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SOME CHARACTERIZATION OF INFINITE

ANTIMATROIDS
∗

Hua Mao

Abstract

We provide some characterizations of an infinite antimatroid. Some

of them are the generalization of the corresponding results of finite anti-

matroids. Every extension is not straightforward because certain char-

acterizations of a finite antimatroid are lost in the infinite case. Addi-

tionally, some characterizations of infinite antimatroids in this paper are

in lattices. These lattices axioms are also true for finite antimatorids.

1 Introduction and preliminaries

[1-4] point out that convex geometry is the branch of geometry studying
convex sets. The phrase convex geometry is also used in combinatorics as
the name for an abstract model of convex sets based on antimatroids. In
mathematics, an antimatroid is a formal system that describes processes in
which a set is built up by including elements one at a time, and in which an
element, once available for inclusion, remains available until it is included.

Antimatroid theory is more and more attracted people’s eyes(cf.[1-5]). Un-
fortunately, for infinite case, the results are much less than that of finite case
though infinite case is an important part in antimatroid theory. This article
will study on infinite case as Wahl in [5]. We will provide some characteriza-
tions for infinite antimatroids. In the future, we hope to see that the work in
this article is the foundation to research on infinite antimatroids.
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We begin this article by giving some basic definitions and lemmas. In what
follows, E denotes some arbitrary–possibly infinite–set.

Definition 1[5] A closure system on a ground set E is a pair (E,L) where
L is a collection of possibly infinite subsets of E such that

(csi) ∅, E ∈ L;
(csii) for all C ⊆ L, the set ∩C ∈ L.
We will call the elements of L closed sets.
A closure operator τ on E is a map from E to E such that
(coi) A ⊆ τ(A);
(coii) A ⊆ B implies τ(A) ⊆ τ(B);
(coiii) τ(τ(A)) = τ(A);
(coiv) τ(∅) = ∅.
A closure system is called an antimatroid if the following anti-exchange

property is satisfied: for all A ∈ L = {Y ⊆ E|τ(Y ) = Y }, for all distinct
x, y ∈ E \ A and x 6= y, y ∈ τ(A ∪ x) ⇒ x /∈ τ(A ∪ y).

Antimatroids are also known as convex geometries.

Lemma 1[5] A closure system (E,L) provides the following closure op-
erator: for all A ⊆ E, τ(A) = ∩{F ∈ L|A ⊆ F}. τ(A) is called the closure

of A. The notions of closure system and closure operator are in fact equivalent.

Based on Lemma 1, in this paper, no different to say a closure system as
(E,L) or (E, τ), where τ is the corresponding closure operator to L.

Remark 1 (1) The antimatroid provided above, in finite case, [1,2,4] calls
it a convex geometry. Besides, [1,2,4] calls an “antimatroid” in finite case as
the complement of a convex geometry. On the other hand, [1,p.23, Theorem
1.3&2,4] means the equivalence of finite antimatroids and convex geometries.
The two hands tells us that in finite case, under equivalence, it is no different
to say that a construction is an antimatroid or a convex geometry. However,
this paper calls the antimatroid in Definition 1 as infinite antimatroid though
it is true for finite case.

(2) In this article, the knowledge about lattice theory is seen [6,7], and for
more details about antimatroids(or say convex geometry), it could be referring
to [5,8].

We extend some definitions from finite(cf.[1,p.21&2]) to infinite antima-
troid as follows.

Definition 2 Let τ be a closure operator on E. An element x of a subset
A ⊆ E an extreme point of A if x /∈ τ(A \ x). The set of extreme points of A
is denoted by ex(A). A minimal spanning set of a set X is a minimal subset
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Y ⊆ X such that τ(Y ) = τ(X).

About extreme points, we have the following result.

Lemma 2 Let τ be a closure operator on E and L be the set of closed
sets of τ . Let A ∈ L. Then x ∈ ex(A) is equivalent to A \ x ∈ L.

Proof If x ∈ ex(A) and A \ x /∈ L, then there is y ∈ τ(A \ x) \ (A \ x) =
{x} ⊆ τ(A) = A, that is, x ∈ τ(A \x). This is a contradiction to x /∈ τ(A \x).
Conversely, if for y ∈ A and A \ y ∈ L, i.e. τ(A \ y) = A \ y. Obviously,
y /∈ A \ y = τ(A \ y), that is, y ∈ ex(A).

Section 2 of the text provides some characterizations for infinite antima-
troids. Theorem 2 are the generalizations of finite cases; Theorem 1 are pro-
vided by lattice theory. In the last of Section 2, we give a characterization
of an infinite antimatroid associated with orderly. All of characterizations are
true for finite and infinite.

2 Characterizations

Throughout this section, we want to characterize an infinite antimatroid.
Some relative results have been studied by [1,2] for finite cases such as Theo-
rem 2. Using lattice theory, Theorem 1 characterizes an infinite antimatroid,
and further, Theorem 3 provides a method to judge an infinite antimatroid to
be orderly.

[1,2] said that for finite antimatorids, lattice theory was one of the key
sources. So it is not surprising that lattices play an important role in the
study of wider classes such as infinite antimatroids. The following theorem 1
will show the point.

Theorem 1 Let τ be a closure operator on E and L be the set of closed
sets of τ . Then the following conditions are equivalent.

(1) (E, τ) is an infinite antimatroid.

(2) (L,⊆) satisfies that
(i) it is a complete and bounded lattice with ∅, E ∈ L;
(ii) for any A ⊆ E, x, y ∈ E \ τ(A) and x 6= y, if τ(A∪x∪ y) = τ(A∪x), then
there is a chain τ(A) ⊂ τ(A ∪ y) ⊂ τ(A ∪ x ∪ y) in (L,⊆).

Proof (1)⇒(2) Since for any A,B ∈ L, (csii) pledges A ∩ B ∈ L. Thus,
A∧B, the infimum of A,B in L, is existed as A∩B. Though A∪B could not
ensure to be a closed set, (csii) assures ∩{X ∈ L|A ∪ B ⊆ X} ∈ L. Evidently
∩{X ∈ L|A ∪ B ⊆ X} is the supremum A ∨ B of A and B in L. Therefore,
(L,⊆) is a lattice.

Analogously to the above with (csii), the complete of (L,⊆) is followed.
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The hold of (ii) is followed from anti-exchange property.

(csi) shows ∅, E ∈ L. ∅, E ∈ L brings about the bounded property of
(L,⊆).

(2)⇒(1) Let σ be defined on E as σ(A) = ∧{X ∈ L|A ⊆ X} for A ⊆
E. Because (L,⊆) is a complete lattice, it leads that the definition of σ is
significant, and besides, σ(A) ∈ L.

Obviously, A ⊆ σ(A) is true. Let A ⊆ B ⊆ E. It is easy to see that
σ(A) ⊆ σ(B), and σ(σ(A)) = ∧{X ∈ L|σ(A) ⊆ X} = σ(A) is correct in view
of σ(A) ∈ L.

σ(∅) = ∧{X ∈ L|∅ ⊆ X} and the known ∅ ∈ L in (2) together follows
σ(∅) = ∅.

Hence, σ is a closure operator on E.

According to the definition of σ, it hints that A ∈ L if and only if A = σ(A).
Moreover, the set {X ⊆ E|X = σ(X)} of closed sets of σ is precisely L.

Recalling back the relation between closure operator and closure system in
Section 2, we get that σ is a closure operator and τ = σ. (ii) compels that τ
satisfies the anti-exchange property. Therefore, (E,L) is an infinite antima-
troid.

We give two examples to show some difference between finite and infinite
antimatroids.

Example 1 Let E = {1, 2, . . .}. Define τ : 2E → 2E as τ(A) = A if A is
a finite subset of E; τ(A) = E if A is an infinite subset of E. It is easy to see
the hold of (csi) and (csii) for τ , and also, the correct of (coi)-(coiv) and the
anti-exchange property for τ . Namely, (E, τ) is an infinite antimatroid and
the set of all closed sets L = {E} ∪ {X|X is a finite set of E}. Let A,B ∈ L.
It is easy to see that for all closed sets A ⊂ B, there exists x ∈ B \ A such
that A ∪ x is closed.

Example 2 Let E be all the real numbers and ρ be the ordinary topology
on E, i.e. ρ(x, y) = |x − y| for x, y ∈ E. Let F be all the closed sets of
(E, ρ). Define τ : 2E → 2E as τ(A) =

⋂

A⊆X∈F

X. With the help of topology

knowledge (cf.[9&10]), we obtain that (E, τ) is an infinite antimatroid. Let
A = [0, 1] and B = [0, 2]. Then both A and B are closed sets in (E, τ), and
A ⊂ B holds. But for any x ∈ B \A = (1, 2], A∪x is not a closed set in (E, τ).

The two examples imply that for an infinite antimatroid (E, τ) and two
closed sets A,B,
if E is infinite, A ⊂ B can not pledge that there is x ∈ B \ A such that A ∪ x
is a closed set.
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But if E is finite, A ⊂ B pledges that A ∪ x is a closed set for some x ∈
B \ A.(cf.[1,2]).

Even though, we still have the following theorem.

Theorem 2 Let τ be a closure operator on E and L be the set of closed
sets such that for A,B ∈ L, if A ⊂ B, then there is a minimal closed set C
meeting A ⊂ C ⊆ B. Then the following (1)-(4) are equivalent.

(1) (E, τ) is an infinite antimatroid.

(2) For all closed sets A ⊂ B, there exists x ∈ B \ A such that A ∪ x is
closed.

(3) A = τ(ex(A)), for every closed set A.

(4) Every A ⊆ E has a unique minimal spanning subset.

Proof (1)⇒(2) Similarly to finite case in [2], suppose C is a minimal
closed set such that A ⊂ C ⊆ B, and let x ∈ C \ A. Then x /∈ τ(A) = A.
If y ∈ τ(A ∪ x) \ (A ∪ x), then according to anti-exchange property, it gets
x /∈ τ(A ∪ y). Thus, A ⊂ τ(A ∪ y) ⊂ C, which contradicts the minimality of
C. Namely, there exists x ∈ B \ A such that A ∪ x is closed.

(2)⇒(3) Clearly, ex(A) ⊆ A and (coii) leads to τ(ex(A)) ⊆ τ(A) = A.

By Theorem 1, (L,⊆) is a lattice. Let A,B ∈ L and A cover B, in notation,
B ≺ A. Recalling back (2), there is a ∈ A \ B satisfying B ∪ a = A. This
means a /∈ A \ a = B = τ(A \ a). Hence a ∈ ex(A) according to Lemma 2.

If τ(ex(A)) ⊂ A. This implies that there is D ∈ L, D ≺ A and τ(ex(A)) ⊆
D ⊂ A. Hence, there is d ∈ A \ D so as to d ∈ ex(A) in view of the above,
which is a contradiction to d ∈ A \ τ(ex(A)). Namely, (3) holds.

(3)⇒(4) We will prove that ex(τ(A)) is the unique minimal spanning sub-
set.

For any A ⊆ E, by (3), τ(A) = τ(ex(τ(A))) is true. It obtains that
ex(τ(A)) is a spanning subset of A. Let Y be a spanning set for A, i.e.
τ(Y ) = τ(A). Suppose x /∈ Y for some x ∈ ex(τ(A)). Then x ∈ τ(Y ) =
τ(Y \ x) ⊆ τ(τ(Y ) \ x) = τ(τ(A) \ x), a contradiction to τ(Y ) = τ(A). Hence
ex(τ(A)) is contained in every spanning set of A. Furthermore, ex(τ(A)) is
the unique minimal spanning subset of A.

(4)⇒(1) Suppose it has x, y /∈ τ(A), x 6= y, y ∈ τ(A∪ x), and x ∈ τ(A∪ y).
Then τ(A ∪ x) = τ(A ∪ y) = τ(A ∪ x ∪ y). Let S be the unique minimal
spanning set of τ(A ∪ y). Since both A ∪ x and A ∪ y are spanning set of A,
it must get S ⊆ (A ∪ x) ∩ (A ∪ y) = A, and thus, τ(S) ⊆ τ(A) ⊂ τ(A ∪ x), a
contradiction. This shows the correct of (1).

Theorem 2 is true for finite case because for any closed sets, if A ⊂ B, it
must have a minimal closed set C satisfying A ⊂ C ⊆ B. This also could be
found in [2].
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With the known results, we analyze our characterizations–Theorem 1 and
Theorem 2.

(α) Let E = {1, 2, . . .} in which 1 > 2 > . . . > n > n + 1 > . . .. Define,
for A ⊂ E, D≤(A) = {x ∈ E|∃y ∈ A : x ≤ y}. By [5], (E,D≤) is an
infinite antimatroid. Evidently, ∅ ≺ . . . ≺ D≤({n + 1}) ≺ D≤({n}) ≺ . . . ≺
D≤({3}) ≺ D≤({2}) ≺ D≤({1}) = E is not a finite chain in the lattice
(D≤,⊆).

(β) For finite case, the similar result to Theorem 2 is [1,p.21,Theorem
1.1&2,8.7.2 Proposition]. The proofs [1,p.21,Theorem 1.1&2,8.7.2 Proposition]
use finite property of the ground set E for finite convex geometry (E, τ). In
other words, their talking are only true for finite convex geometries.

(γ) [2] says that when E is finite, (E, τ) is a convex geometry if and only
if all maximal chains of closed sets, τ(∅) = A0 ⊂ A1 ⊂ . . . ⊂ Ak = E, have
the same length k = |E − τ(∅)|.

Considering (α), we see that this is not true for infinite antimatroid.

(η) [1,p.21,Theorem 1.1 and 2,8.7.2 Proposition] seldom directly discuss
the characterizations in lattice theory. In the proof of Theorem 2, we use
Theorem 1 which is a lattice characterization of infinite antimatroid.

(ζ) Combining (α) − (η), we conclude that our proof of Theorem 2 is dif-
ferent from [1,p.21,Theorem 1.1] and [2,8.7.2 Proposition], though sometimes
it seems a little similar. That is to say, our characterizations especially The-
orem 2 do not simply generalize the known facts; they have advantages and
developments from finite to infinite.

Analogously to [5], we give a definition as follows.

Definition 2 An infinite antimatroid (E,L) is said to be orderly whenever

∀A,B ∈ L with A ∪ B ∈ L.

We state now an easy result using Theorem 1.

Theorem 3 Let τ be a closure operator on E and L be the set of closed
sets of τ . Then (E,L) is an orderly infinite antimatroid if and only if (L,⊆)
is a complete and bounded lattice with A ∨ B = A ∪ B for any A,B ∈ L and
has the hold of (ii).
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