GENERALIZED DERIVATIONS AND C^* -ALGEBRAS

Salah Mecheri

Abstract

Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H. Let $A, B \in \mathcal{L}(H)$. Define the generalized derivation $\delta_{A,B} : \mathcal{L}(H) \mapsto \mathcal{L}(H)$ by

$$\delta_{A,B}(X) = AX - XB.$$

The class of generalized P- symmetric operators is the class of all pairs of operators $A, B \in \mathcal{L}(H)$ such that [TA = BT implies $A^*T = TB^*, T \in$ $\mathcal{C}_1(H)]$ (*) (trace class operators), i.e, the pair (A, B) satisfies the Fuglede-Putnam's theorem in $\mathcal{C}_1(H)$. In this paper we present new C^* -algebras generated by the pair (A, B) satisfying (*). Other related results are also given.

1 Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denotes the algebra of all bounded linear operators on H. Given $A, B \in \mathcal{L}(H)$, we define the generalized derivation

 $\delta_{A,B} : \mathcal{L}(H) \mapsto \mathcal{L}(H)$ by $\delta_{A,B}(X) = AX - XB$. Note that $\delta_{A,A} = \delta_A$. In [2] J.Anderson, J.Bunce, J.A.Deddens and J.P.Williams show that, if A is D-symmetric, (i.e., $\operatorname{ran}(\delta_A) = \operatorname{ran}(\delta_{A^*})$, where $\operatorname{ran}(\delta_A)$ is the closure of the range, $\operatorname{ran}(\delta_A)$, of δ_A in the norm topology, then AT = TA, $T \in \mathcal{C}_1(H)$ (trace class operators) implies $A^*T = TA^*$. In order to generalize these results we

Key Words: C^* -algebra, Genaralized P-symmetric operator

Mathematics Subject Classification: 47B20

Received: February, 2009

Accepted: September, 2009

 $^{^{\}ast}$ This research was supported by KSU research center project No. Math/2008/57

¹²³

initiated in [6, 8] the study of a more general class of *P*-symmetric operators, namely the class of pairs of operators $A, B \in \mathcal{L}(H)$ such that $BT = TA, T \in \mathcal{C}_1(H)$ implies $A^*T = TB^*$. We call such operators generalized *P*-symmetric operators. The set of all such pairs is denoted by $\mathcal{GF}_o(H)$, that is, the pair (A, B) satisfies the Fuglede-Putnam's theorem in $\mathcal{C}_1(H)$. Since the study of generalized *P*-symmetric operators comes back to the study of operators $A, B \in \mathcal{L}(H)$ such that $\overline{\operatorname{ran}(\delta_{A,B})}^{w^*}$ is self-adjoint. It is natural to introduce the following sets

$$\mathfrak{T}_0(A,B) = \{(C,D) \in \mathcal{L}(H) \times \mathcal{L}(H) : C\mathcal{L}(H) + \mathcal{L}(H)D \subset \overline{ran(\delta_{A,B})}^{w*}\}.$$

$$\mathfrak{I}_0(A,B) = \{(C,D) \in \mathcal{L}(H) \times \mathcal{L}(H) : Cran(\delta_{A,B}) + ran(\delta_{A,B})D \subset \overline{ran(\delta_{A,B})}^{w*}\}$$

$$\mathcal{B}_0(A,B) = \{ (C,D) \in \mathcal{L}(H) \times \mathcal{L}(H) : ran(\delta_{C,D}) \subset \overline{ran(\delta_{A,B})}^{w*} \}.$$

It is known [12] that if \mathcal{H} is of finite dimension, C = D and A = B, then

$$\mathfrak{T}_0(A) = \{0\}, \ \mathfrak{I}_0(A) = \{A\}' \text{ and } \mathfrak{B}_0(A) = \{A\}'',$$

where $\{A\}'$ is the commutant of A and $\{A\}''$ is the bicommutant of A. In this paper we will prove that if the pair (A, B) is generalized P-symmetric, then we have

(i) $\mathfrak{T}_0(A, B)$, $\mathfrak{I}_0(A, B)$ and $\mathfrak{B}_0(A, B)$ are C^* -algebras w^* -closed in $\mathcal{L}(H) \times \mathcal{L}(H)$.

(ii) $\mathfrak{T}_0(A, B)$ is a bilateral ideal of $\mathfrak{I}_0(A, B)$.

(iii) $ran(\delta_{C,D}) \subset \overline{ran(\delta_{A,B})}^{w*}$ for all $C, D \in C^*(A, B)$, the C^* -algebra generated by the pair (A, B) of operators such that BT = TA implies $A^*T = TB^*$ for all $T \in \mathcal{C}_1(H)$. We also prove that if (A, B) is generalized P-symmetric then $A^*ran(\delta_{A,B}) + ran(\delta_{A,B})B^* \subset \overline{ran(\delta_{A,B})}^{w*}$.

2 Preliminaries

Definition 2.1. The Trace class operators, denoted by $\mathcal{C}_1(H)$, is the set of all compact operators $A \in \mathcal{L}(H)$, for which the eigenvalues of $(TT^*)^{\frac{1}{2}}$ counted according to multiplicity, are summable. The ideal $\mathcal{C}_1(H)$ of $\mathcal{L}(H)$ admits a trace function tr(T), given by $tr(T) = \sum_n (Te_n, e_n)$ for any complete orthonormal system (e_n) in H. As a Banach spaces $\mathcal{C}_1(H)$ can be identified with the dual of the ideal K of compact operators by means of the linear isometry

 $T \mapsto f_T$, where $f_T = tr(XT)$. Moreover $\mathcal{L}(H)$ is the dual of $\mathcal{C}_1(H)$, the ultra weakly continuous linear functionals on $\mathcal{L}(H)$ are those of the form f_T for $T \in \mathcal{C}_1(H)$ and the weakly continuous linear functionals are those of the form f_T with T is of finite rank.

Definition 2.2. Given $A \in \mathcal{L}(H)$, the inner derivation

$$\delta_A : \mathcal{L}(H) \to \mathcal{L}(H)$$

is defined by

$$\delta_{A,B}(X) = AX - XA, (X \in \mathcal{L}(H)).$$

Definition 2.3. Let A and B be two operators in $\mathcal{L}(H)$. Then the generalized derivation

 $\delta_{A,B}: \mathcal{L}(H) \to \mathcal{L}(H)$

is defined by

$$\delta_{A,B}(X) = AX - XB, (X \in \mathcal{L}(H)).$$

Definition 2.4. Let $A \in \mathcal{L}(H)$. Then A is called D-symmetric if

$$\overline{ran(\delta_A)} = \overline{ran(\delta_{A^*})}.$$

Definition 2.5. Let $A, B \in \mathcal{L}(H)$. The pair (A, B) is called generalized D-symmetric pair of operators if

$$\overline{\operatorname{ran}(\delta_{A,B})} = \overline{\operatorname{ran}(\delta_{B^*,A^*})}.$$

The set of all such pairs is denoted by $\mathfrak{GS}(H)$. Here $\overline{ran(\delta_{A,B})}$ is the closure of the range, $ran(\delta_{A,B})$, of $\delta_{A,B}$ in the norm topology.

Definition 2.6. Let $A \in \mathcal{L}(H)$. If

AT = TA implies $A^*T = TA^*$, $\forall T \in \mathcal{C}_1(H)$, then A is called P-symmetric.

Definition 2.7. Let $A, B \in \mathcal{L}(H)$, the pair (A, B) of operators such that BT = TA implies $A^*T = TB^*$ for all $T \in \mathcal{C}_1(H)$ is called a generalized *P*-symmetric pair of operators. The set of all such pairs is denoted by $\mathcal{GF}_o(H)$, that is, the pair (A, B) satisfies the Fuglede-Putnam's theorem in $\mathcal{C}_1(H)$.

Let $\mathcal B$ be a Banach space and let $\mathcal S$ be a subspace of $\mathcal B$. Denote by $\mathcal B'$ the set of all linear functionals, and set

$$\mathbb{B}^{*} = \left\{ f \in \mathbb{B}' : f \text{ is bounded (norm-continuous)} \right\},\$$

$$\operatorname{Ann}(S) = \{ f \in \mathcal{B}^* : f(s) = 0 \text{ for all } s \in S \}.$$

In [6] the author proved the following theorem.

Theorem 2.1. Let $A, B \in \mathcal{L}(H)$. Then $(A, B) \in \mathcal{GF}_0(H) \Leftrightarrow \overline{\operatorname{ran}(\delta_{A,B})}^{w*} = \overline{\operatorname{ran}(\delta_{B^*,A^*})}^{w*}$.

3 Main Results

In the following theorem we will present some properties of $\mathcal{T}_0(A, B)$, $\mathcal{I}_0(A, B)$ and $\mathcal{B}_0(A, B)$.

Theorem 3.1. Let $A, B \in \mathcal{L}(H)$. If the pair (A, B) is generalized P-symmetric, then we have

(i) $\mathfrak{T}_0(A, B)$, $\mathfrak{I}_0(A, B)$ and $\mathfrak{B}_0(A, B)$ are C^* -algebras w^* -closed in $\mathcal{L}(H) \times \mathcal{L}(H)$.

(ii) $\mathfrak{T}_0(A, B)$ is a bilateral ideal of $\mathfrak{I}_0(A, B)$.

(iii) $ran(\delta_{C,D}) \subset \overline{ran(\delta_{A,B})}^{w*}$ for all $C, D \in C^*(A,B)$, the C^* -algebra generated by the pair $(A, B) \in \mathfrak{GF}_0(H)$.

Proof. (i) Let $(C, D) \in \mathfrak{T}_0(A, B)$. Since $C^*\mathcal{L}(H) = [\mathcal{L}(H)C]^* \subseteq \overline{ran(\delta_{A,B})}^{w*}$, it follows that $C^*\mathcal{L}(H) \subseteq \overline{ran(\delta_{A,B})}^{w*}$. By the same arguments as above we prove that $\mathcal{L}(H)D^* \subseteq \overline{ran(\delta_{A,B})}^{w*}$, that is, $(C^*, D^*) \in \mathfrak{T}_0(A, B)$. If $C, D \in \mathcal{L}(H)$, then the linear maps $L_C X = CX$ and $R_D X = XD$ are w^* -continuous. Consequently $\mathfrak{T}_0(A, B)$ is w^* -closed in $\mathcal{L}(H) \times \mathcal{L}(H)$. By the same arguments as above we prove that $\mathfrak{I}_0(A, B)$ and $\mathfrak{B}_0(A, B)$ are C^* -algebras w^* -closed in $\mathcal{L}(H) \times \mathcal{L}(H)$.

(ii) If $(C, D) \in \mathcal{J}_0(A, B)$ and $(E, F) \in \mathcal{T}_0(A, B)$, then for all $X \in \mathcal{L}(H)$ we have $X(CE) = (XC)E \in \overline{ran(\delta_{A,B})}^{w*}E \subset \overline{ran(\delta_{A,B})}^{w*}$. We have also $(DF)X = D(FX) \in \overline{ran(\delta_{A,B})}^{w*}$. This shows that $\mathcal{T}_0(A, B)$ is an ideal at right. Since $\mathcal{T}_0(A, B)$ is a C^* -algebra, it follows that $\mathcal{T}_0(A, B)$ is a bilateral ideal of $\mathcal{J}_0(A, B)$.

(iii) Assume that $(C, D) \in \mathcal{B}_0(A, B)$. Since $\mathcal{B}_0(A, B)$ is a C^* -algebra containing the pair (A, B) and (I, I), it contains $C^*(A, B)$.

Remark 3.1. In [8] the author proved that

$$Ann(ran(\delta_{A,B})) = Ann(ran(E_{A,B})) \cap Ann(K(H)) \oplus \ker(\delta_{B,A}) \cap \mathcal{C}_1(H).$$
(2.1)

Note that $\overline{ran(\delta_{A,B})}^{w*}$ is self-adjoint if and only if

 $Ann(ran(\delta_{A,B})) \cap \mathcal{L}(H)'^{w*}$

is also self-adjoint. By using (2.1) we obtain in particular

$$Ann(ran(\delta_{A,B})) \cap \mathcal{L}(H)^{\prime w*} \simeq \ker \delta_{B,A} \cap \mathcal{C}_1(H),$$

where $\mathcal{L}(H)'^{w^*}$ is the set of the ultra-weakly continuous linear functionals on $\mathcal{L}(H)'$. Thus $(A, B) \in \mathfrak{GF}_0(H)$ if and only if $\overline{ran(\delta_{A,B})}^{w^*}$ is self-adjoint.

Theorem 3.2. Let $A, B \in \mathcal{L}(H)$. If (A, B) is generalized P-symmetric, then

$$B^*ran(\delta_{A,B}) + ran(\delta_{A,B})A^* \subset \overline{ran(\delta_{A,B})}^{w*}.$$

Proof. Assume that (A, B) is generalized *P*-symmetric. Then it follows from

Theorem 2.1 that: $\overline{ran(\delta_{A,B})}^{w*} = \overline{ran(\delta_{B^*,A^*})}^{w*}.$ But since $B^*\delta_{B^*,A^*}(X) = \delta_{B^*,A^*}(B^*X) \text{ and } \delta_{B^*,A^*}(X)A^* = \delta_{B^*,A^*}(XA^*), \text{ we de-}$ duce that:

 $B^* ran(\delta_{A,B}) \subset B^* \overline{ran(\delta_{A,B})}^{w*} = B^* \overline{ran(\delta_{B^*,A^*})}^{w*} \subseteq \overline{ran(\delta_{B^*,A^*})}^{w*} =$ $\overline{ran(\delta_{A,B})}^{w*}.$

By the same arguments shown above we can prove that: $ran(\delta_{A,B})A^* \subset \overline{ran(\delta_{A,B})}^{w*}$. This completes the proof.

In [5] we proved that the direct sum of *D*-symmetric operators is also *D*symmetric if $\sigma(A) \cap \sigma(B) = \phi$. By a slight modification in the proof of [5, Theorem 2.4] we can prove the following theorem.

Theorem 3.3. Let A and B be two P-symmetric operators such that $\sigma(A) \cap$ $\sigma(B) = \phi$. Then $A \oplus B$ is also P-symmetric.

Note that the condition given in the previous theorem is necessary for $A \oplus B$ to be *P*-symmetric as we will show in the following example.

Example 3.1. (i) Let $\Delta = \{z \in \mathbb{C} : |z| \leq 1\}$ and $H_1 = L^2(\Delta)$. Define $M \in \mathcal{L}(H)$ as follows :

$$M: H_1 \to H_1, s.t., f \to Mf$$

That is

$$\forall z \in \Delta, Mf(z) = zf(z)$$

(ii) Let H_2 be a separable complex Hilbert space, and let $(e_n)_n \in \mathbb{N}$ be an orthonormal basis of H_2 . Consider the unilateral shift $S: H_2 \to H_2$, which is defined by

$$Se_n = e_{n+1}, \forall n \in \mathbb{N}.$$

Note that both S and M are normal and hence they are P-symmetric operators. (iii)Define $\tau: H_2 \to H_1$ to be :

$$\tau e_n(z) = z^n \chi_D,$$

where $D = \{z \in \mathbb{C} : |z| \le \alpha < 1\}$, and α is fixed. We claim that τ is a trace class operator, because

$$\|\tau e_n(z)\|^2 = \|z^n \chi_D\|^2 = \int \int_D |z^n|^2 r dr d\theta = \int \int_D r^{2n+1} e^{2in\theta} dr d\theta = 2\pi (\frac{(\alpha^{2n+2})}{2n+2})$$

Since $|\alpha| < 1$,

$$\|\tau\| \le \sum_{n=1}^{\infty} \|\tau e_n\| \le \sqrt{2\pi} \frac{\alpha^{n+1}}{\sqrt{2n+2}} < \infty.$$

Hence τ is a trace class operator. (iv) Let

LCI

$$A = \begin{pmatrix} M & 0\\ 0 & S \end{pmatrix}$$

$$T = \begin{pmatrix} 0 & \tau \\ 0 & 0 \end{pmatrix}$$

Since τ is of trace class, T is also of trace class. Note that AT = TA, but if $T^*A = AT^*$, then $\tau^*M = S\tau^*$. But the equation SX = XM implies X = 0 [11]. This contradicts our hypothesis Thus $A = M \oplus S$ is not P-symmetric.

The previous example is used in [2] to show that the direct sum of two D-symmetric operators is not in general D-symmetric.

In [5] we proved that the set $Ds = \{T + K : T \text{ is } D\text{-symmetric}, K \text{ compact} \}$ is norm-dense in $\mathcal{L}(\mathcal{H})$. By a slight modification in the proof of [5, Theorem 2.7] we can prove that the set $Ps = \{T + K : T \text{ is } P\text{-symmetric}, K \text{ compact} \}$ is also norm-dense $\mathcal{L}(\mathcal{H})$.

Remark 3.2. It is known that the operator $A, B \in B(H)$ satisfy the Fuglede-Putnam's theorem if AX = XB, $X \in B(H)$ implies $A^*X = XB^*$. Thus our results are generalizations of Fuglede-Putnam's theorem in $\mathcal{C}_1(H)$. Recall [3] that if A is normal or isometric, then A is p-symmetric.

Acknowledgement. The author would like to thank the referee for his careful reading of the manuscript and his valuable suggestions.

References

- J.H.Anderson, On normal derivation, Proc. Amer. Math. Soc, 38(1973), 135-140. MR0312313
- [2] J.H.Anderson, J.W. Bunce, J.A.Deddens and J.P.Williams, C^{*} algebras and derivation ranges. Acta sci. Math. (Szeged), 40(1978), 211-227. MR0515202
- [3] C. A. BERGER, B. I.SHAW, Self-commutator of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc., 79, (1973), 1193-1199.

and

- [4] J.B.Conway, Subnormal operators. Research Notes in Mathematics, 51. Pitman(Advanced Publishing Program), Boston, Mass.-London, 1981. MR634507.
- [5] S.Mecheri, D-symmetric operators: Comments and some open problems, Banach J. Math. Anal. 2 (2008), 7883
- [6] S.Mecheri, Generalized P-symmetric operators, Math. Proc. Roy. Irish. Acad, 104A(2004), no.2, 173-175. MR2140424.
- [7] S. Mecheri and M. Bounkhel, Some variants of Anderson's inequality in C_1 classes, J. Ineq. Pure. Appl. Math., 4(2003), 1-6. MR1966004
- [8] S.Mecheri, Generalized D-symmetric operators, Acta.Sci.Math (Szeged), 72(2006), 367-372. MR2249496.
- [9] S.Mecheri, A new characterization of Anderson's Inequality in C_1 classes, Czech.Math.J., 57(2007), 697-703
- [10] V.S.Shulman, On linear equation with normal coefficient (in Russian), Doklady Akad-Nauk USSR 2705 (1983), 1070-1073. MR0714059
- [11] A.L.Shields, Weighted shifts operators analytic function theory, Topics in operator theory, Math survey 13, Amer. Math. Soc Providence, R.I., 1974.
- [12] J.P.Williams, Derivations ranges: Open problems, Topics in Modern operator Theory, Birkhauser-Verlag(1981) 319-328. MR672832.
- [13] D.A.Herrero, Approximation of Hilbert space operator I, Pitman Advanced publishing program, Boston, London -Melbourne (1982).

King Saud University, College of Science Department of Mathematics, P.O.Box 2455, Riyadh 11451, Saudi Arabia e-mail: mecherisalah@hotmail.com