2, 4, 12]):

1) if 0 < p < oo, then

/ Vi = [ @y
2) for any t > 0,

sup [ |f(a)| e = / ' (s)ds: 1)

|E|'y:t

J

It is well known that
4)

fag@l e < [ £ 00 0

n
+

(F +9)5(0) < F2(2) + 63(5) )
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holds.
We denote by WL, (0, 00) the weak Ly,  space of all measurable functions
f with finite norm

Hf”WLpn = iug tl/pf’;k(t)v 1<p<oc.
>

The function f3* : (0,00) — [0, 00] is defined as

[t
—;/O fi(s)ds

Definition 1. The Lorentz space Ly, 4 (R"}) is the collection of all measurable
functions f on R} such that the quantity

0o a ,\1/4
(fo (t%*t> ﬂ) ,0<p<0o0,0<q<oo
1

sup t» f3(t), 0<p<oo,qg=00
>0

||f||p,q,v =
1s finite.
If0 <p<o00,q=00, then Ly o (R}) = WL, (R7).

If1 <q<porp=q= o0, then the functional || f||p,q~ is a norm. (see

(2], 5], [12]).
If p=q = oo, then the space Lo oo~ (R7}) is denoted by Lo (R7).

In the case 1 < p,q < oo, we give a functional ||.||; , . by

£l (fo <tpf** ) dt)/70<29<00,0<q<oo

e sup ¢7 f2*(t), 0<p<o00,qg=00
t>0

(with the usual modification if 0 < p < o0, ¢ = 00) which is a norm on
Ly (RY) forl<p<oo,1<g<o0orp=qg=o0

Ifl1<p<oo,1<qg< o0, then
* p
1fllp.ary < N Fll5q < ] 71 Fllp.q.:

that is, the quasi-norms

N )
p.gy aT€ equivalent.
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Lemma 1. For any measurable set A = (A’,A,) C RY, A, C (0,00), A" =
Al X oo x A1 CR™ 1 andy € R?, then the following equality holds

/J;L Tyg(x)yzdy = C’y/( O)Jrﬁg (2/7 \/ ZTQL + 2721+1> du (Z, Zn+l)7

where A = A’ x (=m,m) x [0,m), m =supA, anddu(z,zp+1) =
ZZI]]:d,ZleQ...danZn+1 )

The proof of Lemma 1 is straightforward, after applying the following
substitutions

2=y — a2, =2, — YncOSQ, Zpy1 = Y Sina. (3)

In the following lemma we give a relation between the generalized shift
operator TY and the y-rearrangement of the function f.

Lemma 2. For any measurable set A C R and for any y € R}, the following
equality holds

sup /A T f(@)lydy = C, /0 £ (s)ds. (4)

|A|7:t

Proof. From Lemma 1 we have

[ @l =c, » A_f(\/zzwz“) (o), (5)
z,0)+

where A = A’ x (—m, m) x [0,m), m =supA, and du(z,2zn41) =
ZZI%ledZQ...danZnJ'_l. For the function f(z,21) = f(y/2% + 2?), the analogue
of the equality (1) is valid

sup /(x,O ~|f(z,zn+1)|d,u(z,Zn+1):_/0(f):i(s)ds, (6)

n(A)=t )+A

where (f)j(s) = inf{t >0 : u({(2,2041) : [f(22041)] > 1}) < s}
Note that pu((z,0) +A)) = [Aly and (f);,(s) = f3(s).
Indeed, taking into account (3), we have

W2 2ni0) € B |F (22| > 1)) = #yde = foo (D).

/{x€R+1|f(w)|>t}

Consequently,

(F)n(s) =inf{t >0 : fu,(t) < s} = fi(s).
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From (5) and (6) we have

sup / T\ f()ydy = C; sup / (2 2| dpi(2s 2
Al =t JA w(A)=t /(x,0) VA

:c/( s)ds = C /f

Thus Lemma 2 is proved. O

3 Main results

We need the following lemma which is used in the proof of Theorem 1.

Lemma 3. Let 0 < o < n+ v . Then there exists a positive constant C,
depending on a, n and -y, such that

sup t' 7 (M, ~F)5() < C’/ |f(z)|x) dx (7)
>0
and
sup(Ma f); () < Csup 755 f2(t). (8)
>0 >0

Proof. The estimate (7) follows from the Corollary 4 in [7].
For the estimate (8), by using (4), for every B(0,7) C R, we get

21
B0, / V| f () |y dy
B(0,r)

_, lBODL .
< OB, / sl MOt
0

< C suptaE (1),
t>0

where C' = C <ﬂ> O

n+vy—a

Theorem 1. Let 0 < o < n+ . Then there is a positive constant C such
that

(Man f)3(8) < C sup 7755 f(r),6 > 0 9)

t<T<00

holds for all f € LQDC(R’_}_), where C' depends on o, n and . The inequality
(9) is sharp for all ¢ € MT(0,00; |) and there exists a function f on R7. such
that f& = ¢ a.e. on (0,00) and

(Mo f)5(t) > Cy t<su<p = 7 (r), t>0. (10)
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Proof. To prove (9), we may assume that

sup T%ﬂf:*(T) < o0 (11)
t<T<00

otherwise there is nothing to prove. Then

[ lr@lede < / £ (s)ds

holds for for all E C R"} with |E|, < t. In particular, if we put £ = {z € R} :
|f(2)] > f3(t)} then |E|, <t and so f € Ly (E).
Then the function

g1(z) = max{|f(z)] — f7(t),0}sgnf(x), = € R}
belongs to L; ,(R’). Also the function
hi(x) = min{|f(z)], f7(t) }sgnf(z), © € RY

satisfies
hi (r) = min{f}(7), f7(t)}, 7 € (0,00).

Hence,

SuannTv(ht)iky(T) = max{ sup Tﬁf;(t), sup T%ﬂf‘t(ﬂ}
>0 0<r<t ts7<c0

= sup 77 fA(r) < sup TR IR(t) (12)
t<r<oo t<T<o0

which, together with (11), implies that hy € WL+ (R%).
Furthermore, since f = g; + hy and

9¢ (1) = X100 (N (5 (7) = [5(1)), 7 € (0,00). (13)
by using (2), (7), (8), (12) and (13), we get

0001500 < O (1) + 0t (1)

_a 1
t\ "t _a *
§C<(2> [ sy +supre= () m)
R 7>0

n
+
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<C (tniwl/ot ((f;(r) — f3(t))dr + sup Tniwf;*(r)))

t<T<oco
<C sup Tﬁf;*(T)
t<T<o00

and (9) follows.

Furthermore, (10) holds for all ¢ € (0,00). Let ¢ € M™ (0, 00; |).
Putting f(z) = ¢(wn|z|™), w, is the volume of the unit ball in R, w, =
|B(0,1)|y; and = € R}, we have f7 = ¢(0,00). Moreover, given y € R,
denote by B(]y|) the ball with its center at the origin and having radius |y|.
Then, for z,y € R% such that |y > |z],

(Mo f)(z) = sup 1B(0,7)

-1
7 j/ TV f(2) |y dy
B(0,r)

.
EBMW)T”‘éw|fWﬂ@%@
3|y

P wnlyl™ .

O o
0

= CLH (walyl"),

= C[(B(0, [yl)

where H (t) = t7+7 1 [ o(7)dr,t € (0,00).
Consequently,
(Mo f)(z) =2 Cy sup  H(T)

T>wn|z|™

whence (10) follows on taking rearrangements.

From these estimates we find that M, f is bounded from L; . (R’}) to
WL _wss (RY) and from WL o (RY) 0 Loy (RY) - O

In Theorem 1 if we take the limit as @ — 0, then we get

li O(Moz,vf)'*y(t) = (M’Yf):(t)

a—

and
. [e3
clylir%) 15<s7}1<poo7-"er f;*(T) = ;*(t)’

and therefore we have the following:

Corollary 1. There exists a positive constant C, depending on o, n and v,
such that
(L1340 < CRA(H), t>0, (14)
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for every f € L°¢(0,00). Inequality (14) is sharp in the sense that for every
© € MT(0,00; ) there exists a function f on (0,00) such that f: = ¢ a.e. on
(0,00) and

(M, f)5(t) > Cy f57(t),t > 0. (15)
Theorem 2. For 0 < a < n+ 7 the following estimates are equivalent:

(i) For 1 <

P <r <s < oo, fractional B-mazimal operator
Mo,y - me'v(R?-)

< 1
— ) is bounded.

q < oo,
La,s7(

(ii) For all ¢ € MT(0,00; ),

oo T s 1/s o 1/r
[/ ( sup 7#771/ go(a)da) tledt} <C (/ P (t)tv 1dt> .

0 t<T<o0 0 0

(i) & — 2 = 355
Proof. The equivalence of (ii) and (iii) follows from [11].
It suffices to prove (i) < (ii).

Assume My : Ly (R?}) — Lg s (R7}) is bounded. Then

Moy fllz,. @n) < Clflc,,.. @)

holds. From Theorem 1 and by the definition of quasi-norm in Lorentz spaces,
for every p = fx(t) € M*(0,00; 1), f = a.e. on (0,00),

. - s 1/s
[/ (CA, sup Tﬁw—l/ f;(o)do> tff—ldt}
t<T<o0 0
1/s
( < 'y sup T"Mf ()) _1dt>
t<T<o0

< ([ a0 1dt)1/s

O(/ £ ptpldt> T.
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Conversely, for every ¢ = f¥(t) € M™T(0, 005 1), f3 = ae. on (0,00),

</ooo((Ma,'yf)f;(t)) _ldt)l/s

0o s 1/s
< (/ (C’ sup T"+’Yf ()) _1dt>
t<T<o0
r s 1/s
( (C’ sup T%ﬂ_l/ ff;(a)do> t';_ldt>
t<T<o0 0
1/r
<o ([ norna)
and
1Moy fllLg.n@y) < ClElL,... @)
holds. O

From Theorem 2 and Corollary 1, we can now give the boundedness con-
ditions of maximal operator

(M, £)(z) = sup | B(0, )| / V| (2)| y)dy, = € R,
>0 B(0,r)
in L, ,~(R") spaces.

Theorem 3. For f € Ly (R") and C being a positive constant independent

of f,
My fll100 < Clifll1y

holds.
Proof. For f € Ly (R’ ) we have
”vanl,oon/ = SUP t(M'yf):(t)

< Csup L ()
t>0

¢

=C sup/ [y (s)ds
>0 Jo
< Cllfllzy,-
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Theorem 4. If1 <p < oo and 1l < g < o0 orp=q = oo, then there is a
positive constant C' independent of f and for all f € L, 4~ such that

1M fllp.ay < Cllfllp.g-

Proof. In the case 1 < p < oo and 1 < ¢ < 0o, we have
e’} 1 . q dt 1/‘1
I3l = ([ (B 000750)" T )

L g dt\ 1
ca( [ (Brrw0)'T)
= Cl”f”;,q,'y

p
<C
<oty

= OHf“p,q,v-

Fllpa

In the case 1 < p < o0 and g = oo,

1M f]

1 *
p.ay = SUpte (M’Yf)'y(t)
>0
L *
< Oy iggtpfv () = Ca2l| fllp,q.~

D
< Oy 1 1 £llp.gv = Cll fllp.g7-

p
If p = g = oo, then the following inequalities hold
sup(M- f)5(t) < sup Cf7(t)
>0 >0

=Clflpqn <CIIf

p,q,7y-

This completes the proof. O
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