A RESULT ON (g, f, n)-CRITICAL GRAPHS*

Sizhong Zhou

Abstract

Let G be a graph, and let g, f be two integer-valued functions defined on $V(G)$ with $0 \leq g(x) \leq f(x)$ for each $x \in V(G)$. Then a spanning subgraph F of G is called a (g, f)-factor if $g(x) \leq d_{F}(x) \leq f(x)$ holds for each $x \in V(G)$. A graph G is said to be (g, f, n)-critical if $G-N$ has a (g, f)-factor for each $N \subseteq V(G)$ with $|N|=n$. In this paper, we obtain a neighborhood condition for a graph G to be a (g, f, n)-critical graph. Furthermore, it is shown that the result in this paper is best possible in some sense.

1 Introduction

All graphs considered in this paper will be finite and undirected simple graphs. Let G be a graph. We denote by $V(G)$ and $E(G)$ the set of vertices and the set of edges, respectively. For $x \in V(G)$, the degree of x and the set of vertices adjacent to x in G are denoted by $d_{G}(x)$ and $N_{G}(x)$, respectively. The minimum vertex degree of G is denoted by $\delta(G)$. For $S \subseteq V(G)$, the neighborhood of S is defined as:

$$
N_{G}(S)=\bigcup_{x \in S} N_{G}(x)
$$

For $S \subseteq V(G)$, we denote by $G[S]$ the subgraph of G induced by S, and $G-S=G[V(G) \backslash S]$. A vertex set $S \subseteq V(G)$ is called independent if $G[S]$

[^0]has no edges. Let r be a real number. Recall that $\lfloor r\rfloor$ is the greatest integer such that $\lfloor r\rfloor \leq r$.

Let g, f be two integer-valued functions defined on $V(G)$ with $0 \leq g(x) \leq$ $f(x)$ for each $x \in V(G)$. Then a spanning subgraph F of G is called a (g, f) factor if $g(x) \leq d_{F}(x) \leq f(x)$ holds for each $x \in V(G)$. Let a and b be two integers with $0 \leq a \leq b$. If $g(x)=a$ and $f(x)=b$ for each $x \in V(G)$, then a (g, f)-factor is called an $[a, b]$-factor. A graph G is said to be (g, f, n)-critical if $G-N$ has a (g, f)-factor for each $N \subseteq V(G)$ with $|N|=n$. If $g(x)=a$ and $f(x)=b$ for each $x \in V(G)$, then a (g, f, n)-critical graph is called an (a, b, n)-critical graph. If $a=b=k$, then an (a, b, n)-critical graph is simply called a (k, n)-critical graph. The other terminologies and notations not given in this paper can be found in [1].

Liu and $\mathrm{Yu}[2]$ studied the characterization of (k, n)-critical graphs. Enomoto et al [3] gave some sufficient conditions of (k, n)-critical graphs. The characterization of (a, b, n)-critical graph with $a<b$ was given by Liu and Wang [4]. Zhou [5-7] gave some sufficient conditions for graphs to be (a, b, n)-critical. Li $[8,9]$ gave some sufficient conditions for graphs to be (a, b, n)-critical graphs. A necessary and sufficient condition for a graph to be (g, f, n)-critical was given by Li and Matsuda [10]. Zhou [11-13] obtained some sufficient conditions for graphs to be (g, f, n)-critical graphs. Liu [14] found a binding number and minimum degree condition for a graph to be (g, f, n)-critical.

The following result was obtained by Berge and Las Vergnas [16], and by Amahashi and Kano [15], independently.

Theorem 1. Let $b \geq 2$ be an integer. Then a graph G has an $[1, b]$-factor if and only if

$$
\left|N_{G}(S)\right| \geq \frac{|S|}{b}
$$

for all independent subsets S of $V(G)$.
In [17], Kano showed the following result on neighborhood conditions for the existence of $[a, b]$-factors.
Theorem 2. Let a and b be integers such that $2 \leq a<b$, and let G be a graph of order p with $p \geq 6 a+b$. Suppose, for any subset $X \subset V(G)$, we have

$$
N_{G}(X)=V(G), \quad \text { if } \quad|X| \geq\left\lfloor\frac{b p}{a+b-1}\right\rfloor
$$

or

$$
\left|N_{G}(X)\right| \geq \frac{a+b-1}{b}|X|, \quad \text { if } \quad|X|<\left\lfloor\frac{b p}{a+b-1}\right\rfloor
$$

Then G has an $[a, b]$-factor.

Zhou [5] obtained the following result on neighborhoods of independent sets for graphs to (a, b, n)-critical graphs.

Theorem 3. Let a, b and n be nonnegative integers with $1 \leq a<b$, and let G be a graph of order p with $p \geq \frac{(a+b)(a+b-2)}{b}+n$. Suppose that

$$
\left|N_{G}(X)\right|>\frac{(a-1) p+|X|+b n-1}{a+b-1}
$$

for every non-empty independent subset X of $V(G)$, and

$$
\delta(G)>\frac{(a-1) p+a+b+b n-2}{a+b-1}
$$

Then G is an (a, b, n)-critical graph.
Zhou [11] gave a binding number condition for a graph to be a (g, f, n) critical graph.

Theorem 4. Let G be a graph of order p, let a, b and n be nonnegative integers such that $1 \leq a<b$, and let g and f be two integer-valued functions defined on $V(G)$ such that $a \leq g(x)<f(x) \leq b$ for each $x \in V(G)$. If the binding number $\operatorname{bind}(G)>\frac{(a+b-1)(p-1)}{(a+1) p-(a+b)-b n+2}$ and $p \geq \frac{(a+b-1)(a+b-2)}{a+1}+\frac{b n}{a}$, then G is $a(g, f, n)$-critical graph.

In this paper, we prove the following result on (g, f, n)-critical graphs, which is an extension of Theorem 2.

Theorem 5. Let G be a graph of order p, and let a, b, n be nonnegative integers with $2 \leq a<b$ and $p \geq \frac{(a+b-2)(a+2 b-3)}{a+1}+\frac{b n}{a}$. Let g, f be two integer-valued functions defined on $V(G)$ such that $a \leq g(x)<f(x) \leq b$ for each $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$
N_{G}(X)=V(G), \quad \text { if } \quad|X| \geq\left\lfloor\frac{((a+1)(p-1)-b n) p}{(a+b-1)(p-1)}\right\rfloor ; \quad \text { or }
$$

$\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}|X|, \quad$ if $\quad|X|<\left\lfloor\frac{((a+1)(p-1)-b n) p}{(a+b-1)(p-1)}\right\rfloor$.
Then G is a (g, f, n)-critical graph.
In Theorem 5, if $n=0$, then we get the following corollary.
Corollary 1. Let G be a graph of order p, and let a, b be nonnegative integers with $2 \leq a<b$ and $p \geq \frac{(a+b-2)(a+2 b-3)}{a+1}$. Let g, f be two integer-valued
functions defined on $V(G)$ such that $a \leq g(x)<f(x) \leq b$ for each $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$
\begin{gathered}
N_{G}(X)=V(G) \quad \text { if } \quad|X| \geq\left\lfloor\frac{(a+1) p}{a+b-1}\right\rfloor ; \quad \text { or } \\
\left|N_{G}(X)\right| \geq \frac{a+b-1}{a+1}|X| \quad \text { if } \quad|X|<\left\lfloor\frac{(a+1) p}{a+b-1}\right\rfloor
\end{gathered}
$$

Then G has a (g, f)-factor.
In Theorem 5 , if $g(x) \equiv a$ and $f(x) \equiv b$, then we obtain the following corollary.

Corollary 2. Let G be a graph of order p, and let a, b, n be nonnegative integers with $2 \leq a<b$ and $p \geq \frac{(a+b-2)(a+2 b-3)}{a+1}+\frac{b n}{a}$. Suppose for any subset $X \subset V(G)$, we have

$$
\begin{gathered}
N_{G}(X)=V(G) \quad \text { if } \quad|X| \geq\left\lfloor\frac{((a+1)(p-1)-b n) p}{(a+b-1)(p-1)}\right\rfloor ; \quad \text { or } \\
\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}|X| \quad \text { if } \quad|X|<\left\lfloor\frac{((a+1)(p-1)-b n) p}{(a+b-1)(p-1)}\right\rfloor .
\end{gathered}
$$

Then G is an (a, b, n)-critical graph.

2 Preliminary lemmas

Let g, f be two nonnegative integer-valued functions defined on $V(G)$ with $g(x)<f(x)$ for each $x \in V(G)$. If $S, T \subseteq V(G)$, then we define $f(S)=$ $\sum_{x \in S} f(x), g(T)=\sum_{x \in T} g(x)$ and $d_{G-S}(T)=\sum_{x \in T} d_{G-S}(x)$. If S and T are disjoint subsets of $V(G)$ define

$$
\delta_{G}(S, T)=f(S)+d_{G-S}(T)-g(T),
$$

and if $|S| \geq n$ define

$$
\begin{equation*}
f_{n}(S)=\max \{f(U): U \subseteq S \text { and }|U|=n\} \tag{1}
\end{equation*}
$$

Li and Matsuda [10] obtained a necessary and sufficient condition for a graph to be a (g, f, n)-critical graph, which is very useful in the proof of Theorem 5.

Lemma 2.1. ${ }^{[10]}$ Let G be a graph, $n \geq 0$ an integer, and let g and f be two integer-valued functions defined on $V(G)$ such that $g(x)<f(x)$ for each $x \in V(G)$. Then G is a (g, f, n)-critical graph if and only if for any $S \subseteq V(G)$ with $|S| \geq n$

$$
\delta_{G}(S, T) \geq f_{n}(S)
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq g(x)\right\}$.
Lemma 2.2. Let G be a graph of order p which satisfies the assumption of Theorem 5. Then $\delta(G) \geq \frac{(b-2) p+(a+1)+b n}{a+b-1}$.

Proof. Let u be a vertex of G with degree $\delta(G)$. Let $Y=V(G) \backslash N_{G}(u)$. Clearly, $u \notin N_{G}(Y)$, then we have $(a+b-1)(p-1)|Y| \leq((a+1)(p-1)-b n)\left|N_{G}(Y)\right| \leq((a+1)(p-1)-b n)(p-1)$, that is,

$$
(a+b-1)|Y| \leq(a+1)(p-1)-b n .
$$

Since $|Y|=p-\delta(G)$, we get

$$
(a+b-1)(p-\delta(G)) \leq(a+1)(p-1)-b n
$$

Thus, we obtain

$$
\delta(G) \geq p-\frac{(a+1)(p-1)-b n}{a+b-1}=\frac{(b-2) p+(a+1)+b n}{a+b-1}
$$

3 The Proof of Theorem 5

Now we prove Theorem 5. Suppose that a graph G satisfies the conditions of Theorem 5, but is not a (g, f, n)-critical graph. Then by Lemma 2.1, there exists a subset S of $V(G)$ with $|S| \geq n$ such that

$$
\begin{equation*}
\delta_{G}(S, T) \leq f_{n}(S)-1 \tag{2}
\end{equation*}
$$

where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq g(x)\right\}$. We choose such subsets S and T so that $|T|$ is as small as possible.

We firstly show that the following claim holds.
Claim 1. $d_{G-S}(x) \leq g(x)-1 \leq b-2$ for each $x \in V(G)$.
Proof. If $d_{G-S}(x) \geq g(x)$ for some $x \in T$, then the subsets S and $T \backslash\{x\}$ satisfy (2). This contradicts the choice of S and T. Therefore, we have

$$
d_{G-S}(x) \leq g(x)-1 \leq b-2
$$

for each $x \in T$.
This completes the proof of Claim 1.
If $T=\emptyset$, then by (1) and (2), $f(S)-1 \geq f_{n}(S)-1 \geq \delta_{G}(S, T)=f(S)$, a contradiction. Hence, $T \neq \emptyset$. Define

$$
h=\min \left\{d_{G-S}(x) \mid x \in T\right\}
$$

According to Claim 1, we have

$$
0 \leq h \leq b-2
$$

In view of Lemma 2.2 and the definition of h, we obtain

$$
\begin{equation*}
|S| \geq \delta(G)-h \geq \frac{(b-2) p+(a+1)+b n}{a+b-1}-h \tag{3}
\end{equation*}
$$

Since $a \leq g(x)<f(x) \leq b$ for each $x \in V(G)$, it follows from (1) and (2) that

$$
\begin{equation*}
\delta_{G}(S, T) \leq f_{n}(S)-1 \leq b n-1 \tag{4}
\end{equation*}
$$

and

$$
\delta_{G}(S, T)=f(S)+d_{G-S}(T)-g(T) \geq(a+1)|S|+d_{G-S}(T)-(b-1)|T|
$$

so that

$$
\begin{equation*}
b n-1 \geq(a+1)|S|+d_{G-S}(T)-(b-1)|T| \tag{5}
\end{equation*}
$$

In the following we shall consider three cases according to the value of h and derive a contradiction in each case.

Case 1. $h=0$.
We define $I=\left\{x \mid x \in T, d_{G-S}(x)=0\right\}$. Then I is an independent vertex subset of G and $I \neq \emptyset$. Let $Y=V(G) \backslash S$. Then $N_{G}(Y) \neq V(G)$ since $h=0$. By the condition of Theorem 5, we obtain

$$
p-|I| \geq\left|N_{G}(Y)\right| \geq \frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}|Y|=\frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}(p-|S|)
$$

which implies

$$
\begin{equation*}
|S| \geq p-\frac{((a+1)(p-1)-b n)(p-|I|)}{(a+b-1)(p-1)} \tag{6}
\end{equation*}
$$

In view of (5), (6) and $|S|+|T| \leq p$, we have

$$
\begin{aligned}
b n-1 & \geq(a+1)|S|+d_{G-S}(T)-(b-1)|T| \\
& \geq(a+1)|S|+|T|-|I|-(b-1)|T| \\
& =(a+1)|S|-|I|-(b-2)|T| \\
& \geq(a+1)|S|-|I|-(b-2)(p-|S|) \\
& =(a+b-1)|S|-|I|-(b-2) p \\
& \geq(a+b-1)\left(p-\frac{((a+1)(p-1)-b n)(p-|I|)}{(a+b-1)(p-1)}\right)-|I|-(b-2) p \\
& =(a+1) p-\frac{((a+1)(p-1)-b n)(p-|I|)}{p-1}-|I| \\
& \geq(a+1) p-\frac{((a+1)(p-1)-b n)(p-1)}{p-1}-1 \\
& =(a+1) p-(a+1)(p-1)+b n-1 \\
& =b n+a,
\end{aligned}
$$

which is a contradiction.
Case 2. $h=1$.
Subcase 2.1. $|T|>\left\lfloor\frac{((a+1)(p-1)-b n) p}{(a+b-1)(p-1)}\right\rfloor$.
Clearly,

$$
\begin{equation*}
|T| \geq\left\lfloor\frac{((a+1)(p-1)-b n) p}{(a+b-1)(p-1)}\right\rfloor+1 \tag{7}
\end{equation*}
$$

There exists $u \in T$ such that $d_{G-S}(u)=h=1$. Thus, we have

$$
\begin{equation*}
u \notin N_{G}\left(T \backslash N_{G}(u)\right) \tag{8}
\end{equation*}
$$

According to (7) and $d_{G-S}(u)=1$, we obtain

$$
\left|T \backslash N_{G}(u)\right| \geq|T|-1 \geq\left\lfloor\frac{((a+1)(p-1)-b n) p}{(a+b-1)(p-1)}\right\rfloor
$$

which implies that

$$
N_{G}\left(T \backslash N_{G}(u)\right)=V(G) .
$$

This contradicts (8).
Subcase 2.2. $|T| \leq\left\lfloor\frac{((a+1)(p-1)-b n) p}{(a+b-1)(p-1)}\right\rfloor$.
Let $r=\left|\left\{x: x \in T, d_{G-S}(x)=1\right\}\right|$. Obviously, $r \geq 1$ and $|T| \geq r$. In view of (3) and $h=1$, we obtain

$$
\begin{equation*}
|S| \geq \frac{(b-2) p+(a+1)+b n}{a+b-1}-1=\frac{(b-2)(p-1)+b n}{a+b-1} \tag{9}
\end{equation*}
$$

Subcase 2.2.1. $|T| \leq \frac{(a+1)(p-1)-b n}{a+b-1}$.
In this case, from (5) and (9) we have

$$
\begin{aligned}
b n-1 & \geq(a+1)|S|+d_{G-S}(T)-(b-1)|T| \\
& \geq(a+1)|S|+2(|T|-r)+r-(b-1)|T| \\
& =(a+1)|S|-(b-3)|T|-r \\
& \geq \frac{(a+1)((b-2)(p-1)+b n)}{a+b-1}-\frac{(b-3)((a+1)(p-1)-b n)}{a+b-1}-r \\
& =\frac{(a+1)(p-1)-b n+(a+b-1) b n}{a+b-1}-r \\
& =b n+\frac{(a+1)(p-1)-b n}{a+b-1}-r \\
& \geq b n+|T|-r \geq b n,
\end{aligned}
$$

which is a contradiction.
Subcase 2.2.2. $|T|>\frac{(a+1)(p-1)-b n}{a+b-1}$.
According to (9), we obtain

$$
|S|+|T|>\frac{(b-2)(p-1)+b n}{a+b-1}+\frac{(a+1)(p-1)-b n}{a+b-1}=p-1 .
$$

From this and $|S|+|T| \leq p$, we have

$$
\begin{equation*}
|S|+|T|=p \tag{10}
\end{equation*}
$$

By (10) and $|T| \leq\left\lfloor\frac{((a+1)(p-1)-b n) p}{(a+b-1)(p-1)}\right\rfloor \leq \frac{((a+1)(p-1)-b n) p}{(a+b-1)(p-1)}$, we have

$$
\begin{aligned}
\delta_{G}(S, T) & =f(S)+d_{G-S}(T)-g(T) \\
& \geq(a+1)|S|+|T|-(b-1)|T| \\
& =(a+1)|S|-(b-2)|T| \\
& =(a+1)(p-|T|)-(b-2)|T| \\
& =(a+1) p-(a+b-1)|T| \\
& \geq(a+1) p-\frac{((a+1)(p-1)-b n) p}{p-1} \\
& =\frac{p b n}{p-1} \\
& \geq b n .
\end{aligned}
$$

That contradicts (4).
Case 3. $2 \leq h \leq b-2$.

By (5) and $|S|+|T| \leq p$, we obtain

$$
\begin{aligned}
b n & >b n-1 \geq(a+1)|S|+d_{G-S}(T)-(b-1)|T| \\
& \geq(a+1)|S|+h|T|-(b-1)|T| \\
& =(a+1)|S|-(b-1-h)|T| \\
& \geq(a+1)|S|-(b-1-h)(p-|S|) \\
& =(a+b-h)|S|-(b-1-h) p,
\end{aligned}
$$

that is,

$$
\begin{equation*}
|S|<\frac{(b-1-h) p+b n}{a+b-h} \tag{11}
\end{equation*}
$$

According to (11) and $\delta(G) \leq|S|+h$, we have

$$
\begin{equation*}
\delta(G) \leq|S|+h<\frac{(b-1-h) p+b n}{a+b-h}+h . \tag{12}
\end{equation*}
$$

Let $F(h)=\frac{(b-1-h) p+b n}{a+b-h}+h$. Then we obtain

$$
\begin{aligned}
F^{\prime}(h) & =\frac{-p(a+b-h)+(b-1-h) p+b n}{(a+b-h)^{2}}+1 \\
& =1-\frac{(a+1) p-b n}{(a+b-h)^{2}} \leq 1-\frac{(a+1) p-b n}{(a+b-2)^{2}} \\
& \leq 1-\frac{(a+b-2)(a+2 b-3)+\frac{a+1}{a} b n-b n}{(a+b-2)^{2}} \\
& \leq 1-\frac{a+2 b-3}{a+b-2}=-\frac{b-1}{a+b-2} \\
& <0 .
\end{aligned}
$$

Clearly, the function $F(h)$ attains its maximum value at $h=2$ since $2 \leq h \leq$ $b-2$. Then we have

$$
\begin{equation*}
F(h) \leq F(2)=\frac{(b-3) p+b n}{a+b-2}+2 . \tag{13}
\end{equation*}
$$

According to Lemma 2.2, (12) and (13), we obtain

$$
\frac{(b-2) p+(a+1)+b n}{a+b-1} \leq \delta(G)<\frac{(b-3) p+b n}{a+b-2}+2,
$$

which implies that

$$
p<\frac{(a+b-2)(a+2 b-3)+b n}{a+1} \leq \frac{(a+b-2)(a+2 b-3)}{a+1}+\frac{b n}{a}
$$

this contradicts $p \geq \frac{(a+b-2)(a+2 b-3)}{a+1}+\frac{b n}{a}$.
From the argument above, we deduce the contradictions. Hence, G is a (g, f, n)-critical graph.
Completing the proof of Theorem 5.

4 Remark

Let us show that the condition in Theorem 5 can not be replaced by the condition that $N_{G}(X)=V(G)$ or $\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}|X|$ for all $X \subseteq$ $V(G)$. Let $a \geq 2, b=a+1$ and $n \geq 0$ be integers and b is odd. Let m be any odd positive integer. We construct a graph G of order p as follows. Let $V(G)=S \cup T$ (disjoint union), $|S|=(a-1) m+n$ and $|T|=b m+1$, and put $T=\left\{t_{1}, t_{2}, \cdots, t_{2 l}\right\}$, where $2 l=b m+1$. For each $s \in S$, define $N_{G}(s)=V(G) \backslash\{s\}$, and for any $t \in T$, define $N_{G}(t)=S \cup\left\{t^{\prime}\right\}$, where $\left\{t, t^{\prime}\right\}=\left\{t_{2 i-1}, t_{2 i}\right\}$ for some $i, 1 \leq i \leq l$. Clearly, $p=(a-1) m+n+$ $b m+1$. We first show that the condition that $N_{G}(X)=V(G)$ or $\left|N_{G}(X)\right| \geq$ $\frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}|X|$ for all $X \subseteq V(G)$ holds. Let any $X \subseteq V(G)$. It is obvious that if $|X \cap S| \geq 2$, or $|X \cap S|=1$ and $|X \cap T| \geq 1$, then $N_{G}(X)=V(G)$. Of course, if $|X|=1$ and $X \subseteq S$, then $\left|N_{G}(X)\right|=|V(G)|-1=p-1>$ $\frac{(a+b-1)(p-1)}{b m(a+b-1)}=\frac{(a+b-1)(p-1)}{b(a-1) m+m+b^{2} m-b n}=\frac{(a+b-1)(p-1)}{b((a-1) m+n+b m)-b n}=\frac{(a+b-1)(p-1)}{b(p-1)-b n}=$ $\frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}=\frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}|X|$. Hence we may assume $X \subseteq T$. Since $\left|N_{G}(X)\right|=|S|+|X|=(a-1) m+n+|X|,\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}|X|$ holds if and only if $(a-1) m+n+|X| \geq \frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}|X|$. This inequality is equivalent to $|X| \leq b m$. Thus if $X \neq T$ and $X \subset T$, then $\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}|X|$ for all $X \subseteq V(G)$ holds. If $X=T$, then $N_{G}(X)=V(G)$. Consequently, $N_{G}(X)=V(G)$ or $\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+1)(p-1)-b n}|X|$ for all $X \subseteq V(G)$ follows. In the following, we show that G is not a (g, f, n)-critical graph. For above S and T, obviously, $|S|>n$ and $d_{G-S}(t)=1$ for each $t \in T$. Since $a \leq g(x)<$ $f(x) \leq b$ and $b=a+1$, then we have $g(x)=a$ and $f(x)=b=a+1$ for each $x \in V(G)$. Thus, we obtain

$$
\begin{aligned}
\delta_{G}(S, T) & =f(S)+d_{G-S}(T)-g(T) \\
& =b|S|+|T|-a|T| \\
& =b|S|-(a-1)|T| \\
& =b((a-1) m+n)-(a-1)(b m+1) \\
& =b n-a+1 \leq b n-1<b n=f_{n}(S) .
\end{aligned}
$$

By Lemma 2.1, G is not a (g, f, n)-critical graph. In the above sense, the condition in Theorem 5 is best possible.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, The Macmillan Press, London, 1976.
[2] G. Liu, Q. Yu, k-Factors and extendability with prescribed components, Congr. Numer., 139(1999), 77-88.
[3] H. Enomoto, M. Hagita, Toughness and the existence of k-factors, Discrete Mathematics, 216(2000), 111-120.
[4] G. Liu, J. Wang, (a, b, k)-Critical graphs, Advances in Mathematics(in Chinese), 27(1998), 536-540.
[5] S. Zhou, Y. Xu, Neighborhoods of independent sets for (a, b, k)-critical graphs, Bull. Australian Math. Soc., 77(2)(2008), 277-283.
[6] S. Zhou, Binding number conditions for (a, b, k)-critical graphs, Bull. Korean Math. Soc., 45(2008), 53-57.
[7] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Math., 309(2009), 4144-4148.
[8] J. Li, A new degree condition for graph to have $[a, b]$-factor, Discrete Mathematics, 290(2005), 99-103.
[9] J. Li, Sufficient conditions for graphs to be (a, b, n)-critical graphs, Mathematica Applicata (in Chinese), 17(2004), 450-455.
[10] J. Li, H. Matsuda, On (g, f, n)-critical graphs, Ars Combinatoria, 78(2006), 71-82.
[11] S. Zhou, A new sufficient condition for graphs to be (g, f, n)-critical graphs, Canadian Math. Bull., to appear.
[12] S. Zhou, Minimum degree conditions for graphs to be (g, f, n)-critical graphs, IAENG Internat. J. App. Math., 38(3)(2008), 148-150.
[13] S. Zhou, Some sufficient conditions for graphs to have (g, f)-factors, Bull. Australian Math. Soc., 75(2007), 447-452.
[14] H. Liu, G. Liu, Binding number and minimum degree for the existence of (g, f, n)-critical graphs, J. Appl. Math. Computing, 29(1-2)(2009), 207216.
[15] A. Amahashi, M. Kano, Factors with given components, Ann. Discrete Math., 42(1982), 1-6.
[16] C. Berge, M. Las Vergnas, On the existence of subgraphs with degree constraints, Proc. K. Ned. Acad. Wet. Amsterdam (A), 81(1978), 165176.
[17] M. Kano, A sufficient condition for a graph to have $[a, b]$-factors, Graphs and Combinatorics, 6(1990), 245-251.

Jiangsu University of Science and Technology
School of Mathematics and Physics
Mengxi Road 2, Zhenjiang, Jiangsu 212003, People's Republic of China
Email: zsz_cumt@163.com

[^0]: Key Words: graph, (g, f)-factor, (g, f, n)-critical graph, neighborhood, order
 Mathematics Subject Classification: 05C70
 Received: March, 2009
 Accepted: September, 2009
 *This research was supported by Jiangsu Provincial Educational Department (07KJD110048) and was sponsored by Qing Lan Project of Jiangsu Province.

