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ON THE QUALITATIVE BEHAVIOR OF

THE SOLUTIONS FOR A KIND OF

NONLINEAR THIRD ORDER

DIFFERENTIAL EQUATIONS WITH A

RETARTED ARGUMENT

Cemil Tunç

Abstract

In this paper, by defining a Lyapunov functional, we discuss the
stability and the boundedness of the solutions for nonlinear third order
delay differential equations of the type:

x′′′(t) + h(t, x(t), x′(t), x′′(t), x(t− r(t)), x′(t− r(t)), x′′(t− r(t)))x′′(t)
+g(x(t− r(t)), x′(t− r(t))) + d(t)ψ(x′(t))x′(t) + f(x(t− r(t)))
= p(t, x(t), x′(t), x′′(t), x(t− r(t)), x′(t− r(t)), x′′(t− r(t)))

Our results include and improve some well-known results in the litera-
ture. An example is also given to illustrate the importance of the topic
and the results obtained.

1 Introduction

It is well known that the systems with aftereffect, with time lag or with de-
lay are of great theoretical interest and form an important class as regards
their applications. This class of systems is described by functional differen-
tial equations, which are also called differential equations with deviating argu-
ments. Among functional differential equations one may distinguish some spe-
cial classes of equations, retarded functional differential equations, advanced
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functional differential equations and neutral functional differential equations.
In particular, retarded functional differential equations describe those systems
or processes whose rate of change of state is determined by their past and
present states. These equations are frequently encountered as mathemati-
cal models of most dynamical process in mechanics, control theory, physics,
chemistry, biology, medicine, economics, atomic energy, information theory,
etc. Especially, since 1960’s many good books, most of them are in Russian
literature, have been published on the delay differential equations (see for ex-
ample the books of Burton ([7], [8]), Èl’sgol’ts [10], Èl’sgol’ts and Norkin [11],
Gopalsamy [12], Hale [13], Hale and Verduyn Lunel [14], Kolmanovskii and
Myshkis [15], Kolmanovskii and Nosov [16], Krasovskii [17], Mohammed [20],
Yoshizawa [53] and the references listed in these books).

However, with respect our observation from the literature; it is founded
only a few papers on the stability and boundedness of solutions of nonlinear
differential equations of third order with delay (see, for example, the papers
of Afuwape and Omeike [3], Bereketoğlu and Karakoç [6], Omeike [25], Sadek
([29], [30]), Sinha [31], Tejumola and Tchegnani [32], Tunç([38-41], [43-45],
[47-50]), Yao and Meng [52], Zhu [54]) and the references thereof).

It is worth mentioning that the use of the Lyapunov direct method [18]
for equations with delays encountered some principal difficulties. In 1963,
Krasovskii [17] suggested the use of functional defined on retarded equations’
trajectories instead of Lyapunov function and proved general stability theo-
rems based on the use of functionals. In this case, a positive functional with
negative definite (or negative semi-definite) derivative is constructed. In fact,
this functional is a tool to prove the stability and boundedness of the so-
lutions of delay differential equation under consideration. It should be noted
that finding appropriate Lyapunov functionals for higher order nonlinear delay
differential equations is a more difficult task. That is to say that the construc-
tion of Lyapunov functionals remains as a problem in the literature. However,
throughout all the paper listed above Lyapunov functionals are used to verify
the results established there. At the same time, one can recognize that so far
many significant theoretical results dealt with the stability and boundedness
of solutions of nonlinear differential equations of third order without delay:

x′′′(t) + b1x
′′(t) + b2x

′(t) + b3x(t) = p(t, x(t), x′(t), x′′(t)),

in which b1, b2 and b3 are not necessarily constants. In particular, one can refer
to the book of Reissig et al. [28] as a survey and the papers of Ademola et al.
[2], Afuwape [4], Afuwape et al. [5], Mehri and Shadman [19], Ogundare [21],
Ogundare and Okecha [22], Omeike ([23], [24]), Palusinski et al. [26], Ponzo
[27], Tunç([33-37], [42], [46]), Tunç and Ateş [51] and the references cited in
these sources for some publications performed on the topic. Meanwhile, in
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a recent paper, Afuwape and Omeike [3] discussed the same problems, the
problems of the stability and boundedness of solutions, for nonlinear third
order delay differential equation:

x′′′(t)+h(x′(t))x′′(t)+g(x(t−r(t)), x′(t−r(t)))+f(x(t−r(t))) = p(t, x(t), x′(t), x′′(t)),

in the cases p(t, x(t), x′(t), x′′(t)) ≡ 0 and p(t, x(t), x′(t), x′′(t)) 6= 0, respec-
tively.

In this paper, we consider nonlinear delay differential equation of third
order of the type:

x′′′(t) + h(t, x(t), x′(t), x′′(t), x(t− r(t)), x′(t− r(t)), x′′(t− r(t)))x′′(t)
+g(x(t− r(t)), x′(t− r(t))) + d(t)ψ(x′(t))x′(t) + f(x(t− r(t)))
= p(t, x(t), x′(t), x′′(t), x(t− r(t)), x′(t− r(t)), x′′(t− r(t)))

(1)
or its associated system

x′(t) = y(t),
y′(t) = z(t),
z′(t) = −h(t, x(t), y(t), z(t), x(t− r(t)), y(t− r(t)), z(t− r(t)))z(t)

−d(t)ψ(y(t))y(t) − g(x(t), y(t)) − f(x(t)) +
t
∫

t−r(t)

gx(x(s), y(s))y(s)ds

+
t
∫

t−r(t)

gy(x(s), y(s))z(s)ds+
t
∫

t−r(t)

f ′(x(s))y(s)ds

+p(t, x(t), y(t), z(t), x(t− r(t)), y(t− r(t)), z(t− r(t))),

(2)

where r(t) is a variable and bounded delay, 0 ≤ r(t) ≤ γ, γ is a positive
constant which will be determined later, andthe derivative r′(t) exists and
r′(t) ≤ β, 0 < β < 1; the functions h, g, d, ψ, f and p depend only on the
arguments displayed explicitly and the primes in Eq. (1) denote differentiation
with respect to t, t ∈ [0,∞). It is principally assumed that the functions h, g, d,
ψ, f and p are continuous for all values their respective arguments on R

+×R
6,

R
2, R

+, R, R and R
+ × R

6, respectively. This fact guarantees the existence
of the solution of Eq. (1) (see Èl’sgol’ts [10, pp.14]). Besides, it is also sup-
posed that g(x, 0) = f(0) = 0, and the derivatives d′(t), gx(x, y) ≡ ∂

∂x
g(x, y),

gy(x, y) ≡ ∂
∂y
g(x, y) and f ′(x) ≡ df

dx
exist and are continuous; throughout the

paper x(t), y(t) and z(t) are abbreviated as x, y and z, respectively. In
addition, it is also assumed that all solutions of Eq. (1) are real valued and
the functions h(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t))), g(x, y), ψ(y), h(x)
and p(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t))) satisfy a Lipschitz condition
in x, y, z, x(t− r(t)), y(t− r(t)) and z(t− r(t)). Then the solution is unique
(see Èl’sgol’ts [10, pp.15]).
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The motivation for the present work has been inspired basically by the
paper of Afuwape and Omeike [3] and the papers mentioned above. Our aim
here is to extend and improve the results established by Afuwape and Omeike
[3] to nonlinear delay differential Eq. (1) for the stability of the zero solution
and boundedness of all solutions of this equation, when p ≡ 0 and p 6= 0 in
(1), respectively. We also give an explanatory example on the stability and
boundedness of solutions of a specific delay differential equation of third order.

2 Preliminaries

In order to reach the main results of this paper, we will give some impor-
tant basic information for general non-autonomous delay differential system.
Consider the general non-autonomous delay differential system:

ẋ = F (t, xt), xt = x(t+ θ),−r ≤ θ ≤ 0, t ≥ 0, (3)

where F : [0,∞)×CH → R
n is a continuous mapping, F (t, 0) = 0, and we sup-

pose that F takes closed bounded sets into bounded sets of R
n. Here (C, ‖. ‖)

is the Banach space of continuous function φ : [−r, 0] → R
n with supremum

norm, r > 0; CH is the open H -ball in C; CH := {φ ∈ (C[−r, 0], ℜn) : ‖φ‖ <
H}.

Definition 1 (Yoshizawa [53]) A function x(t0, φ) is said to be a solution of
the system (3) with the initial condition φ ∈ CH at t = t0, t0 ≥ 0, if there is a
constant A > 0 such that x(t0, φ) is a function from [t0 − h, t0 +A] into R

n

with the properties:
(i) xt(t0, φ) ∈ CH for t0 ≤ t < t0 +A,

(ii) xt0(t0, φ) = φ,

(iii) x(t0, φ) satisfies (3) for t0 ≤ t < t0 +A.

Standard existence theory, see Burton [7], shows that if φ ∈ CH and
t ≥ 0, then there is at least one continuous solution x(t, t0, φ) such that
on [t0, t0 + α) satisfying (3) for t > t0, xt(t, φ) = φ and α is a positive
constant. If there is a closed subset B ⊂ CH such that the solution re-
mains in B, then α = ∞. Further, the symbol |. | will denote a conve-
nient norm in R

n with |x| = max1≤i≤n |xi| . Now, let us assume that C(t)
= {φ : [t− α] → ℜn | φ is continuous} and φt denotes the φ in the particular
C(t), and that ‖φt‖ = maxt−α≤s≤t |φ(t)| . Clearly, Eq. (1) is also a particular
case of (3).

Definition 2 (Burton [7]) Let F (t, 0) = 0. The zero solution of (3) is:
(i) stable if for each ε > 0 and t1 ≥ t0 there exists δ > 0 such that

[φ ∈ C(t1), ‖φ‖ < δ, t ≥ t1] implies that |x(t, t1, φ)| < ε.



ON THE QUALITATIVE BEHAVIOR OF THE SOLUTIONS FOR A KIND OF

NONLINEAR THIRD ORDER DIFFERENTIAL EQUATIONS WITH A RETARTED

ARGUMENT 219

(ii) asymptotically stable if it is stable and if for each t1 ≥ t0 there is an
η > 0 such that [φ ∈ C(t1), ‖φ‖ < δ] implies that x(t, t0, φ) → 0 as t → ∞.

(If this is true for every η > 0, then x = 0 is asymptotically stable in the large
or globally asymptotically stable.)

Definition 3 (Burton [7]) A continuous function W : [0,∞) → [0,∞) with
W (0) = 0, W (s) > 0 if s > 0, and W strictly increasing is a wedge. We
denote wedges by W or Wi, where i is an integer.

Definition 4 (Burton [7]) Let D be an open set in R
n with 0 ∈ D. A function

V : [0,∞)×D → [0,∞) is called positive definite if V (t, 0) = 0 and if there is
a wedge W1 with V (t, x) ≥W1(|x|), and is called decrescent if there is a wedge
W2 with V (t, x) ≤W2(|x|).

Definition 5 (Burton [7]) Let V (t, φ) be a continuous functional defined for
t ≥ 0, φ ∈ CH . The derivative of V along solutions of (3) will be denoted by
V̇ and is defined by the following relation

V̇ (t, φ) = lim sup
h→0

V (t+ h, xt+h(t0, φ)) − V (t, xt(t0, φ))

h
,

where x(t0, φ) is the solution of (3) with xt0(t0, φ) = φ.

Theorem 1 (Burton and Hering [9]) Suppose that there exists a Lyapunov
functional V (t, φ) for (3) such that the following conditions are satisfied:

(i) W1(|φ(0)|) ≤ V (t, φ), where W1(r) is a wedge, V (t, 0) = 0,
(ii) V̇ (t, xt) ≤ 0.
Then, the zero solution of (3) is stable.

3 Main results

In this section, we state and prove two theorems, which are our main results.
First, for the case p(t, x, y, z, x(t − r(t)), y(t − r(t)), z(t − r(t))) ≡ 0, the

following result is introduced:

Theorem 2 In addition to the basic assumptions imposed on the functions h,
g, d, ψ and f appearing in Eq. (1), we assume there exist positive constants
a , b, b0, c, γ, ε, ρ, K, L and M such that that the following conditions hold:

(i) ab− c > 0, d(t) ≥ 1, d′(t) ≤ 0 for all t ∈ R
+.

(ii) f(x)sgnx > 0 for all x 6= 0, sup {f ′(x)} = c, |f ′(x)| ≤ L for all x.

(iii) ψ(y) ≥ b0,
g(x,y)

y
≥ b+ ε, (y 6= 0), |gx(x, y)| ≤ K, |gy(x, y)| ≤ M for

all x and y.
(iv) h(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t))) ≥ a+ ρ,
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µ{h(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t))) − a}2

4
≤ ερ

for all t, x, y, z, x(t− r(t)), y(t− r(t)) and z(t− r(t)).
Then the zero solution of Eq. (1) is stable, provided that

γ < min

{

2(µb− c)

µ(K + L+M) + 2λ
,

2(a− µ)

K + L+M + 2δ

}

with µ = ab+c
2b

.

Proof. Define the Lyapunov functional V1 = V1(t, xt, yt, zt) :

V1 = µ
x
∫

0

f(ξ)dξ + yf(x) + 1
2µay

2 +
y
∫

0

g(x, η)dη + µyz + d(t)
y
∫

0

ψ(η)ηdη

+ 1
2z

2 + λ
0
∫

−r(t)

t
∫

t+s

y2(θ)dθds+δ
0
∫

−r(t)

t
∫

t+s

z2(θ)dθds

so that

V1 ≥ µ
x
∫

0

f(ξ)dξ + f(x)y + µa
2 y

2 + b
2y

2 + ε
2y

2 + b0
2 y

2 + µyz + 1
2z

2

+λ
0
∫

−r(t)

t
∫

t+s

y2(θ)dθds+δ
0
∫

−r(t)

t
∫

t+s

z2(θ)dθds

≥ 1
2b

[by + f(x)]2 + µ
x
∫

0

f(ξ)dξ + µa
2 y

2 + ε
2y

2 + b0
2 y

2 − 1
2b
f2(x)

+µyz + 1
2z

2 + λ
0
∫

−r(t)

t
∫

t+s

y2(θ)dθds+δ
0
∫

−r(t)

t
∫

t+s

z2(θ)dθds

= 1
2by2

[

4
x
∫

0

f(ξ)

{

y
∫

0

(µb− f ′(ξ))ηdη

}

dξ

]

+ b0
2 y

2

+ ε
2y

2 + 1
2 (µy + z)2 + 1

2µ(a− µ)y2 + 1
2b

[by + f(x)]
2

+λ
0
∫

−r(t)

t
∫

t+s

y2(θ)dθds+δ
0
∫

−r(t)

t
∫

t+s

z2(θ)dθds

(4)

by the assumptions g(x, 0) = f(0) = 0, d(t) ≥ 1, ψ(y) ≥ b0,
g(x,y)

y
≥ b + ε,

(y 6= 0), f(x)sgnx > 0, (x 6= 0), and |f ′(x)| ≤ L, where λ and δ are positive
constants which will be determined later in the proof. In view of the facts
a − µ = ab−c

2b
> 0 and µb − f ′(x) ≥ ab−c

2 > 0, from (4), it is clear that there
exist sufficiently small positive constants Di , (i = 1, 2, 3, ), such that

V1(t, xt, yt, zt) ≥ D1x
2 +D2y

2 +D3z
2

+λ
0
∫

−r(t)

t
∫

t+s

y2(θ)dθds+δ
0
∫

−r(t)

t
∫

t+s

z2(θ)dθds

≥ D4(x
2 + y2 + z2),

(5)
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where D4 = min{D1, D2, D3}. Now, it can be easily verified the existence of
a continuous function W1(|φ(0)|) with W1(|φ(0)|) ≥ 0 such that W1(|φ(0)|) ≤
V (t, φ).

By a straightforward calculation, we obtain the time derivative of func-
tional V1 = V1(xt, yt, zt) along the solutions of the system (2) as the following:

dV1

dt
= f ′(x)y2 − µd(t)ψ(y)y2 + µz2 − µyg(x, y) + y

y
∫

0

gx(x, η)dη

−µ{h(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t))) − a}yz

−h(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t)), z)z2 + d′(t)
y
∫

0

ψ(η)ηdη

+(µy + z)
t
∫

t−r(t)

f ′(x(s))y(s)ds+ (µy + z)
t
∫

t−r(t)

gx(x(s), y(s))y(s)ds

+(µy + z)
t
∫

t−r(t)

gy(x(s), y(s))z(s)ds+ λy2r(t) + δz2r(t)

−λ(1 − r′(t))
t
∫

t−r(t)

y2(s)ds− δ(1 − r′(t))
t
∫

t−r(t)

z2(s)ds.

(6)
Now, by help of the assumptions of Theorem 2 and the inequality 2 |uv| ≤
u2 + v2, it results immediately the existence of the following:

−h(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t)))z2 ≤ −(a+ ρ)z2,

−µψ(y)y2 ≤ −(µb0)y
2,

−

(

µ
g(x, y)

y
− f ′(x)

)

y2 ≤ −(µb+ µε− c)y2,

d′(t)

y
∫

0

ψ(η)ηdη ≤ 0,

µy
t
∫

t−r

f ′(x(s))y(s)ds ≤ µLr(t)
2 y2 + µL

2

t
∫

t−r(t)

y2(s)ds

≤ µLγ
2 y2 + µL

2

t
∫

t−r(t)

y2(s)ds,

z
t
∫

t−r(t)

f ′(x(s))y(s)ds ≤ Lr(t)
2 z2 + L

2

t
∫

t−r(t)

y2(s)ds

≤ Lγ
2 z

2 + L
2

t
∫

t−r(t)

y2(s)ds,
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µy
t
∫

t−r(t)

gx(x(s), y(s))y(s)ds ≤ µKr(t)
2 y2 + µK

2

t
∫

t−r(t)

y2(s)ds

≤ µKγ
2 y2 + µK

2

t
∫

t−r(t)

y2(s)ds,

z
t
∫

t−r(t)

gx(x(s), y(s))y(s)ds ≤ Kr(t)
2 z2 + K

2

t
∫

t−r(t)

y2(s)ds

≤ Kγ
2 z2 + K

2

t
∫

t−r(t)

y2(s)ds,

µy
t
∫

t−r(t)

gy(x(s), y(s))z(s)ds ≤ µMr(t)
2 y2 + µM

2

t
∫

t−r(t)

z2(s)ds

≤ µMγ
2 y2 + µM

2

t
∫

t−r(t)

z2(s)ds,

z
t
∫

t−r(t)

gy(x(s), y(s))z(s)ds ≤ Mr(t)
2 z2 + M

2

t
∫

t−r(t)

z2(s)ds

≤ Mγ
2 z2 + M

2

t
∫

t−r(t)

z2(s)ds,

λy2r(t) ≤ λγy2,

δz2r(t) ≤ δγz2.

Combining aforementioned inequalities into (6), we have

dV1

dt
≤ −

(

µb− c− µK
2 γ − µL

2 γ − µM
2 γ − λγ

)

y2

−
(

a− µ− K
2 γ − L

2 γ − M
2 γ − δγ

)

z2 − (µb0)y
2

−(µε)y2 − µ{h(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t))) − a}yz

−ρz2 +
(

K
2 + L

2 + µK
2 + µL

2 − (1 − β)λ
) t

∫

t−r(t)

y2(s)ds

+
(

M
2 + µM

2 − (1 − β)δ
) t

∫

t−r(t)

z2(s)ds.

(7)
We now consider the terms

W =: (µε)y2 + µ{h(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t))) − a}yz + ρz2,

which are contained in (7). Clearly, W represents a quadratic form. These
terms can be rearranged as the following:

[y z]

[

µε
µ(h−a)

2
µ(h−a)

2 ρ

]

[

y

z

]

.
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By noting the basic information on the positive semi-definiteness of the above
quadratic form, we can conclude that W ≥ 0, provided that

µ(h− a)2

4
≤ ερ.

Hence, by virtue of (7) it follows that

dV1

dt
≤ −

(

µb− c− µK
2 γ − µL

2 γ − µM
2 γ − λγ

)

y2

−
(

a− µ− K
2 γ − L

2 γ − M
2 γ − δγ

)

z2

+
(

K
2 + L

2 + µK
2 + µL

2 − (1 − β)λ
) t

∫

t−r(t)

y2(s)ds

+
(

M
2 + µM

2 − (1 − β)δ
) t

∫

t−r(t)

z2(s)ds.

(8)

Let λ = 1
2(1−β) (K+L)(1+µ) and δ = 1

2(1−β)M(1+µ). Now, because of these

choices, we get from (8) that

d
dt
V1(t, xt, yt, zt) ≤ −

(

µb− c− µK
2 γ − µL

2 γ − µM
2 γ − λγ

)

y2

−
(

a− µ− K
2 γ − L

2 γ − M
2 γ − δγ

)

z2.
(9)

Then, from the inequality (9) for some positive constants k1 and k2, it follows
that

d

dt
V1(t, xt, yt, zt) ≤ −k1y

2 − k2z
2 ≤ 0 (10)

provided that

γ < min

{

2(µb− c)

µ(K + L+M) + 2λ
,

2(a− µ)

K + L+M + 2δ

}

.

The proof Theorem 2 is now complete.
In the case p(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t))) 6= 0, we establish

the following result

Theorem 3 Let us assume that the assumptions (i)-(iv) of Theorem 2 hold.
In addition, we suppose that

|p(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t)))| ≤ q(t)

for all t, x, y, z, x(t − r(t)), y(t − r(t)) and z(t − r(t)), where q ∈ L1(0,∞),
L1(0,∞) is space of Lebesgue integrable functions. Then, there exists a finite
positive constant K1 such that the solution x(t) of Eq. (1) defined by the initial
functions

x(t) = φ(t), x′(t) = φ′(t), x′′(t) = φ′′(t)
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satisfies the inequalities

|x(t)| ≤
√

K1, |x
′(t)| ≤

√

K1, |x
′′(t)| ≤

√

K1

for all t ≥ t0 , where φ ∈ C2([t0 − r, t0],ℜ), provided that

γ < min

{

2(µb− c)

µ(K + L+M) + 2λ
,

2(a− µ)

K + L+M + 2δ

}

with µ = ab+c
2b

.

Proof. Taking into account the assumptions of the Theorem 3 and the
result of the Theorem 2, that is, the inequality (10), a straightforward calcu-
lation leads to

d
dt
V1(t, xt, yt, zt) ≤ −k1y

2 − k2z
2

+(µy + z)p(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t))).

Hence,

d
dt
V1(t, xt, yt, zt) ≤ (µ |y| + |z|) |p(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t)))|

≤ (µ |y| + |z|)q(t)
≤ D5(|y| + |z|)q(t),

where D5 = max{1, µ}. By virtue of the inequalities |y| < 1 + y2 and |z| <
1 + z2, we have

d

dt
V1(t, xt, yt, zt) ≤ D5(2 + y2 + z2)q(t).

Obviously, the inequality (5) implies that

y2 + z2 ≤ D−1
4 V1(t, xt, yt, zt).

Hence, it follows that

d
dt
V1(t, xt, yt, zt) ≤ D5(2 +D−1

4 V1(t, xt, yt, zt))q(t)
= 2D5q(t) +D5D

−1
4 V1(t, xt, yt, zt)q(t).

(11)

Now, integrating (11) from 0 to t, using the assumption q ∈ L1(0,∞) and
Gronwall-Reid-Bellman inequality (see Ahmad and Rama Mohana Rao [1]),
we obtain

V1(t, xt, yt, zt) ≤ V1(0, x0, y0, z0) + 2D5A+D5D
−1
4

t
∫

0

{V1(s, xs, ys, zs)}q(s)ds

≤ {V1(0, x0, y0, z0) + 2D5A} exp

(

D5D
−1
4

t
∫

0

q(s)ds

)

= {V1(0, x0, y0, z0) + 2D5A} exp(D5D
−1
4 A) = K2 <∞,

(12)
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where K2 > 0 is a constant, K2 = {V1(0, x0, y0, z0) + 2D5A} exp(D5D
−1
4 A)

and A =
∞
∫

0

q(s)ds. In view of (5) and (12), it follows that

x2 + y2 + z2 ≤ D−1
4 V1(t, xt, yt, zt) ≤ K1,

where K1 = K2D
−1
4 . Hence, we deduce that

|x(t)| ≤
√

K1, |y(t)| ≤
√

K1, |z(t)| ≤
√

K1

for all t ≥ t0. That is,

|x(t)| ≤
√

K1, |x
′(t)| ≤

√

K1, |x
′′(t)| ≤

√

K1

for all t ≥ t0. The proof of the Theorem 3 is now complete.

Example 1 We consider the following nonlinear delay differential equation
of third order:

x′′′(t) +
(

4 + 1
1+t2+x2(t)+x′2(t)+x′′2(t)+x2(t−r(t))+x′2(t−r(t))+x′′2(t−r(t))2

)

x′′(t)

+4x′(t− r(t)) + sinx′(t− r(t)) + 4(1 + e−t)x′(t) + x(t− r(t))
= 1

1+t2+x2(t)+x′2(t)+x′′2(t)+x2(t−r(t))+x′2(t−r(t))+x′′2(t−r(t)) .

(13)

Eq. (13) is a special case of Eq. (1), and it can be stated as the following
system:

x′ = y,

y′ = z,

z′ = −
(

4 + 1
1+t2+x2+y2+z2+x2(t−r(t))+y2(t−r(t))+z2(t−r(t))

)

z

−(4y + sin y) +
t
∫

t−r(t)

(4 + cos y(s))z(s)ds− 4(1 + e−t)y − x+
t
∫

t−r(t)

y(s)ds

+ 1
1+t2+x2+y2+z2+x2(t−r(t))+y2(t−r(t))+z2(t−r(t)) .

We now observe the following relations:

h(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t))) =
4 + 1

1+t2+x2+y2+z2+x2(t−r(t))+y2(t−r(t))+z2(t−r(t)) ,

4 + 1
1+t2+x2+y2+z2+x2(t−r(t))+y2(t−r(t))+z2(t−r(t))

≥ 4 = a+ ρ,
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a = 2, ρ = 2,

[

2 + 1
1+t2+x2+y2+z2+x2(t−r(t))+y2(t−r(t))+z2(t−r(t))

]2

≤ 9 = 4ερ
µ
,

9µ = 8ε,

g(y) = 4y + sin y, g(0) = 0,

g(y)

y
= 4 +

sin y

y
, (y 6= 0, |y| < π),

4 +
sin y

y
≥ 3 = b+ ε,

g′(y) = 4 + cos y,

|g′(y)| ≤ 5 = M,

d(t)ψ(y) = 4(1 + e−t),

d(t) = 1 + e−t ≥ 1,

ψ(y) = 4 = b0,

f(x) = x, f(0) = 0,

f ′(x) = 1, c = L = 1.

p(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t− r(t)))
= 1

1+t2+x2+y2+z2+x2(t−r(t))+y2(t−r(t))+z2(t−r(t)) ,

1

1 + t2 + x2 + y2 + z2 + x2(t− r(t)) + y2(t− r(t)) + z2(t− r(t))
≤

1

1 + t2
,

∞
∫

0

q(s)ds =

∞
∫

0

1

1 + s2
ds =

π

2
<∞, that is, q ∈ L1(0,∞).

It should be noted that the constants b, ε and γ can also be specified such
that all the assumptions of the Theorems 2 and 3 hold.

This shows that the zero solution of Eq. (13) is stable and all solutions of
the same equation are bounded, when p(t, x, y, z, x(t− r(t)), y(t− r(t)), z(t−
r(t))) = 0 and 6= 0, respectively.
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[10] L. È. Èl’sgol’ts, Introduction to the theory of differential equations with deviating

arguments, (translated from the Russian by Robert J. McLaughlin), Holden-Day, Inc.,
San Francisco, Calif.-London-Amsterdam, 1966.
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