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ON MANNHEIM PARTNER CURVE IN

DUAL SPACE

Siddika Özkaldi, Kazim İlarslan and Yusuf Yayli

Abstract

In this paper, we define Mannheim partner curves in three dimen-

sional dual space D
3 and we obtain the necessary and sufficient condi-

tions for the Mannheim partner curves in dual space D
3
.

1 Introduction

In the differential geometry of a regular curve in the Euclidean 3-space E
3, it

is well-known that one of the important problem is the characterization of a
regular curve. The curvature functions k1 (curvature κ) and k2 (torsion τ)
of a regular curve play an important role to determine the shape and size of
the curve ([2, 6]). For example: If k1 = k2 = 0, then the curve is a geodesic.
If k1 6= 0 (constant) and k2 = 0, then the curve is a circle with radius 1/k1.
If k1 6= 0 (constant) and k2 6= 0 (constant), then the curve is a helix in the
space, etc.

Another way to classification and characterization of curves is the rela-
tionship between the Frenet vectors of the curves. For example (in 1845)
Saint Venant proposed the question whether upon the surface generated by
the principal normal of a curve, a second curve can exist which has for its
principal normal the principal normal of the given curve. This question was
answered by Bertrand in 1850; he showed that a necessary and sufficient con-
dition for the existence of such a second curve is that a linear relationship
with constant coefficients exists between the first and second curvatures of
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the given original curve. The pairs of curves of this kind have been called
Conjugate Bertrand Curves, or more commonly Bertrand Curves ([2, 6, 8]) .
There are many works related with Bertrand curves in the Euclidean space
and Minkowski space. Another kind of associated curves are called Mannheim
curve and Mannheim partner curve. If there exists a corresponding relation-
ship between the space curves α and β such that, at the corresponding points
of the curves, the principal normal lines of α coincides with the binormal lines
of β, then α is called a Mannheim curve, and β Mannheim partner curve of
α. Mannheim partner curves was studied by Liu and Wang ([7]) in Euclidean
3− space and in the Minkowski 3−space.

Dual numbers had been introduced by W.K. Clifford (1849 - 1879) as a
tool for his geometrical investigations. After him E. Study used dual numbers
and dual vectors in his research on line geometry and kinematics. He devoted
special attention to the representation of oriented lines by dual unit vectors
and defined the famous mapping: The set of oriented lines in an Euclidean
three-dimension space E

3 is one to one correspondence with the points of a
dual space D

3 of triples of dual numbers ([3]).
In this paper we study Mannheim partner curves in dual space D

3.

2 Preliminary

By a dual number x̂, we mean an ordered pair of the form (x, x∗) for all
x, x∗ ∈ R. Let the set R × R be denoted as D. Two inner operations and an
equality on D = { (x, x)| x, x∗ ∈ R} are defined as follows:

(i) ⊕ : D × D → D for x̂ = (x, x∗), ŷ = (y, y∗) defined as

x̂ ⊕ ŷ = (x, x∗) ⊕ (y, y∗) = (x + y, x∗ + y∗)

is called the addition in D.
(ii) ⊙ : D × D → D for x̂ = (x, x∗), ŷ = (y, y∗) defined as

x̂ ⊙ ŷ = x̂ŷ = (x, x∗) ⊙ (y, y∗) = (xy, xy∗ + x∗y)

is called the multiplication in D.
(iii) If x = y, x∗ = y∗ for x̂ = (x, x∗), ŷ = (y, y∗) ∈ D, x̂ and ŷ are equal,

and it is indicated as x̂ = ŷ.
If the operations of addition, multiplication and equality on D = R × R

with set of real numbers R are defined as above, the set D is called the dual
numbers system and the element (x, x∗) of D is called a dual number. In a
dual number x̂ = (x, x∗) ∈ D, the real number x is called the real part of x̂ and
the real number x is called the dual part of x̂. The dual number (1, 0) = 1 is
called unit element of multiplication operation in D or real unit in D. The dual
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number (0, 1) is to be denoted with ε in short, and the (0, 1) = ε is to be called
dual unit. In accordance with the definition of the operation of multiplication,
it can easily be seen that ε2 = 0. Also, the dual number x̂ = (x, x∗) ∈ D can
be written as x̂ = x + εx∗ (see[9, 5]).

The set of D = {x̂ = x+ εx∗| x, x∗ ∈ R} of dual numbers is a commutative
ring according to the operations

(i)(x + εx∗) + (y + εy∗) = (x + y) + ε(x∗ + y∗),

(ii)(x + εx∗)(y + εy∗) = xy + ε(xy∗ + y∗x).

The dual number x̂ = x + εx∗ divided by the dual number ŷ = y + εy∗

provided y 6= 0 can be defined as

x̂

ŷ
=

x + εx∗

y + εy∗
=

x

y
+ ε

x∗y − xy∗

y2
.

The set of

D
3 = D × D × D

= {
−→
x̂ |

−→
x̂ = (x1 + εx∗

1, x2 + εx∗

2, x3 + εx∗

3)}

= {
−→
x̂ |

−→
x̂ = (x1, x2, x3) + ε (x∗

1, x
∗

2, x
∗

3)}

= {
−→
x̂ |

−→
x̂ = −→x + ε

−→
x∗, −→x ,

−→
x∗ ∈ R

3}

is a module on the ring D. For any
−→
x̂ = −→x + ε

−→
x∗ ,

−→
ŷ = −→y + ε

−→
y∗ ∈ D

3, the

scalar or inner product and the vector product of
−→
x̂ and

−→
ŷ are defined by,

respectively,

〈
−→
x̂ ,

−→
ŷ 〉 = 〈 −→x ,−→y 〉 + ε

(
〈 −→x ,

−→
y∗〉 + 〈

−→
x∗,−→y 〉

)
,

−→
x̂ Λ

−→
ŷ = (x̂2 ŷ3 − x̂3 ŷ2, x̂3 ŷ1 − x̂1 ŷ3, x̂1 ŷ2 − x̂2 ŷ1) ,

where x̂i = xi + εx∗

i
, ŷi = yi + εy∗

i
∈ D, 1 ≤ i ≤ 3. If x 6= 0, the norm

∥∥∥
−→
x̂
∥∥∥

of
−→
x̂ = −→x + ε

−→
x∗ is defined by

∥∥∥
−→
x̂
∥∥∥ =

√
〈
−→
x̂ ,

−→
x̂ 〉 = ‖−→x ‖ + ε

〈 −→x ,
−→
x∗〉

‖−→x ‖
.

A dual vector
−→
x̂ with norm 1 is called a dual unit vector. Let

−→
x̂ = −→x + ε

−→
x∗

∈ D
3. The set
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S
2 = {

−→
x̂ = −→x + ε

−→
x∗ |

∥∥∥
−→
x̂
∥∥∥ = (1, 0); −→x ,

−→
x∗ ∈ R

3}

is called the dual unit sphere with the center Ô in D
3.

If every xi(t) and x∗

i
(t), 1 ≤ i ≤ 3 real valued functions, are differentiable,

the dual space curve

x̂ : I ⊂ R → D
3

t →
−→
x̂ (t) = (x1(t) + εx∗

1(t), x2(t) + εx∗

2(t), x3(t) + εx∗

3(t))

= −→x (t) + ε
−→
x∗(t)

in D
3 is differentiable. We call the real part −→x (t) the indicatrix of

−→
x̂ (t). The

dual arc length of the curve
−→
x̂ (t) from t1 to t is defined as

ŝ =

t∫

t1

∥∥∥
−→
x̂ (t)́

∥∥∥ dt =

t∫

t1

‖−→x (t)́‖ dt + ε

t∫

t1

〈−→
t ,
(−→
x∗

)
´
〉

= s + εs∗, (2.1)

where t̂ is a unit tangent vector of
−−→
x(t). From now on we will take the arc

length s of
−−→
x(t) as the parameter instead of t.

Now we will obtain equations relatively to the derivatives of dual Frenet
vectors throughout the curve in D

3. Let

x̂ : I → D
3

s →
−−→
x̂(s) =

−−→
x(s) + ε

−−−→
x∗(s)

be a dual curve with the arc length parameter s of the indicatrix. Then,

d
−→
x̂

dŝ
=

d
−→
x̂

ds

ds

dŝ
=

−→
t̂

is called the dual unit tangent vector of
−−→
x̂(s). With the aid of equation(2.1),

we have

ŝ = s + ε

s∫

s1

〈−→
t ,
(−→
x∗

)
´
〉

ds

and from this dbs
ds

= 1+ε∆, where the prime denotes differentiation with respect

to the arc length s of indicatrix and ∆ =
〈−→

t ,
(−→
x∗

)
´
〉

. Since
−→
t̂ has constant

length 1, its differentiation with respect to ŝ, which is given by

d
−→
t̂

dŝ
=

d
−→
t̂

ds

ds

dŝ
=

d2
−→
x̂

dŝ2
= κ̂

−→
n̂ ,
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measures the way the curve is turning in D
3. The norm of the vector d

−→bt
dbs is

called curvature function of
−−→
x̂(s). We impose the restriction that the function

κ̂ : I → D is never pure dual. Then, the dual unit vector
−→
n̂ = 1bκ d

−→bt
dbs is called

the principal normal of
−−→
x̂(s). The dual vector

−→
b̂ is called the binormal of

−−→
x̂(s).

The dual vectors
−→
t̂ ,

−→
n̂ ,

−→
b̂ are called the dual Frenet trihedron of

−−→
x̂(s) at

the point x̂(s). The equalities relative to derivatives of dual Frenet vectors
−→
t̂ ,

−→
n̂ ,

−→
b̂ throughout the dual space curve are written in the matrix form

d

dŝ





−→
t̂
−→
n̂
−→
b̂



 =




0 κ̂ 0
−κ̂ 0 τ̂
0 −τ̂ 0









−→
t̂
−→
n̂
−→
b̂



 , (2.2)

where κ̂ = κ+ εκ∗ is nowhere pure dual curvature and τ̂ = τ + ετ∗ is nowhere
pure dual torsion. The formulae (2.2) are called the Frenet formulae of dual
curve in D

3(see [5] ).

3 Mannheim partner curves in D
3

In this section, we define Mannheim partner curves in dual space D
3 and we

give some characterization for Mannheim partner curves in the same space.

Definition 1. Let D
3 be the dual space with the standard inner product 〈, 〉 .

If there exists a corresponding relationship between the dual space curves α̂
and β̂ such that, at the corresponding points of the dual curves, the principal

normal lines of α̂ coincides with the binormal lines of β̂, then α̂ is called

a dual Mannheim curve, and β̂ a dual Mannheim partner curve of α̂. The

pair {α̂, β̂} is said to be a dual Mannheim pair.

Let α̂ : x̂(ŝ) be a dual Mannheim curve in D
3 parameterized by its arc

length ŝ and β̂ : x̂1(ŝ1) the dual Mannheim partner curve of with an arc

length parameter ŝ1. Denote by

{
−→
t̂ (ŝ),

−→
n̂ (ŝ),

−→
b̂ (ŝ)

}
the Frenet frame field

along α̂ : x̂(ŝ).
In the following theorems, we give a necessary and sufficient condition for

a dual space curve to be a Mannheim curve.

Theorem 1. A dual space curve in D
3 is a dual Mannheim curve if and only

if its curvature κ̂ and torsion τ̂ satisfy the formula κ̂ = λ̂(κ̂2 + τ̂2), where λ̂
is never pure dual constant.
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Proof. Let α̂ : x̂(ŝ) be a dual Mannheim curve in D
3 with the arc length

parameter ŝ and β̂ : x̂1(ŝ1) the dual Mannheim partner curve of with an arc
length parameter ŝ1. Then by the definition we can assume that

x̂1(ŝ) = x̂(ŝ) + λ̂(ŝ)
−→
n̂ (ŝ) (3.1)

for some never pure dual constant λ̂(ŝ). By taking the derivative of (3.1) with
respect to ŝ and applying the Frenet formulas we have

dx̂1(ŝ)

dŝ
=
(
1 − λ̂κ̂

)−→
t̂ +

dλ̂

dŝ

−→
n̂ + λ̂τ̂

−→
b̂.

Since
−→
t̂1 is coincident with

−→
b̂1 in direction, we get

dλ̂(ŝ)

dŝ
= 0.

This means that λ̂ is a never pure dual constant. Thus we have

dx̂1(ŝ)

dŝ
=
(
1 − λ̂κ̂

)−→
t̂ + λ̂τ̂

−→
b̂ .

On the other hand, we have

−→
t̂1 =

dx̂1

dŝ

dŝ

dŝ1
=

((
1 − λ̂κ̂

)−→
t̂ + λ̂τ̂

−→
b̂

)
dŝ

dŝ1
.

By taking the derivative of this equation with respect to ŝ1 and applying the
Frenet formulas we obtain

d
−→
t̂1

dŝ

dŝ

dŝ1
=

(
−λ̂

dκ̂

dŝ

−→
t̂ +

(
κ̂ − λ̂κ̂2 − λ̂τ̂2

)−→
n̂ + λ̂

dτ̂

dŝ

−→
b̂

)
dŝ

dŝ1

+

((
1 − λ̂κ̂

)−→
t̂ + λ̂τ̂

−→
b̂

)
d2ŝ

dŝ2
1

.

From this equation we get

(
κ̂ − λ̂κ̂2 − λ̂τ̂2

) dŝ

dŝ1
= 0,

κ̂ = λ̂(κ̂2 + τ̂2).

This completes the proof.
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Theorem 2. Let α̂ : x̂(ŝ) be a dual Mannheim curve in D
3 with the arc length

parameter ŝ. Then β̂ : x̂1(ŝ1) is the dual Mannheim partner curve of if and

only if the curvature κ̂1 and the torsion τ̂1 of β̂ satisfy the following equation

dτ̂1

dŝ1
=

κ̂1

µ̂

(
1 + µ̂2τ̂2

1

)

for some never pure dual constant µ̂.

Proof. Suppose that α̂ : x̂(ŝ) is a dual Mannheim curve. Then by the definition
we can assume that

x̂(ŝ1) = x̂1(ŝ1) + µ̂(ŝ1)
−→
b̂1 (ŝ1) , (3.2)

for some function µ̂(ŝ1). By taking the derivative of (3.2) with respect to ŝ1

and applying the Frenet formulas, we have

−→
t̂

dŝ

dŝ1
=

−→
t̂ 1 +

−→
b̂ − µ̂τ̂1

−→
n̂ 1. (3.3)

Since
−→
b̂ is coincident with

−→
n̂ in direction, we get

dµ̂

dŝ1
= 0.

This means that µ̂ is never a pure dual constant. Thus we have

−→
t̂

dŝ

dŝ1
=

−→
t̂ 1 − µ̂τ̂1

−→
n̂ 1. (3.4)

On the other hand, we have

−→
t̂ =

−→
t̂ 1 cos θ̂ +

−→
n̂ 1 sin θ̂, (3.5)

where θ̂ is the dual angle between
−→
t̂ and

−→
t̂ 1 at the corresponding points of α̂

and β̂. By taking the derivative of this equation with respect to ŝ1, we obtain

κ̂
−→
n̂

dŝ

dŝ1
= −

(
κ̂1 +

dθ̂

dŝ1

)
sin θ̂

−→
t̂ 1 +

(
κ̂1 +

dθ̂

dŝ1

)
cos θ̂

−→
n̂ 1 + τ̂1 sin θ̂

−→
b̂ 1.

From this equation and the fact that the direction of
−→
n̂ is coincident with

−→
b̂ 1,

we get 




(
κ̂1 + dbθ

dbs1

)
sin θ̂ = 0

(
κ̂1 + dbθ

dbs1

)
cos θ̂ = 0.
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Therefore we have
dθ̂

dŝ1
= −κ̂1. (3.6)

From (3.4), (3.5) and notice that
−→
t̂ 1 is orthogonal to

−→
b̂1, we find that

dŝ

dŝ1
=

1

cos θ̂
= −

µ̂τ̂1

sin θ̂
.

Then we have
µ̂τ̂1 = − tan θ̂.

By taking the derivative of this equation and applying (3.6), we get

µ̂
dτ̂1

dŝ1
= κ̂1

(
1 + µ̂2τ̂2

1

)
,

that is
dτ̂1

dŝ1
=

κ̂1

µ̂

(
1 + µ̂2τ̂2

1

)
.

Conversely, if the curvature κ̂1and torsion τ̂1of the dual curve β̂ satisfy

dτ̂1

dŝ1
=

κ̂1

µ̂

(
1 + µ̂2τ̂2

1

)

for some never pure dual constant µ̂(ŝ), then we define a dual curve by

x̂(ŝ1) = x̂1(ŝ1) + µ̂
−→
b̂1 (ŝ1) (3.7)

and we will prove that α̂ is a Mannheim curve and β̂ is the partner curve of
α̂. By taking the derivative of (3.7) with respect to ŝ1 twice, we get

−→
t̂

dŝ

dŝ1
=

−→
t̂ 1 − µ̂τ̂1

−→
n̂ 1, (3.8)

κ̂
−→
n̂

(
dŝ

dŝ1

)2

+
−→
t̂

d2ŝ

dŝ2
1

= µ̂κ̂1τ̂1

−→
t̂ 1 +

(
κ̂1 − µ̂

dτ̂1

dŝ1

)
−→
n̂ 1 − µ̂τ̂2

1

−→
b̂ 1, (3.9)

respectively. Taking the cross product of (3.8) with (3.9) and noticing that

κ̂1 − µ̂
dτ̂1

dŝ1
+ µ̂2κ̂1τ̂

2
1 = 0,

we have

κ̂
−→
b̂

(
dŝ

dŝ1

)3

= µ̂2τ̂3
1

−→
t̂ 1 + µ̂τ̂2

1

−→
n̂ 1. (3.10)
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By taking the cross product of (3.10) with (3.8), we obtain also

κ̂
−→
n̂

(
dŝ

dŝ1

)4

= −µ̂τ̂2
1

(
1 + µ̂2τ̂2

1

)−→
b̂ 1.

This means that the principal normal direction
−→
n̂ of α̂ : x̂(ŝ) coincides with

the binormal direction
−→
b̂ 1 of β̂ : x̂1(ŝ1). Hence α̂ : x̂(ŝ) is a dual Mannheim

curve and β̂ : x̂1(ŝ1) is its dual Mannheim partner curve.

Definition 2. A dual helix is a dual curve for which the tangent makes a

constant dual angle with a dual fixed line.

Proposition 1. Let α̂ : x̂(ŝ) be a dual Mannheim curve in D
3 with the arc

length parameter ŝ and β̂ : x̂1(ŝ1) the dual Mannheim partner curve of with

an arc length parameter ŝ1. If α̂ : x̂(ŝ) is a generalized dual helix, then β̂ :
x̂1(ŝ1) is a dual straight line.

Proof. Let
−→
t̂ ,

−→
n̂ ,

−→
b̂ be the tangent, principal normal and binormal vector

field of the curve α̂ : x̂(ŝ), respectively. From the properties of generalized
dual helices and the definition of dual Mannheim curves, we have

−→
b̂ 1.p̂ =

−→
n̂ .p̂ = 0

for some constant dual vector p̂. Then it is easy to obtain that τ̂1 = κ̂1 ≡ 0.

Proposition 2. If a generalized dual helix is the Mannheim partner curve of

some curve α̂ : x̂(ŝ) in D
3, then the ratio of torsion and curvature of the curve

α̂ : x̂(ŝ) is
τ̂

κ̂
=

ĉ2

2
ebc1bs − 1

2ĉ2
e−bc1bs,

for some nonzero constant ĉ1 and for some never pure dual constant ĉ2, and

ŝ is the arc length parameter of α̂. In particular, if we put ĉ1 = ĉ2 = 1, we

have
τ̂

κ̂
=

ebs − e−bs
2

= sinh ŝ.

Proof. Let
−→
t̂ ,

−→
n̂ ,

−→
b̂ be the tangent, principal normal and binormal vector

field of the curve α̂ : x̂(ŝ), respectively. From the properties of generalized
dual helices and the definition of dual Mannheim curves, we have

−→
b̂ 1.p̂ = sin θ̂0,
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for some constant dual vector p̂ and some constant dual angle θ̂0. From the
last equation we know that sin θ̂0 6= 0 and bτbκ 6= dual constant. By taking the
derivative of this equation with respect to ŝ twice, we get

−κ̂
−→
t̂ .p̂ + τ̂

−→
n̂ .p̂ = 0,

−
dκ̂

dŝ

−→
t̂ .p̂ +

dτ̂

dŝ

−→
n̂ .p̂ =

(
κ̂2 + τ̂2

)
sin θ̂0.

By a direct calculation and using κ̂ = λ̂(κ̂2 + τ̂2), we obtain

−→
t̂ .p̂ =

τ̂

λ̂κ̂
d( bτbκ )

dbs sin θ̂0,

−→
n̂ .p̂ =

1

λ̂
d( bτbκ )

dbs sin θ̂0.

Taking the derivative, we have

κ̂ =
1

λ̂




1 −

τ̂
d
2( bτbκ )
dbs2

κ̂

(
d( bτbκ )

dbs )2




,

τ̂ =

d
2( bτbκ )
dbs2

λ̂

(
d( bτbκ )

dbs )2 ,

respectively. From these equations, we find that

τ̂

κ̂
=

d
2( bτbκ )
dbs2

(
d( bτbκ )

dbs )2

− bτbκ d2( bτbκ )
dbs2

.

Let bτbκ = ŷ(ŝ), then we get the following differential equation

(
1 + ŷ2

) d2ŷ

dŝ2
− ŷ

(
dŷ

dŝ

)2

= 0.

Solving this equation, we obtain that

ŷ(ŝ) = ĉ0
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or

ŷ(ŝ) =
ĉ2

2
ebc1bs − 1

2ĉ2
e−bc1bs,

for some nonzero constant ĉ0 ,ĉ1 and for some never pure dual constant ĉ2 .
Thus, the proposition is proved.
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Tandoğan, Ankara, Turkey

Email: sozkaldi@kku.edu.tr
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