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A SYMBOLIC ALGORITHM FOR THE
APPROXIMATE SOLUTION OF AN
INVERSE PROBLEM FOR LINER KINETIC
EQUATION

Mustafa Yildiz

Abstract

The problem of finding a solution and the right-hand side of the
kinetic equation in the case where the values of the solution are known
on the boundary of a domain is considered. A new symbolic algorithm
is constructed to obtain the approximated analytical solution of the
problem. A computer program is presented using computer algebra
system Maple.

1 Introduction

Inverse problems are problems of determining coefficients, the right-hand side,
initial conditions or boundary conditions of a differential equation from some
additional information about a solution of the equation. Such problems ap-
pear in many important applications of physics, geophysics, technology and
medicine.

One of the characteristic features of inverse problems for differential equa-
tions is their being ill-posed in the sense of Hadamard. The general theory of
ill-posed problems and their applications is developed by A. N. Tikhonov, V.
K. Ivanov, M. M. Lavrent’ev and their students [7-8,14-17].

Key Words: Linear Kinetic Equation, Inverse Problem, Galerkin Method, Computer

Algebra, Symbolic Computation
Mathematics Subject Classification: 35R30, 49N45, 65N21
Received: January, 2009

Accepted: September, 2009

253



254 MUSTAFA YILDIZ

Inverse problems for kinetic equations appear to be important both from
theoretical and practical points of view. Interesting results in this field are pre-
sented in Amirov [1-4], Hamaker, Smith, Solmon and Wagner [9], Pestov and
Sharafutdinov [13], Anikonov and Amirov [19], Anikonov [20]. A symbolic al-
gorithm for computing an approximated analytic solution of three-dimensional
inverse problem for the transport equation is examined by Giiyer and Mirasye-
dioglu [10]. Some important results devoted to numerical solving of integral
geometry problems and inverse problems for kinetic equations are presented
in [5- 6, 12].

In this work, a symbolic algorithm based on Galerkin method is constructed
to calculate approximate analytical solution v and right-hand side A of the ki-
netic equaton. A Maple program is given according to this algorithm in the
last section of the paper. The physical interpretation of such problems con-
sists in finding forces of particle interaction, scattering indicatrices, radiation
sources and other physical parameters.

2 Statement of the Problem and Some Theoretical Re-
sults

The notations to be used in the paper are introduced below:

For a bounded domain G, C™ (G) is the Banach space of functions that
are m times continuously differentiable in G; C* (G) is the set of functions
that belong to C™ (G) for all m > 0; C§° (G) is the set of finite functions in G
that belong to C*° (G); L2 (G) is the space of measurable functions that are

square integrable in G, H* (G) is the Sobolev space and H* (G) is the closure
of C§° (G) with respect to the norm of H* (G).

These standard spaces are described in detail, for example, in Lions and
Magenes [11] and Mikhailov [18].

Let Q be a domain in the Euclidean space R??, n > 1. For the variables
(xz,v) € Q, it is assumed that x € D, v € G, where D and G are domains in
R™ with boundaries of class C2?. The boundary of € is 9Q = 'y U Ty, where
I'h =90D x G, Ty = D x 9G. We denote Hi ¢ () by the set of real-valued
functions u (z,v) € Lo (2), having generalized derivatives ug,, ty;, Ug,qv,; ,Which

belong to Lo (), where i = 1,2,....,n; Hy.c = HiNHi c.
In this study, the following linear kinetic equation is considered in €:

(8H ou OH Ou (2.1)

LUE{U7H}EZ 81}1 a(IJZ B axz 81}1) :/\(Z‘7U)7

=1
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with the right-hand side A such that

<)\, Zn> =0, (2:2)

for any n € Hy 2 (©2) whose trace on 92 is zero. Here

~ " 92
L= ; oo (2.3)

{u, H} is the Poisson bracket of u and H.

It is easy to check that the condition (2.2) holds, for example, for any
function A of the form A = g (x) + ¢ (v), where g and v are continuously
differentiable functions.

Equation (2.1) is extensively used in plasma physics and astrophysics. In
applications, u represents the number (or the mass) of particles in the unit
volume element of the phase space in the neighbourhood of the point (z,v),
V. H is the force acting on a particle, A is the collisional term characterizing
the variation of u caused by particle collisions. B

We define C3 = {cp o€ C?(Q),0=0o0n 89} and select a subset of C§,
{w1,wa, ...}, which is orthonormal and everywhere dense in Lo (€2) . Let P, be
the orthogonal projector of Ly () onto M,,, where M, is the linear span of
{wy,wa, ..., w, }. By T (A) the set of functions u is denoted with the following
properties:

i. ueTl (A), Au € Ly () in the generalized sense, where Au = LLu;

ii. There exists a sequence {u;} C C3 such that uy — u in Ly () and
(Aug, u) — (Au,u) as k — oo.

The condition that Au € Lo (£2) in the generalized sense means that there
exists a function f € Ly (Q) such that (u, A*p) = — (f,¢) and Au = f for all
p € C5° (), where A* is the differential operator conjugate to A in the sense
of Lagrange. It is easy to prove that

H3nHY CT"NH;cCT(A) C L (Q),

where I (A) is the set of functions u € Lo () such that Au € Ly (Q2) in the
generalized sense.

Problem 1. Determine a pair of functions (u, \) defined in Q0 from equation
(2.1), the given Hamiltonian H (z,v) € C? (), and the trace of the solution
u on the boundary OS2, i.e.

U] 50 = Uo-
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We know the following uniqueness theorem for the inverse Problem 1, see
[4] page 60.

Theorem 1. Assume that H € C? (ﬁ) and the following inequalities hold for
all ¢ € R™, (z,v) € Q

~ OPH : o~ PH
re > O i <
3::1 Goe S Zaltl X i e <o,

7,7=1

where a is a positive number. Then Problem 1 has at most one solution (u, \)

such that w € T'(A) and A € Ly ().

It is noteworthy that Problem 1 will have infinitely many solutions if con-
dition (2.2) is not imposed on A, which is evident from the following example.
Suppose that some function w € C? (ﬁ) coincides with the given function ug
on 9D, where ugp = 0 on I'y. Such functions exist, then the pair (w, Lw) is a
solution to Problem 1.

Problem 2. Given the equation
Lu=M\+F,

where A satisfies (2.2) and F is a known function in Hs (), find the pair of
functions (u,\) under the condition that

ulpq = 0.

Problem 1 can be reduced to Problem 2, see [4] page 65. For example,
if 0D € C[HTH]M, ug € H* 5 +2 (09Q) and up = 0 on I's then there exists a
function w € H[M/2%3(Q) such that w = 0 on I'y. For any fixed ”section”
fl = 0D X vy of the surface I'y a function w (z,v9) can be constructed such
that w (x,v0) € H™23 (D), w (x,v0) = uo (z,v0) on I'y and w|| grin/2143 <
C ||uo |l grenss)/2 [11, 18]. Since ug € H™+2)/2 it is obvious that w € H™/2%3 (Q)
and w = 0 on I's. Let u; = u — w, the function uq, taken for u, satisfies the
equation Lu = A — F' with F' = Lw and the condition w4, = 0.

The next result is true for Problem 2, see [4], page 63.

Theorem 2. Assume H € C? (ﬁ) and the following inequalities hold for all
(z,v) € Q¢ € R™:

" 92H . . " O*H .
> £l > a7, €l < —an €,
A (9’01'(9113‘ = 6x16x]
4,7=1 i,j=1
where a; and ag are positive numbers and F € Hy (QY). Then there exists a
solution (u,\) of Problem 2 such that u € T (A), v € H1(Q), A € Ly ().
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3 Algorithm of Solving the Inverse Problem

An approximate solution to the problem will be sought in the following form

N
unN = E an, W;.
i=1

For computing, n = 3 is taken, and two specific domains D and G are chosen.
Let’s take the domains

D={zeR’:|z| <1},
and
G={veR®: | <1},
and consider corresponding complete systems
i1 o, i | ia, is, 6 |
{e ey e}, o {07008 ) iamo

in Ly (D) and Lo (G) respectively, where x = (1, %2, 23),v = (v1,v2,v3).
The approximated solution can be written in the following form:

N
UN = Z aNil,i2ai3,i4,i5,i6 wilii2ai37i47i5$i6n (l’) /J‘ (’U) ) (31)
11,92,13,14,15,16=1
where
[ (DI S UL 1> D 7 D Z O P 7
Wi i i ia.is.de = {F1 T3 T V1 0"V i1,i2,i3,14,15,i6=0"
1—2f—a3—2%, |z/<1
7 (il?) — 1 2 3
0, |x] > 1
and

[ 1-vi-ud -l o<1
M(U)_{ 07 |'U|Z].

In expression (3.1), unknown coefficients ay;, ,i1,12,13,14, 15,16 =

212,13,14,15,16
1, N are determined from the following system of linear algebraic equations

(SLAE):

N

Z (A (aNil,i2,i3,i4,i5,i6 Wiy iy igiasisiic ) 1 (@) 11 (V) 7wig,i;,ig,iwg,ig)h(m (3.2)
ij,j=1,6
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= f Wit ;1 1 ;1 1 '/)
( 7 2,505,560 ) Ly (Q) )

where i, i}, i, i, i, il = 1, N.

Algorithm 1. (LeftSLAE)
Left side of each equation in (3.2) is constructed.
INPUT: The order of approximation N, i}, ié,i;,iﬁl,ig,ig, w(x)
OUTPUT: Left hand side of each equation in (3.2) LeftSum
Initialization
Set  LeftSum=0;
Wiy ig,iz,ia,i5,06 — x?w?mégv?’v?vgﬁ
Implementation
Foriy=1,...,N do Foris =1,...,N do Foriz=1,...,N do
Foriy=1,...,N do Foris=1,...,.N do Forig=1,...,N do
LeftSum=LeftSum+

(A (O‘Nil,ig,is,u,i;),i(; wil,iz,i37i4’i5,i6) n ({,C) 2 (7}) 7wi/l,i’gJé’iﬁpig,ié)LQ(Q)

end ig end i5 end 14 end i3 end is end iy
STOP ( The procedure is complete.)

Algorithm 2. (uy, )

This algorithm computes the approximate analytical solution using Algo-
rithm 1.

INPUT: The order of approximation: N, given function on the right hand
side of Problem 2: f (z,v) and Hamiltonian: H (x,v)

OUTPUT: Approximate solution uy and lambda

Initialization
SLAE = {}
unN = 0

N ST S BN E S R R T
Wiy ig,i3,ia,i5,i6 — L1 Tg Ty U1 Vg’ U3

._ _0f 2 f *f
= +3 +3

81181)1 Egavz $36U3
2 2
n(x)=1-a7— a3 — 23
— 2 2 2
p(v) =1—vi—v;—v3

Implementation
Forid, =1,..,N do Fori,=1,..,N do Foriy=1,..,N do
Foriy=1,...,N do Forig=1,..,N do Forig=1,..,N do
SLAE=SLAFRJ

{LeftSLAE (21172/27 Zg’wlihlgvzéiv Nﬂ? (LL') y M (U) 7wi’1,i’27ig’iﬁ1,ig,ig)}
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= (F7’u}i/1’
end iy end iy end i) end i end iy end i}

Solve (SLAE, {an,, .. ...ivisis))

Principle Part

Foriy=1,...,.N do For iy =1,....,N do Foriz=1,....,N do
Foriy=1,...,.N do Foris=1,...,N do Forig=1,...,N do
UN =un + (aNil,iQ,ig,m,q:s,iﬁ wil,i27i3»i47i57i6) -1 (f) H (U)

end ig end i5 end iy end i3 end iy end i

)\(x v):(aiHauNié?HauN) (67H8uN767H8uN)

A
2237‘377'4’15}16) L2 (Q)

Ovy Oz Ox1 Ovy Ovy Oxo Oxo Ovo
OH Oun _ OH Oun ) _
+ ((%3 Ox3 Ox3z Ovs ) f (:L’,’U)

End of the Algorithm 2.

Theorem 3. Algorithm 2 computes the coefficients

{ N
SR LA
Niysigsizsiavisic Sy o is,ia.i5,i6=1

in the system of linear algebraic equations (3.2) as unique under the hypotheses

of Theorem 2.

Proof. Tt has now been proven that under the hypotheses of the Theorem 2

the system (3.2) has a unique solution (aNi17i2=i3,i4’is’i6),

i17i27i37i47i57i6 =

1(1) N for any function F € Hy (). For this purpose, consider homogeneous

version of the system:

N
Z A [aNil,i2,z'3,i4,i5,i6 wil,i2,13,i4,i5,i6:| n (1‘) K (U) YW,
ij,j=1,6

.
_<
.
NS
.
w
.
S

=0.

The (i1, 42,73, 94, i5, i6)th equation of the system is multiplied by —2a,,

and sum from 1 to N with respect to i1, i3, 43,4, 15, 7 We obtain
-2 <AN,UN> =0.

If the following identity is considered

,i9,13,14,15,16
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- 8uN 0 1 - 82H 8uN 8uN 82H 8uN BuN
o 9o L) = 5 > -
- Zj 8’Uj 2 = 81}i3?}j 81‘1' 8xj 81‘1‘8$J’ 8%‘ 81}]‘

Jj=1 i,5=1
1 2 0 8uN (9uN oH 6’LLN oH
+§ Z 871)] {3% (310,- dv; O, 8:02)]
i,7=1
_1 i i auN auN oH _ 6’ILN oH
2 P 6CCJ' (9’[)]‘ (9561 8’01' a’Ui 81:,-
1,7=1
1 - 0 OH 8’U,N 8UN
+§ Z 6351 (31;2 3:L'j 8vj>
i,7=1
_1 i 0 oOH 6uN OuN
2 =1 avi 8331 8xj a’l)j ’

and the geometry of the domain €2 and the condition that uy = 0 on 92 are
taken into account, then

—2 <AUN,’LLN> =2J (UN) =0

is obtained, where

o 1 - 82H 8uN 8uN 32H 8uN 8UN
J(UN) - 5 Z / <8vi8vj 89@ 8xj B axi(’)xj 8111» 8’()]‘ > 2.
Q

ij=1

The assumptions of Theorem 2 imply Vuy = 0. Hence uy = 0in Q as a
result of the conditions uxy = 0 on Q and u € C§ (Q2). Since the system

is linearly independent, we get an;, ., ;. ;. .. .0 = 0,91,%2, 13,94, 85,56 = 1,..., N.
Thus the homogeneous version of the system of linear algebraic equations (3.2)
has only trivial solution and therefore the original inhomogeneous system (3.2)
has a unique solution set {O‘Nil,ig,z‘g,u,i&m }, i1,42,13,14, 15,16 = 1, ..., N for any

function F' € Hs (). O

3.1 The Program Codes of Algorithm via MAPLE 10

Here, algorithm of solving the inverse problem for three dimensional Linear
Kinetic Euation is implemented using MAPLE 10. The program computes the
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approximate analytic solution of the problem according to given parametres

N,

f, H, where N is the aproximation level, f is the right hand side of Problem

1, H is the Hamiltonian.

U := proc(N, f, H)
Local UN, lambda, s;
Global L2InnerProduct, operatorl,, operatorLTilda, operatorA, W, a, il,

2,

i3, i4, i5, 6, j1, j2, j3, j4, jb, j6, SLAE, LeftHandSide, F, eta, mu;

Option Remember;

a:= array(1..N,1..N;1..N;1..N,1..N,1..N);

eta:=1-x1"2-x2"2-x%x3"2;

mu:=1-x1"2-x2"2-x3"2;

L2InnerProduct := proc(u, v)

Local k1, k2, k3;

k1 := simplify(int(u*v, x1 = - sqrt(1- x2°2 - x3"2)..sqrt(1- x2"2 - x3°2)));

k2 := simplify(int(int(k1, x2 = - sqrt(1- x1°2)..sqrt(1- x172)), x3 = -1..1));

k3 := simplify(int(k2, v1 = - sqrt(1- v2°2 -v372)..sqrt(1 - v2°2 - v3°2)));

RETURN((simplify(int(int(k3, v2 = - sqrt(1- v1°2)..sqrt(1- v1°2)), v3 =
-1.1)));

end;

operatorL := proc(U)

RETURN(diff(H,v1) * diff(Ux1) - diff(H x1)*diff(U,v1) + diff(H,v2) *
diff(U,x2)

- diff(H,x2) * diff(U,v2) + diff(H,v3) * diff(U,x3) - diff(H,x3) * diff(U,v3));
end;

operatorLTilda := proc(U)

RETURN (diff(diff(U,v1),x1) + diff(diff(U,v2),x2) + diff(diff(U,v3),x3))
end;

operatorA := proc(U)

RETURN (operatorLTilda(operatorL(U)));

end;

F := operatorLTilda(f);

W := proc(il,i2,i3,i4,15,i6::nonnegint)

RETURN(x1"i1 * x2"i2 * x3713 * v1"i4 * v2"i5 * v3"i6);

end;

LeftHandSide := proc(j1,j2,j3,j4,j5,j6)

Local LeftSum,;

LeftSum:= 0;

for il from 1 to N do for i2 from 1 to N do for i3 from 1 to N do
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for i4 from 1 to N do for i5 from 1 to N do for i6 from 1 to N do

LeftSum := LeftSum + L2InnerProduct(operatorA(a[il,i2,i3,i4,i5,i6] *
W (il,i2,i3,i4,i5,i6) *eta*mu), W(j1,j2,i3.j4,j5.i6));

od; od; od; od; od; od;

RETURN (LeftSum);

end;

SLAE := proc()

Local SysEqu;

SysEqu := {};

for j1 from 1 to N do for j2 from 1 to N do for j3 from 1 to N do

for j4 from 1 to N do for j5 from 1 to N do for j6 from 1 to N do

SysEqu := {op(SysEqu), LeftHandSide(j1,j2,j3,j4,j5,i6)

= L2InnerProduct(F, W(j1,j2,j3,j4,j5,j6) * eta*mu)}

od; od; od; od; od; od;

RETURN(SysEqu);

end;

s := 0;

for il from 1 to N do for i2 from 1 to N do for i3 from 1 to N do

for i4 from 1 to N do for i5 from 1 to N do for i6 from 1 to N do

s = s + (afil,i2,i3,i4,i5,i6]* W (iL,i2,i3,i4,i5,i6) ) *eta*mu;

od; od; od; od; od; od;

UN := subs(solve(SLAE()), s); printCUN’, UN);

lambda :=operatorL(UN)-f; print('lambda’, lambda);

end;
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