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A SYMBOLIC ALGORITHM FOR THE

APPROXIMATE SOLUTION OF AN

INVERSE PROBLEM FOR LINER KINETIC

EQUATION

Mustafa Yildiz

Abstract

The problem of finding a solution and the right-hand side of the

kinetic equation in the case where the values of the solution are known

on the boundary of a domain is considered. A new symbolic algorithm

is constructed to obtain the approximated analytical solution of the

problem. A computer program is presented using computer algebra

system Maple.

1 Introduction

Inverse problems are problems of determining coefficients, the right-hand side,
initial conditions or boundary conditions of a differential equation from some
additional information about a solution of the equation. Such problems ap-
pear in many important applications of physics, geophysics, technology and
medicine.

One of the characteristic features of inverse problems for differential equa-
tions is their being ill-posed in the sense of Hadamard. The general theory of
ill-posed problems and their applications is developed by A. N. Tikhonov, V.
K. Ivanov, M. M. Lavrent’ev and their students [7-8,14-17].
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Inverse problems for kinetic equations appear to be important both from
theoretical and practical points of view. Interesting results in this field are pre-
sented in Amirov [1-4], Hamaker, Smith, Solmon and Wagner [9], Pestov and
Sharafutdinov [13], Anikonov and Amirov [19], Anikonov [20]. A symbolic al-
gorithm for computing an approximated analytic solution of three-dimensional
inverse problem for the transport equation is examined by Güyer and Mirasye-
dioğlu [10]. Some important results devoted to numerical solving of integral
geometry problems and inverse problems for kinetic equations are presented
in [5- 6, 12].

In this work, a symbolic algorithm based on Galerkin method is constructed
to calculate approximate analytical solution u and right-hand side λ of the ki-
netic equaton. A Maple program is given according to this algorithm in the
last section of the paper. The physical interpretation of such problems con-
sists in finding forces of particle interaction, scattering indicatrices, radiation
sources and other physical parameters.

2 Statement of the Problem and Some Theoretical Re-

sults

The notations to be used in the paper are introduced below:

For a bounded domain G, Cm (G) is the Banach space of functions that
are m times continuously differentiable in G; C∞ (G) is the set of functions
that belong to Cm (G) for all m ≥ 0; C∞

0 (G) is the set of finite functions in G
that belong to C∞ (G); L2 (G) is the space of measurable functions that are

square integrable in G, Hk (G) is the Sobolev space and
◦

Hk (G) is the closure
of C∞

0 (G) with respect to the norm of Hk (G).

These standard spaces are described in detail, for example, in Lions and
Magenes [11] and Mikhailov [18].

Let Ω be a domain in the Euclidean space R
2n, n ≥ 1. For the variables

(x, v) ∈ Ω, it is assumed that x ∈ D, v ∈ G, where D and G are domains in
R

n with boundaries of class C2. The boundary of Ω is ∂Ω = Γ1 ∪ Γ2, where
Γ1 = ∂D × G, Γ2 = D × ∂G. We denote H1,C (Ω) by the set of real-valued
functions u (x, v) ∈ L2 (Ω), having generalized derivatives uxi

, uvi
, uxivi

,which

belong to L2 (Ω), where i = 1, 2, ..., n;
◦

H1,C =
◦

H1 ∩H1,C .

In this study, the following linear kinetic equation is considered in Ω:

Lu ≡ {u,H} ≡

n∑

i=1

(
∂H

∂vi

∂u

∂xi
−
∂H

∂xi

∂u

∂vi

)
= λ (x, v) , (2.1)
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with the right-hand side λ such that
〈
λ, L̂η

〉
= 0, (2.2)

for any η ∈ H1,2 (Ω) whose trace on ∂Ω is zero. Here

L̂ =

n∑

i=1

∂2

∂xi∂vi
, (2.3)

{u,H} is the Poisson bracket of u and H.
It is easy to check that the condition (2.2) holds, for example, for any

function λ of the form λ = g (x) + ψ (v), where g and ψ are continuously
differentiable functions.

Equation (2.1) is extensively used in plasma physics and astrophysics. In
applications, u represents the number (or the mass) of particles in the unit
volume element of the phase space in the neighbourhood of the point (x, v),
∇xH is the force acting on a particle, λ is the collisional term characterizing
the variation of u caused by particle collisions.

We define C̃3
0 =

{
ϕ : ϕ ∈ C3 (Ω) ,ϕ = 0 on ∂Ω

}
and select a subset of C̃3

0 ,
{w1, w2, ...}, which is orthonormal and everywhere dense in L2 (Ω) . Let Pn be
the orthogonal projector of L2 (Ω) onto Mn, where Mn is the linear span of
{w1, w2, ..., wn}. By Γ (A) the set of functions u is denoted with the following
properties:

i. u ∈ Γ (A), Au ∈ L2 (Ω) in the generalized sense, where Au = L̂Lu;

ii. There exists a sequence {uk} ⊂ C̃3
0 such that uk

w
→ u in L2 (Ω) and

〈Auk, uk〉 → 〈Au, u〉 as k → ∞.

The condition that Au ∈ L2 (Ω) in the generalized sense means that there
exists a function f ∈ L2 (Ω) such that 〈u,A∗ϕ〉 = −〈f, ϕ〉 and Au = f for all
ϕ ∈ C∞

0 (Ω) , where A∗ is the differential operator conjugate to A in the sense
of Lagrange. It is easy to prove that

H3 ∩H
0
1 ⊂ Γ′′ ∩

◦

H1,C ⊂ Γ (A) ⊂ L2 (Ω) ,

where Γ′′ (A) is the set of functions u ∈ L2 (Ω) such that Au ∈ L2 (Ω) in the
generalized sense.

Problem 1. Determine a pair of functions (u, λ) defined in Ω from equation
(2.1), the given Hamiltonian H (x, v) ∈ C2 (Ω), and the trace of the solution
u on the boundary ∂Ω, i.e.

u|∂Ω = u0.
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We know the following uniqueness theorem for the inverse Problem 1, see
[4] page 60.

Theorem 1. Assume that H ∈ C2
(
Ω

)
and the following inequalities hold for

all ξ ∈ R
n, (x, v) ∈ Ω

n∑

i,j=1

∂2H

∂vi∂vj
ξiξj ≥ α |ξ|

2
,

n∑

i,j=1

∂2H

∂xi∂xj
ξiξj ≤ 0,

where α is a positive number. Then Problem 1 has at most one solution (u, λ)
such that u ∈ Γ (A) and λ ∈ L2 (Ω).

It is noteworthy that Problem 1 will have infinitely many solutions if con-
dition (2.2) is not imposed on λ, which is evident from the following example.
Suppose that some function w ∈ C2

(
Ω

)
coincides with the given function u0

on ∂D, where u0 = 0 on Γ2. Such functions exist, then the pair (w,Lw) is a
solution to Problem 1.

Problem 2. Given the equation

Lu = λ+ F ,

where λ satisfies (2.2) and F is a known function in H2 (Ω), find the pair of
functions (u,λ) under the condition that

u|∂Ω = 0.

Problem 1 can be reduced to Problem 2, see [4] page 65. For example,

if ∂D ∈ C[n+1
2 ]+3, u0 ∈ H

n+1
2 +2 (∂Ω) and u0 = 0 on Γ2 then there exists a

function w ∈ H [n/2]+3 (Ω) such that w = 0 on Γ2. For any fixed ”section”

Γ̃1 = ∂D × v0 of the surface Γ1 a function w (x, v0) can be constructed such

that w (x, v0) ∈ H [n/2]+3 (D) , w (x, v0) = u0 (x, v0) on Γ̃1 and ‖w‖H[n/2]+3 ≤
C ‖u0‖H(n+5)/2 [11, 18]. Since u0 ∈ H(n+5)/2, it is obvious that w ∈ Hn/2+3 (Ω)
and w = 0 on Γ2. Let u1 = u − w, the function u1, taken for u, satisfies the
equation Lu = λ− F with F = Lw and the condition u|∂Ω = 0.

The next result is true for Problem 2, see [4], page 63.

Theorem 2. Assume H ∈ C2
(
Ω

)
and the following inequalities hold for all

(x, v) ∈ Ω,ξ ∈ R
n:

n∑

i,j=1

∂2H

∂vi∂vj
ξiξj ≥ α1 |ξ|

2
,

n∑

i,j=1

∂2H

∂xi∂xj
ξiξj ≤ −α2 |ξ|

2
,

where α1 and α2 are positive numbers and F ∈ H2 (Ω). Then there exists a
solution (u,λ) of Problem 2 such that u ∈ Γ (A), u ∈ H1 (Ω), λ ∈ L2 (Ω).
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3 Algorithm of Solving the Inverse Problem

An approximate solution to the problem will be sought in the following form

uN =

N∑

i=1

αNi
wi.

For computing, n = 3 is taken, and two specific domains D and G are chosen.
Let’s take the domains

D =
{
x ∈ R

3 : |x| < 1
}

,

and

G =
{
v ∈ R

3 : |v| < 1
}

,

and consider corresponding complete systems

{
xi1

1 x
i2
2 x

i3
3

}∞

i1,i2,i3=0
,
{
vi4
1 v

i5
2 v

i6
3

}∞

i4,i5,i6=0
,

in L2 (D) and L2 (G) respectively, where x = (x1, x2, x3),v = (v1, v2, v3).
The approximated solution can be written in the following form:

uN =

N∑

i1,i2,i3,i4,i5,i6=1

αNi1,i2,i3,i4,i5,i6
wi1,i2,i3,i4,i5,i6η (x)µ (v) , (3.1)

where
wi1,i2,i3,i4,i5,i6 =

{
xi1

1 x
i2
2 x

i3
3 v

i4
1 v

i5
2 v

i6
3

}∞

i1,i2,i3,i4,i5,i6=0
,

η (x) =

{
1 − x2

1 − x2
2 − x2

3, |x| < 1
0, |x| ≥ 1

and

µ (v) =

{
1 − v2

1 − v2
2 − v2

3 , |v| < 1
0, |v| ≥ 1

.

In expression (3.1), unknown coefficients αNi1,i2,i3,i4,i5,i6
, i1, i2, i3, i4, i5, i6 =

1, N are determined from the following system of linear algebraic equations
(SLAE):

N∑

ij ,j=1,6

(
A

(
αNi1,i2,i3,i4,i5,i6

wi1,i2,i3,i4,i5,i6

)
η (x)µ (v) , wi′1,i′2,i′3,i′4,i′5,i′6

)
L2(Ω)

(3.2)
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=
(
F , wi′1,i′2,i′3,i′4,i′5,i′6

)
L2(Ω)

,

where i′1, i
′

2, i
′

3, i
′

4, i
′

5, i
′

6 = 1, N .

Algorithm 1. (LeftSLAE)
Left side of each equation in (3.2) is constructed.
INPUT: The order of approximation N, i′1, i

′

2, i
′

3, i
′

4, i
′

5, i
′

6, µ (x)
OUTPUT: Left hand side of each equation in (3.2) LeftSum
Initialization
Set LeftSum=0;
wi1,i2,i3,i4,i5,i6 = xi1

1 x
i2
2 x

i3
3 v

i4
1 v

i5
2 v

i6
3

Implementation
For i1 = 1, ..., N do For i2 = 1, ..., N do For i3 = 1, ..., N do
For i4 = 1, ..., N do For i5 = 1, ..., N do For i6 = 1, ..., N do
LeftSum=LeftSum+

(
A

(
αNi1,i2,i3,i4,i5,i6

wi1,i2,i3,i4,i5,i6

)
η (x)µ (v) , wi′1,i′2,i′3,i′4,i′5,i′6

)
L2(Ω)

end i6 end i5 end i4 end i3 end i2 end i1
STOP ( The procedure is complete.)

Algorithm 2. (uN , λ)
This algorithm computes the approximate analytical solution using Algo-

rithm 1.
INPUT: The order of approximation: N, given function on the right hand

side of Problem 2: f (x, v) and Hamiltonian: H (x, v)
OUTPUT: Approximate solution uN and lambda
Initialization
SLAE = {}
uN = 0
wi1,i2,i3,i4,i5,i6 = xi1

1 x
i2
2 x

i3
3 v

i4
1 v

i5
2 v

i6
3

F := ∂2f
∂x1∂v1

+ ∂2f
∂x2∂v2

+ ∂2f
∂x3∂v3

η (x) = 1 − x2
1 − x2

2 − x2
3

µ (v) = 1 − v2
1 − v2

2 − v2
3

Implementation
For i′1 = 1, ..., N do For i′2 = 1, ..., N do For i′3 = 1, ..., N do
For i′4 = 1, ..., N do For i′5 = 1, ..., N do For i′6 = 1, ..., N do
SLAE=SLAE∪

{
LeftSLAE

(
i′1, i

′

2, i
′

3, i
′

4, i
′

5, i
′

6, N, η (x) , µ (v) , wi′1,i′2,i′3,i′4,i′5,i′6

)}
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=
(
F,wi′1,i′2,i′3,i′4,i′5,i′6

)
L2(Ω)

end i′6 end i′5 end i′4 end i′3 end i′2 end i′1
Solve

(
SLAE,

{
αNi1,i2,i3,i4,i5,i6

})

Principle Part

For i1 = 1, ..., N do For i2 = 1, ..., N do For i3 = 1, ..., N do

For i4 = 1, ..., N do For i5 = 1, ..., N do For i6 = 1, ..., N do

uN = uN +
(
αNi1,i2,i3,i4,i5,i6

wi1,i2,i3,i4,i5,i6

)
.η (x)µ (v)

end i6 end i5 end i4 end i3 end i2 end i1

λ (x, v) =
(

∂H
∂v1

∂uN

∂x1
− ∂H

∂x1

∂uN

∂v1

)
+

(
∂H
∂v2

∂uN

∂x2
− ∂H

∂x2

∂uN

∂v2

)

+
(

∂H
∂v3

∂uN

∂x3
− ∂H

∂x3

∂uN

∂v3

)
− f (x, v)

End of the Algorithm 2.

Theorem 3. Algorithm 2 computes the coefficients

{
αNi1,i2,i3,i4,i5,i6

}N

i1,i2,i3,i4,i5,i6=1

in the system of linear algebraic equations (3.2) as unique under the hypotheses
of Theorem 2.

Proof. It has now been proven that under the hypotheses of the Theorem 2
the system (3.2) has a unique solution

(
αNi1,i2,i3,i4,i5,i6

)
, i1, i2, i3, i4, i5, i6 =

1 (1)N for any function F ∈ H2 (Ω). For this purpose, consider homogeneous
version of the system:




N∑

ij ,j=1,6

A
[
αNi1,i2,i3,i4,i5,i6

w
i1,i2,i3,i4,i5,i6

]
η (x)µ (v) , w

i′1,i′2,i′3,i′4,i′5,i′6




L2(Ω)

= 0.

The (i1, i2, i3, i4, i5, i6)th equation of the system is multiplied by −2αNi1,i2,i3,i4,i5,i6

and sum from 1 to N with respect to i1, i2, i3, i4, i5, i6 we obtain

−2 〈AN , uN 〉 = 0.

If the following identity is considered
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n∑

j=1

∂uN

∂xj

∂

∂vj
(LuN ) =

1

2

n∑

i,j=1

(
∂2H

∂vi∂vj

∂uN

∂xi

∂uN

∂xj
−

∂2H

∂xi∂xj

∂uN

∂vi

∂uN

∂vj

)

+
1

2

n∑

i,j=1

∂

∂vj

[
∂uN

∂xj

(
∂uN

∂xi

∂H

∂vi
−
∂uN

∂vi

∂H

∂xi

)]

−
1

2

n∑

i,j=1

∂

∂xj

[
∂uN

∂vj

(
∂uN

∂xi

∂H

∂vi
−
∂uN

∂vi

∂H

∂xi

)]

+
1

2

n∑

i,j=1

∂

∂xi

(
∂H

∂vi

∂uN

∂xj

∂uN

∂vj

)

−
1

2

n∑

i,j=1

∂

∂vi

(
∂H

∂xi

∂uN

∂xj

∂uN

∂vj

)
,

and the geometry of the domain Ω and the condition that uN = 0 on ∂Ω are
taken into account, then

−2 〈AuN , uN 〉 = 2J (uN ) = 0

is obtained, where

J (uN ) ≡
1

2

n∑

i,j=1

∫

Ω

(
∂2H

∂vi∂vj

∂uN

∂xi

∂uN

∂xj
−

∂2H

∂xi∂xj

∂uN

∂vi

∂uN

∂vj

)
dΩ.

The assumptions of Theorem 2 imply ∇uN = 0. Hence uN = 0 in Ω as a
result of the conditions uN = 0 on ∂Ω and u ∈ C̃3

0 (Ω). Since the system

{wi1,i2,i3,i4,i5,i6} , i1, i2, i3, i4, i5, i6 = 1, ..., N ,

is linearly independent, we get αNi1,i2,i3,i4,i5,i6
= 0, i1, i2, i3, i4, i5, i6 = 1, ..., N .

Thus the homogeneous version of the system of linear algebraic equations (3.2)
has only trivial solution and therefore the original inhomogeneous system (3.2)
has a unique solution set

{
αNi1,i2,i3,i4,i5,i6

}
, i1, i2, i3, i4, i5, i6 = 1, ..., N for any

function F ∈ H2 (Ω).

3.1 The Program Codes of Algorithm via MAPLE 10

Here, algorithm of solving the inverse problem for three dimensional Linear
Kinetic Euation is implemented using MAPLE 10. The program computes the
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approximate analytic solution of the problem according to given parametres
N , f , H, whereN is the aproximation level, f is the right hand side of Problem
1, H is the Hamiltonian.

U := proc(N, f, H)
Local UN, lambda, s;
Global L2InnerProduct, operatorL, operatorLTilda, operatorA, W, a, i1,

i2,
i3, i4, i5, i6, j1, j2, j3, j4, j5, j6, SLAE, LeftHandSide, F, eta, mu;
Option Remember;
a:= array(1..N,1..N,1..N,1..N,1..N,1..N);
eta := 1 - x1ˆ2 - x2ˆ2 - x3ˆ2;
mu := 1 - x1ˆ2 - x2ˆ2 - x3ˆ2;
L2InnerProduct := proc(u, v)
Local k1, k2, k3;
k1 := simplify(int(u*v, x1 = - sqrt(1- x2ˆ2 - x3ˆ2)..sqrt(1- x2ˆ2 - x3ˆ2)));
k2 := simplify(int(int(k1, x2 = - sqrt(1- x1ˆ2)..sqrt(1- x1ˆ2)), x3 = -1..1));
k3 := simplify(int(k2, v1 = - sqrt(1- v2ˆ2 -v3ˆ2)..sqrt(1 - v2ˆ2 - v3ˆ2)));
RETURN(simplify(int(int(k3, v2 = - sqrt(1- v1ˆ2)..sqrt(1- v1ˆ2)), v3 =

-1..1)));
end;
operatorL := proc(U)
RETURN(diff(H,v1) * diff(U,x1) - diff(H,x1)*diff(U,v1) + diff(H,v2) *

diff(U,x2)
- diff(H,x2) * diff(U,v2) + diff(H,v3) * diff(U,x3) - diff(H,x3) * diff(U,v3));
end;
operatorLTilda := proc(U)
RETURN(diff(diff(U,v1),x1) + diff(diff(U,v2),x2) + diff(diff(U,v3),x3))
end;
operatorA := proc(U)
RETURN(operatorLTilda(operatorL(U)));
end;
F := operatorLTilda(f);
W := proc(i1,i2,i3,i4,i5,i6::nonnegint)
RETURN(x1ˆi1 * x2ˆi2 * x3ˆi3 * v1ˆi4 * v2ˆi5 * v3ˆi6);
end;
LeftHandSide := proc(j1,j2,j3,j4,j5,j6)
Local LeftSum;
LeftSum:= 0;
for i1 from 1 to N do for i2 from 1 to N do for i3 from 1 to N do
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for i4 from 1 to N do for i5 from 1 to N do for i6 from 1 to N do
LeftSum := LeftSum + L2InnerProduct(operatorA(a[i1,i2,i3,i4,i5,i6] *

W(i1,i2,i3,i4,i5,i6)*eta*mu), W(j1,j2,j3,j4,j5,j6));
od; od; od; od; od; od;
RETURN(LeftSum);
end;
SLAE := proc()
Local SysEqu;
SysEqu := {};
for j1 from 1 to N do for j2 from 1 to N do for j3 from 1 to N do
for j4 from 1 to N do for j5 from 1 to N do for j6 from 1 to N do
SysEqu := {op(SysEqu), LeftHandSide(j1,j2,j3,j4,j5,j6)
= L2InnerProduct(F, W(j1,j2,j3,j4,j5,j6) * eta*mu)}
od; od; od; od; od; od;
RETURN(SysEqu);
end;
s := 0;
for i1 from 1 to N do for i2 from 1 to N do for i3 from 1 to N do
for i4 from 1 to N do for i5 from 1 to N do for i6 from 1 to N do
s := s + (a[i1,i2,i3,i4,i5,i6]*W(i1,i2,i3,i4,i5,i6))*eta*mu;
od; od; od; od; od; od;
UN := subs(solve(SLAE()), s); print(’UN’, UN);
lambda :=operatorL(UN)-f; print(’lambda’, lambda);
end;
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