A RESULT ON (g, f, n)-CRITICAL GRAPHS^{*}

Sizhong Zhou

Abstract

Let G be a graph, and let g, f be two integer-valued functions defined on V(G) with $0 \leq g(x) \leq f(x)$ for each $x \in V(G)$. Then a spanning subgraph F of G is called a (g, f)-factor if $g(x) \leq d_F(x) \leq f(x)$ holds for each $x \in V(G)$. A graph G is said to be (g, f, n)-critical if G - Nhas a (g, f)-factor for each $N \subseteq V(G)$ with |N| = n. In this paper, we obtain a neighborhood condition for a graph G to be a (g, f, n)-critical graph. Furthermore, it is shown that the result in this paper is best possible in some sense.

1 Introduction

All graphs considered in this paper will be finite and undirected simple graphs. Let G be a graph. We denote by V(G) and E(G) the set of vertices and the set of edges, respectively. For $x \in V(G)$, the degree of x and the set of vertices adjacent to x in G are denoted by $d_G(x)$ and $N_G(x)$, respectively. The minimum vertex degree of G is denoted by $\delta(G)$. For $S \subseteq V(G)$, the neighborhood of S is defined as:

$$N_G(S) = \bigcup_{x \in S} N_G(x).$$

For $S \subseteq V(G)$, we denote by G[S] the subgraph of G induced by S, and $G - S = G[V(G) \setminus S]$. A vertex set $S \subseteq V(G)$ is called independent if G[S]

Key Words: graph, (g, f)-factor, (g, f, n)-critical graph, neighborhood, order Mathematics Subject Classification: 05C70

Received: March, 2009

Accepted: September, 2009

^{*}This research was supported by Jiangsu Provincial Educational Department (07KJD110048) and was sponsored by Qing Lan Project of Jiangsu Province.

²⁶⁵

has no edges. Let r be a real number. Recall that $\lfloor r \rfloor$ is the greatest integer such that $|r| \leq r$.

Let g, f be two integer-valued functions defined on V(G) with $0 \le g(x) \le f(x)$ for each $x \in V(G)$. Then a spanning subgraph F of G is called a (g, f)-factor if $g(x) \le d_F(x) \le f(x)$ holds for each $x \in V(G)$. Let a and b be two integers with $0 \le a \le b$. If g(x) = a and f(x) = b for each $x \in V(G)$, then a (g, f)-factor is called an [a, b]-factor. A graph G is said to be (g, f, n)-critical if G - N has a (g, f)-factor for each $N \subseteq V(G)$ with |N| = n. If g(x) = a and f(x) = b for each $x \in V(G)$, then a (a, b, n)-critical graph. If a = b = k, then an (a, b, n)-critical graph is simply called a (k, n)-critical graph. The other terminologies and notations not given in this paper can be found in [1].

Liu and Yu [2] studied the characterization of (k, n)-critical graphs. Enomoto et al [3] gave some sufficient conditions of (k, n)-critical graphs. The characterization of (a, b, n)-critical graph with a < b was given by Liu and Wang [4]. Zhou [5–7] gave some sufficient conditions for graphs to be (a, b, n)-critical. Li [8,9] gave some sufficient conditions for graphs to be (a, b, n)-critical graphs. A necessary and sufficient condition for a graph to be (g, f, n)-critical was given by Li and Matsuda [10]. Zhou [11–13] obtained some sufficient conditions for graphs to be (g, f, n)-critical graphs. Liu [14] found a binding number and minimum degree condition for a graph to be (g, f, n)-critical.

The following result was obtained by Berge and Las Vergnas [16], and by Amahashi and Kano [15], independently.

Theorem 1. Let $b \ge 2$ be an integer. Then a graph G has an [1, b]-factor if and only if

$$|N_G(S)| \ge \frac{|S|}{b},$$

for all independent subsets S of V(G).

In [17], Kano showed the following result on neighborhood conditions for the existence of [a, b]-factors.

Theorem 2. Let a and b be integers such that $2 \le a < b$, and let G be a graph of order p with $p \ge 6a + b$. Suppose, for any subset $X \subset V(G)$, we have

$$N_G(X) = V(G), \qquad if \qquad |X| \ge \left\lfloor \frac{bp}{a+b-1} \right\rfloor$$

or

$$|N_G(X)| \ge \frac{a+b-1}{b}|X|, \qquad if \qquad |X| < \left\lfloor \frac{bp}{a+b-1} \right\rfloor.$$

Then G has an [a, b]-factor.

Zhou [5] obtained the following result on neighborhoods of independent sets for graphs to (a, b, n)-critical graphs.

Theorem 3. Let a, b and n be nonnegative integers with $1 \le a < b$, and let G be a graph of order p with $p \ge \frac{(a+b)(a+b-2)}{b} + n$. Suppose that

$$|N_G(X)| > \frac{(a-1)p + |X| + bn - 1}{a+b-1},$$

for every non-empty independent subset X of V(G), and

$$\delta(G) > \frac{(a-1)p + a + b + bn - 2}{a+b-1}.$$

Then G is an (a, b, n)-critical graph.

Zhou [11] gave a binding number condition for a graph to be a (g, f, n)-critical graph.

Theorem 4. Let G be a graph of order p, let a, b and n be nonnegative integers such that $1 \le a < b$, and let g and f be two integer-valued functions defined on V(G) such that $a \le g(x) < f(x) \le b$ for each $x \in V(G)$. If the binding number $bind(G) > \frac{(a+b-1)(p-1)}{(a+1)p-(a+b)-bn+2}$ and $p \ge \frac{(a+b-1)(a+b-2)}{a+1} + \frac{bn}{a}$, then G is a (g, f, n)-critical graph.

In this paper, we prove the following result on (g, f, n)-critical graphs, which is an extension of Theorem 2.

Theorem 5. Let G be a graph of order p, and let a, b, n be nonnegative integers with $2 \le a < b$ and $p \ge \frac{(a+b-2)(a+2b-3)}{a+1} + \frac{bn}{a}$. Let g, f be two integer-valued functions defined on V(G) such that $a \le g(x) < f(x) \le b$ for each $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$N_G(X) = V(G), \quad if \quad |X| \ge \left\lfloor \frac{((a+1)(p-1)-bn)p}{(a+b-1)(p-1)} \right\rfloor; \quad or$$
$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn} |X|, \quad if \quad |X| < \left\lfloor \frac{((a+1)(p-1)-bn)p}{(a+b-1)(p-1)} \right\rfloor.$$

Then G is a (q, f, n)-critical graph.

In Theorem 5, if n = 0, then we get the following corollary.

Corollary 1. Let G be a graph of order p, and let a, b be nonnegative integers with $2 \leq a < b$ and $p \geq \frac{(a+b-2)(a+2b-3)}{a+1}$. Let g, f be two integer-valued functions defined on V(G) such that $a \leq g(x) < f(x) \leq b$ for each $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$N_G(X) = V(G) \quad if \quad |X| \ge \left\lfloor \frac{(a+1)p}{a+b-1} \right\rfloor; \quad or$$
$$N_G(X) \ge \frac{a+b-1}{a+1} |X| \quad if \quad |X| < \left\lfloor \frac{(a+1)p}{a+b-1} \right\rfloor$$

Then G has a (g, f)-factor.

In Theorem 5, if $g(x) \equiv a$ and $f(x) \equiv b$, then we obtain the following corollary.

Corollary 2. Let G be a graph of order p, and let a, b, n be nonnegative integers with $2 \le a < b$ and $p \ge \frac{(a+b-2)(a+2b-3)}{a+1} + \frac{bn}{a}$. Suppose for any subset $X \subset V(G)$, we have

$$N_G(X) = V(G) \quad if \quad |X| \ge \left\lfloor \frac{((a+1)(p-1)-bn)p}{(a+b-1)(p-1)} \right\rfloor; \quad or$$
$$|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn} |X| \quad if \quad |X| < \left\lfloor \frac{((a+1)(p-1)-bn)p}{(a+b-1)(p-1)} \right\rfloor$$

Then G is an (a, b, n)-critical graph.

2 Preliminary lemmas

Let g, f be two nonnegative integer-valued functions defined on V(G) with g(x) < f(x) for each $x \in V(G)$. If $S, T \subseteq V(G)$, then we define $f(S) = \sum_{x \in S} f(x), g(T) = \sum_{x \in T} g(x)$ and $d_{G-S}(T) = \sum_{x \in T} d_{G-S}(x)$. If S and T are disjoint subsets of V(G) define

$$\delta_G(S,T) = f(S) + d_{G-S}(T) - g(T),$$

and if $|S| \ge n$ define

$$f_n(S) = \max\{f(U) : U \subseteq S \text{ and } |U| = n\}.$$
(1)

Li and Matsuda [10] obtained a necessary and sufficient condition for a graph to be a (g, f, n)-critical graph, which is very useful in the proof of Theorem 5.

Lemma 2.1. ^[10] Let G be a graph, $n \ge 0$ an integer, and let g and f be two integer-valued functions defined on V(G) such that g(x) < f(x) for each $x \in V(G)$. Then G is a (g, f, n)-critical graph if and only if for any $S \subseteq V(G)$ with $|S| \ge n$

$$\delta_G(S,T) \ge f_n(S),$$

where $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \leq g(x)\}.$

Lemma 2.2. Let G be a graph of order p which satisfies the assumption of Theorem 5. Then $\delta(G) \geq \frac{(b-2)p+(a+1)+bn}{a+b-1}$.

Proof. Let u be a vertex of G with degree $\delta(G)$. Let $Y = V(G) \setminus N_G(u)$. Clearly, $u \notin N_G(Y)$, then we have

$$(a+b-1)(p-1)|Y| \leq ((a+1)(p-1)-bn)|N_G(Y)| \leq ((a+1)(p-1)-bn)(p-1),$$

that is,

$$(a+b-1)|Y| \le (a+1)(p-1) - bn.$$

Since $|Y| = p - \delta(G)$, we get

$$(a+b-1)(p-\delta(G)) \le (a+1)(p-1) - bn.$$

Thus, we obtain

$$\delta(G) \ge p - \frac{(a+1)(p-1) - bn}{a+b-1} = \frac{(b-2)p + (a+1) + bn}{a+b-1}.$$

3 The Proof of Theorem 5

Now we prove Theorem 5. Suppose that a graph G satisfies the conditions of Theorem 5, but is not a (g, f, n)-critical graph. Then by Lemma 2.1, there exists a subset S of V(G) with $|S| \ge n$ such that

$$\delta_G(S,T) \le f_n(S) - 1,\tag{2}$$

where $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \leq g(x)\}$. We choose such subsets S and T so that |T| is as small as possible.

We firstly show that the following claim holds.

Claim 1. $d_{G-S}(x) \leq g(x) - 1 \leq b - 2$ for each $x \in V(G)$.

Proof. If $d_{G-S}(x) \ge g(x)$ for some $x \in T$, then the subsets S and $T \setminus \{x\}$ satisfy (2). This contradicts the choice of S and T. Therefore, we have

$$d_{G-S}(x) \le g(x) - 1 \le b - 2$$

for each $x \in T$.

This completes the proof of Claim 1.

If $T = \emptyset$, then by (1) and (2), $f(S) - 1 \ge f_n(S) - 1 \ge \delta_G(S, T) = f(S)$, a contradiction. Hence, $T \neq \emptyset$. Define

$$h = \min\{d_{G-S}(x) | x \in T\}.$$

According to Claim 1, we have

$$0 \le h \le b - 2.$$

In view of Lemma 2.2 and the definition of h, we obtain

$$|S| \ge \delta(G) - h \ge \frac{(b-2)p + (a+1) + bn}{a+b-1} - h.$$
(3)

Since $a \leq g(x) < f(x) \leq b$ for each $x \in V(G)$, it follows from (1) and (2) that

$$\delta_G(S,T) \le f_n(S) - 1 \le bn - 1 \tag{4}$$

and

$$\delta_G(S,T) = f(S) + d_{G-S}(T) - g(T) \ge (a+1)|S| + d_{G-S}(T) - (b-1)|T|,$$

so that

$$bn - 1 \ge (a+1)|S| + d_{G-S}(T) - (b-1)|T|.$$
(5)

In the following we shall consider three cases according to the value of h and derive a contradiction in each case.

Case 1. h = 0.

We define $I = \{x | x \in T, d_{G-S}(x) = 0\}$. Then I is an independent vertex subset of G and $I \neq \emptyset$. Let $Y = V(G) \setminus S$. Then $N_G(Y) \neq V(G)$ since h = 0. By the condition of Theorem 5, we obtain

$$p - |I| \ge |N_G(Y)| \ge \frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn}|Y| = \frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn}(p-|S|),$$

which implies

$$|S| \ge p - \frac{((a+1)(p-1) - bn)(p-|I|)}{(a+b-1)(p-1)}.$$
(6)

In view of (5), (6) and $|S| + |T| \le p$, we have

$$\begin{array}{rcl} bn-1 & \geq & (a+1)|S| + d_{G-S}(T) - (b-1)|T| \\ & \geq & (a+1)|S| + |T| - |I| - (b-1)|T| \\ & = & (a+1)|S| - |I| - (b-2)|T| \\ & \geq & (a+1)|S| - |I| - (b-2)(p-|S|) \\ & = & (a+b-1)|S| - |I| - (b-2)p \\ & \geq & (a+b-1)(p - \frac{((a+1)(p-1) - bn)(p-|I|)}{(a+b-1)(p-1)}) - |I| - (b-2)p \\ & = & (a+1)p - \frac{((a+1)(p-1) - bn)(p-|I|)}{p-1} - |I| \\ & \geq & (a+1)p - \frac{((a+1)(p-1) - bn)(p-1)}{p-1} - 1 \\ & = & (a+1)p - (a+1)(p-1) + bn - 1 \\ & = & bn+a, \end{array}$$

which is a contradiction.

Case 2. h = 1.

Subcase 2.1.
$$|T| > \left\lfloor \frac{((a+1)(p-1)-bn)p}{(a+b-1)(p-1)} \right\rfloor$$
.
Clearly,
 $|T| \ge \left\lfloor \frac{((a+1)(p-1)-bn)p}{(a+b-1)(p-1)} \right\rfloor + 1.$ (7)

There exists $u \in T$ such that $d_{G-S}(u) = h = 1$. Thus, we have

$$u \notin N_G(T \setminus N_G(u)). \tag{8}$$

According to (7) and $d_{G-S}(u) = 1$, we obtain

$$|T \setminus N_G(u)| \ge |T| - 1 \ge \left\lfloor \frac{((a+1)(p-1) - bn)p}{(a+b-1)(p-1)} \right\rfloor,$$

which implies that

$$N_G(T \setminus N_G(u)) = V(G).$$

This contradicts (8).

Subcase 2.2. $|T| \leq \left\lfloor \frac{((a+1)(p-1)-bn)p}{(a+b-1)(p-1)} \right\rfloor$. Let $r = |\{x : x \in T, d_{G-S}(x) = 1\}|$. Obviously, $r \geq 1$ and $|T| \geq r$. In view of (3) and h = 1, we obtain

$$|S| \ge \frac{(b-2)p + (a+1) + bn}{a+b-1} - 1 = \frac{(b-2)(p-1) + bn}{a+b-1}.$$
(9)

Subcase 2.2.1. $|T| \leq \frac{(a+1)(p-1)-bn}{a+b-1}$. In this case, from (5) and (9) we have

$$\begin{array}{rcl} bn-1 & \geq & (a+1)|S| + d_{G-S}(T) - (b-1)|T| \\ & \geq & (a+1)|S| + 2(|T|-r) + r - (b-1)|T| \\ & = & (a+1)|S| - (b-3)|T| - r \\ & \geq & \frac{(a+1)((b-2)(p-1) + bn)}{a+b-1} - \frac{(b-3)((a+1)(p-1) - bn)}{a+b-1} - r \\ & = & \frac{(a+1)(p-1) - bn + (a+b-1)bn}{a+b-1} - r \\ & = & \frac{bn + \frac{(a+1)(p-1) - bn}{a+b-1} - r \\ & \geq & bn + |T| - r \geq bn, \end{array}$$

which is a contradiction.

Subcase 2.2.2. $|T| > \frac{(a+1)(p-1)-bn}{a+b-1}$. According to (9), we obtain

$$|S| + |T| > \frac{(b-2)(p-1) + bn}{a+b-1} + \frac{(a+1)(p-1) - bn}{a+b-1} = p - 1.$$

From this and $|S| + |T| \le p$, we have

$$|S| + |T| = p. (10)$$

By (10) and
$$|T| \leq \left\lfloor \frac{((a+1)(p-1)-bn)p}{(a+b-1)(p-1)} \right\rfloor \leq \frac{((a+1)(p-1)-bn)p}{(a+b-1)(p-1)}$$
, we have

$$\delta_G(S,T) = f(S) + d_{G-S}(T) - g(T)$$

$$\geq (a+1)|S| + |T| - (b-1)|T|$$

$$= (a+1)|S| - (b-2)|T|$$

$$= (a+1)(p - |T|) - (b-2)|T|$$

$$= (a+1)p - (a+b-1)|T|$$

$$\geq (a+1)p - \frac{((a+1)(p-1)-bn)p}{p-1}$$

$$= \frac{pbn}{p-1}$$

$$\geq bn.$$

That contradicts (4). **Case 3.** $2 \le h \le b - 2$. By (5) and $|S| + |T| \le p$, we obtain

$$bn > bn - 1 \ge (a+1)|S| + d_{G-S}(T) - (b-1)|T|$$

$$\ge (a+1)|S| + h|T| - (b-1)|T|$$

$$= (a+1)|S| - (b-1-h)|T|$$

$$\ge (a+1)|S| - (b-1-h)(p-|S|)$$

$$= (a+b-h)|S| - (b-1-h)p,$$

that is,

$$|S| < \frac{(b-1-h)p + bn}{a+b-h}.$$
 (11)

According to (11) and $\delta(G) \leq |S| + h$, we have

$$\delta(G) \le |S| + h < \frac{(b-1-h)p + bn}{a+b-h} + h.$$
(12)

Let $F(h) = \frac{(b-1-h)p+bn}{a+b-h} + h$. Then we obtain

$$F'(h) = \frac{-p(a+b-h) + (b-1-h)p + bn}{(a+b-h)^2} + 1$$

= $1 - \frac{(a+1)p - bn}{(a+b-h)^2} \le 1 - \frac{(a+1)p - bn}{(a+b-2)^2}$
 $\le 1 - \frac{(a+b-2)(a+2b-3) + \frac{a+1}{a}bn - bn}{(a+b-2)^2}$
 $\le 1 - \frac{a+2b-3}{a+b-2} = -\frac{b-1}{a+b-2}$
 $< 0.$

Clearly, the function F(h) attains its maximum value at h=2 since $2\leq h\leq b-2.$ Then we have

$$F(h) \le F(2) = \frac{(b-3)p+bn}{a+b-2} + 2.$$
(13)

According to Lemma 2.2, (12) and (13), we obtain

$$\frac{(b-2)p + (a+1) + bn}{a+b-1} \le \delta(G) < \frac{(b-3)p + bn}{a+b-2} + 2,$$

which implies that

$$p < \frac{(a+b-2)(a+2b-3)+bn}{a+1} \le \frac{(a+b-2)(a+2b-3)}{a+1} + \frac{bn}{a},$$

this contradicts $p \ge \frac{(a+b-2)(a+2b-3)}{a+1} + \frac{bn}{a}$.

From the argument above, we deduce the contradictions. Hence, G is a (g, f, n)-critical graph.

Completing the proof of Theorem 5.

4 Remark

Let us show that the condition in Theorem 5 can not be replaced by the condition that $N_G(X) = V(G)$ or $|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn}|X|$ for all $X \subseteq$ V(G). Let $a \ge 2, b = a + 1$ and $n \ge 0$ be integers and b is odd. Let m be any odd positive integer. We construct a graph G of order p as follows. Let $V(G) = S \cup T$ (disjoint union), |S| = (a-1)m + n and |T| = bm + 1, and put $T = \{t_1, t_2, \dots, t_{2l}\}$, where 2l = bm + 1. For each $s \in S$, define $N_G(s) = V(G) \setminus \{s\}$, and for any $t \in T$, define $N_G(t) = S \cup \{t'\}$, where $\{t, t'\} = \{t_{2i-1}, t_{2i}\}$ for some $i, 1 \le i \le l$. Clearly, p = (a-1)m + n + nbm + 1. We first show that the condition that $N_G(X) = V(G)$ or $|N_G(X)| \ge 1$ $\frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn}|X|$ for all $X \subseteq V(G)$ holds. Let any $X \subseteq V(G)$. It is obvious that if $|X \cap S| \ge 2$, or $|X \cap S| = 1$ and $|X \cap T| \ge 1$, then $N_G(X) = V(G)$. $\frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn} = \frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn} |X|.$ Hence we may assume $X \subseteq T$. Since $|N_G(X)| = |S| + |X| = (a-1)m + n + |X|, |N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn}|X| \text{ holds if}$ and only if $(a-1)m+n+|X| \ge \frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn}|X|$. This inequality is equivalent to $|X| \leq bm$. Thus if $X \neq T$ and $X \subset T$, then $|N_G(X)| \geq \frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn}|X|$ for all $X \subseteq V(G)$ holds. If X = T, then $N_G(X) = V(G)$. Consequently, $N_G(X) = V(G)$ or $|N_G(X)| \ge \frac{(a+b-1)(p-1)}{(a+1)(p-1)-bn}|X|$ for all $X \subseteq V(G)$ follows. In the following, we show that G is not a (g, f, n)-critical graph. For above S and T, obviously, |S| > n and $d_{G-S}(t) = 1$ for each $t \in T$. Since $a \leq g(x) < d$ $f(x) \leq b$ and b = a + 1, then we have g(x) = a and f(x) = b = a + 1 for each $x \in V(G)$. Thus, we obtain

$$\begin{split} \delta_G(S,T) &= f(S) + d_{G-S}(T) - g(T) \\ &= b|S| + |T| - a|T| \\ &= b|S| - (a-1)|T| \\ &= b((a-1)m+n) - (a-1)(bm+1) \\ &= bn - a + 1 \le bn - 1 \le bn = f_n(S). \end{split}$$

By Lemma 2.1, G is not a (g, f, n)-critical graph. In the above sense, the condition in Theorem 5 is best possible.

References

- J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, The Macmillan Press, London, 1976.
- [2] G. Liu, Q. Yu, k-Factors and extendability with prescribed components, Congr. Numer., 139(1999), 77–88.
- [3] H. Enomoto, M. Hagita, Toughness and the existence of k-factors, Discrete Mathematics, 216(2000), 111–120.
- [4] G. Liu, J. Wang, (a, b, k)-Critical graphs, Advances in Mathematics(in Chinese), 27(1998), 536–540.
- [5] S. Zhou, Y. Xu, Neighborhoods of independent sets for (a, b, k)-critical graphs, Bull. Australian Math. Soc., 77(2)(2008), 277–283.
- [6] S. Zhou, Binding number conditions for (a, b, k)-critical graphs, Bull. Korean Math. Soc., 45(2008), 53–57.
- S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Math., 309(2009), 4144–4148.
- [8] J. Li, A new degree condition for graph to have [a, b]-factor, Discrete Mathematics, 290(2005), 99–103.
- [9] J. Li, Sufficient conditions for graphs to be (a, b, n)-critical graphs, Mathematica Applicata (in Chinese), 17(2004), 450–455.
- [10] J. Li, H. Matsuda, On (g, f, n)-critical graphs, Ars Combinatoria, 78(2006), 71–82.
- [11] S. Zhou, A new sufficient condition for graphs to be (g, f, n)-critical graphs, Canadian Math. Bull., to appear.
- [12] S. Zhou, Minimum degree conditions for graphs to be (g, f, n)-critical graphs, IAENG Internat. J. App. Math., 38(3)(2008), 148-150.
- [13] S. Zhou, Some sufficient conditions for graphs to have (g, f)-factors, Bull. Australian Math. Soc., 75(2007), 447–452.
- [14] H. Liu, G. Liu, Binding number and minimum degree for the existence of (g, f, n)-critical graphs, J. Appl. Math. Computing, 29(1-2)(2009), 207-216.

- [15] A. Amahashi, M. Kano, Factors with given components, Ann. Discrete Math., 42(1982), 1–6.
- [16] C. Berge, M. Las Vergnas, On the existence of subgraphs with degree constraints, Proc. K. Ned. Acad. Wet. Amsterdam (A), 81(1978), 165– 176.
- [17] M. Kano, A sufficient condition for a graph to have [a, b]-factors, Graphs and Combinatorics, 6(1990), 245–251.

Jiangsu University of Science and Technology School of Mathematics and Physics Mengxi Road 2, Zhenjiang, Jiangsu 212003, People's Republic of China Email: zsz_cumt@163.com