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A NEW GENERALIZATION OF
OSTROWSKI TYPE INEQUALITY ON
TIME SCALES

Wenjun Liu, Qu%)c-Anh Ngo6 and Wenbing Chen

Abstract

In this paper, by introducing a parameter, we first extend a general-
ization of Ostrowski type inequality on time scales for functions whose
derivatives are bounded and then unify corresponding continuous and
discrete versions. We also point out some particular integral inequalities
on time scales as special cases.

1 Introduction
The following integral inequality was first established by Ostrowski in 1938.

Theorem 1 Let f : [a,b] — R be continuous on [a,b] and differentiable in
(a,b) and its derivative f' : (a,b) — R is bounded in (a,b), that is, ||f'||cc :=
sup |f'(z)| < co. Then for any x € [a,b], we have the inequality:

te(a,b)

b o — atb)?
|f(x)—b_1a/ F(t)dr| < <i+()> =)l ()

The inequality is sharp in the sense that the constant i cannot be replaced by
a smaller one.
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For some extensions, generalizations and similar results, please see [6, 8, 9,
14, 15, 19, 20, 21] and references therein.

The development of the theory of time scales was initiated by Hilger [10]
in 1988 as a theory capable to contain both difference and differential calculus
in a consistent way. Since then, many authors have studied the theory of
certain integral inequalities on time scales. For example, we refer the reader
to [1, 4, 5, 7, 11, 13]. In [5], Bohner and Matthews established the following
so-called Ostrowski’s inequality on time scales.

Theorem 2 (See [5], Theorem 3.5) Let a,b,s,t € T, a <b and [ : [a,b] = R
be differentiable. Then

M,
b—a

b
‘f(t)—bla [ s < (et s b)), @)

where My = sup |f2(t)|. This inequality is sharp in the sense that the right-
a<t<b
hand side of (2) cannot be replaced by a smaller one.

Liu and Ngo [16] then generalized the above Ostrowski inequality on time
scales for k points x1, 2o, - , ) for functions whose derivatives are bounded.
They also extended the result by considering functions whose second deriva-
tives are bounded in [17]. They obtained:

Theorem 3 Let a,b,x,t € T, a < b and f : [a,b] = R be a twice differ-
entiable function on (a,b) and f2% : (a,b) — R is bounded, i.e. My :=

sup |fA2(z)| < oo. Then we have
a<t<b

/ oAt — f7(x)(b— a) + (ha(z,a) — ho(z, b)) f2(x)| < M, (hs(z,a)—hs(z,b)).

The Theorem 3 may be thought of as a perturbed version of the Theorem
2. In [18], the authors derive a perturbed Ostrowski type inequality on time
scales for k points x1,zs, -+ , 2 for functions whose second derivatives are
bounded.

In the present paper, by introducing a parameter, we shall first extend
another generalization of Ostrowski type inequality on time scales for functions
whose derivatives are bounded and then unify corresponding continuous and
discrete versions. We also point out some particular integral inequalities on
time scales as special cases.
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2  The generalized Ostrowski type inequality on time
scales

A time scale T is an arbitrary nonempty closed subset of the real numbers.
For a general introduction to the theory of time scale we refer the reader to
Hilger [10] (see also [16, 17, 18]) and the books [2, 3, 12] .
Definition 1 Let hy, : T?> - R, k € Ny be defined by

ho(t,s)=1 forall s,teT

and then recursively by

t
hit1 (t,8) = / hi (1,8) AT forall s,t€T. (3)

Our main result reads as follow.

Theorem 4 Let a,b,s,t € T, a <b and f : [a,b] — R be differentiable. Then

flay+fo) 1,
2 _bfa/af(s)AS

M b—a b—a
< - p—
\b_a<h2<a,a+>\ 5 )+h2<t,a+/\ 5 ) (4)

thy <t,b—>\b;a) + ho (b,b—Ab;"))

for all X € [0,1] such that a + A(b — a)/2 and b — A\(b — a)/2 are in T and

t€la+A5%,b— A5 NT, where M := s<1£b|fA(t)| < 00. This inequality

(IT=XNfE)+A

s sharp provided

b—a
2

A 22 atA
Salb—a)+ 5 (b—a) < / sAs. (5)

Remark 1 We note that the condition (5) is trivial if A = 0.

To prove the Theorem 4, we need the following Generalized Montgomery
Identity. This is motivated by the ideas of Dragomir et al. in [9], where the
continuous version of a generalized Ostrowski integral inequality for mappings
whose derivatives are bounded was proved.
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Lemma 1 (Generalized Montgomery Identity) Under the assumptions
of Theorem 4, we have

b b
(1—)\)f(t)+)\f(a)—2|_f(b) _ bia/a f"(s)As—i—ﬁ/ﬂ K(t, )2 () As

where

b—a
Kit,s) = o on5T) eeien ©)

—(b—Ab;a), s € [t,b].

Proof. Integrating by parts, we have

/Ktsz

ez -2
=(t- (ar232) )10 0 wst0 - [

-(i- (- bza>)f /f”
SRUICEPURPSE ) /f"

from which we get the desired identity.

Corollary 1 (Continuous case) Let T =R. Then

“ b b
(l—A)f(t)—l-)\f( );f(b) = bia/u f(s)ds—l—bia/a K(t,s)f'(s)ds. (7)

This is the Montgomery identity in the continuous case, which can be found
in [9].

Corollary 2 (Discrete case) Let T =7Z,a=0,b=n, s=j,t =1 and
f(k) = xp. Then

n n—1
To + Tnp 1 1 .
(I =Xz + A 5 :5E xj—ﬁ—ﬁg K (i,7) Ax;,
i=1 =0
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where
nA
K(.0) = — 2
(5,0)= "2,
n\
K(1,j) =3 — (n—2> for 1<j<n—1,
nA
K(nj)=j—— for 0<j<n—1,

K(i,j) =
j_(n_%)\)’ jE[i,n—l],
as we just need 1 <i<nandl <j<n—1.

Corollary 3 (Quantum calculus case) Let T = ¢°, ¢ > 1, a = ¢™,b =
q" with m <n. Then

(1= N)f() +Af(qm);f(qn)

n—1

> q’“f(q’““)

=k=m — Z ¢ = fd")] K(t,4"),
q* 1
k=m
where
qlc_<qm_’_)\qm2_(]n>7 qu[qm,t),

K(t,¢") =

n qm_qn N n
qk—(q A ) ¢ €[t.q"].

Proof. (Proof of the Theorem 4) By applying Lemma 1, we get

b
(- wf(e) + A0 bia/ £7(s)As

(ot )
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=bMa(/Q e (ot asn [ (o5
o >As+/:ws—<b—w;a>\m>
</W< (05 ) e [ (- (at5) ) o
o >>As+/:w<s—<b—»b;a>>m>
-2 <h2<aa+>\b>+h2<t,a+)\b;a)
(125 s (125,

which completes the first part of our proof.

’As

b— )\

+

b— )\

To prove the sharpness of this inequality, let f(¢) = ¢, t = b — )\b_Ta. It
follows that M = 1. Starting with the righ-hand side of (4), we have

M <h2<aa+)\b>+h2<t,a+)\ba>
b—a 2
+h2(t,b— b;“>+h2<, b “))

1 a b—a b—a b—a
_b—a<h2<7 >+h2<b—)\2 ,a 5 )-‘rhg(b,b—/\ 5
Moreover,

ho (a,a—i—/\b;a)

(s— (a—l—)\b_a))As
)\b a 2

sAs — <a+/\ba> (a— (a+)\ba>>
a+)\b 2 2 2

:/ sAs—i—(a—i—)\b_a))\b_a.
Fabze 2 2

I
\\

)
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_ _ b—Abza _
hg(b—Ab @l a):/ ’ (s—(a—i—)\b “))As
2 2 apabza 2
b_)\b—a _ . _
:/ ’ sAs—(a—i—)\b a) <b—)\b a—(a—i—)\b “))
atALze 2 2 2

:/:‘“?SAS_(HA*);“) (b-a)(1- ).

b—
FALge

J— b —
h2<b,b—>\b a)—/ <s—<b—)\b “>)As
2 b—abze 2
b
b—a b—a
—/b_)\bzasAs—(b—)\ 5 ) b (b—)\ 5 ))

b — —
:/ sAs—(b—Ab G)Ab
b—abze 2 2

Thus, in this situation, the right-hand side of (4) equals to

1 ata bz b—Ab5e b
—/ sAs—l—/ sAs—i—/ sAs
b—a a a+Abza b_Ab—Ta

2

b—a\ A b—a b—a\ A
A P AU P AR

—a

1 at+X’3 b
b—a<2/a sAer/asAs)(aJr)\(ba))(l)\).

Starting with the left-hand side of (4), we have

b
R = UGS

— 1 b
=1(1-2X) <b_)\b2a>+)\a—2|—b_ba/ o(s)As

b—a a+b 1 b
= (1 — — _bh—=
( A)(b A 5 )—i—)\ 5 +bfa/aSAS b—a

A I
= —)\(1—2>(b—a)—a+b_a‘/a SAS

a

b
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where we have used

/aba (s)As = /ab (U(S)-l-S)As—/: sAs = /:(SQ)AAS—/: sAs = b2—a2—/ab sAs.

So, if

b—a

2 a+A 5
%a(b—a)—&-%(b—a)zé/ sAs

holds true, then

b
|)\<1)\>(ba)a+1 sAs

2 b—a /,

A I
> — — — — — _
> )\(1 2)(1) a) aer—a asAs

1 a+X
> -2
b—a /a

which helps us to complete our proof.
If we apply the the inequality (4) to different time scales, we will get some
well-known and some new results.

b—a
2

sAs—l—/bsAs) —(a+A(b—a))(1-N),

Corollary 4 (Continuous case) Let T = R. Then our delta integral is the
usual Riemann integral from calculus. Hence,

(t—s)*
5

he (t,s) = forall t,seR.

This leads us to state the following inequality

b
1= np0 + AT [ as

2
<M (i(b—a)((l—/\)Z—i-)\Q)—&-bla (x—a;’b) )

for all X € [0,1] and a+A25% <t <b—A5%, where M = sup |f'(z)| < oo,
z€(a,b)
which is exactly the generalized Ostrowski type inequality shown in Theorem 2

of [9].
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Corollary 5 (Discrete case) Let T =7Z,a=0,b=n, s=j,t =1 and
f(k) = xg. Thus, we have

o+ 1w M|, n+1]> @X2—22+1)n2-1
1— ) S 1< = _
(1= Nzi + A= nzxj - Oz 5 ’ - 1

j=1
for all A € [0,1] such that )‘7” and n — % are in Z and i € [%,n— )‘7”] NnT,
where M = max |Az;| < oo.
1<i<n—1
Proof. In this situation, it is known that
t—s
hi (t,s) = N , forall t,seZ.

Therefore,

bh—
h2<a,a+)\ 2a>< 2 2 @7
j — nA ;o mA) (j _nA
N ===
2 ) 2

b—a
ha (t,b—)\ 5 ):

and

nA nA (nA
_ b—a\ _ 2 _ 2 (2 _1)
h2<t,b A 5 )—( ) )— 9 )

Thus, we get the desired result.

Corollary 6 (Quantum calculus case). Let T = g >1, a=q¢"b=q"
with m < n. Then

n

(1_A)f(t)+Af(qm);f(qn) - _1qm /q £7(5)As

qm™

ST @ e (” ol

3 A
+ ((2)\2 _ 5)\ + 1) <q2m+1 + q2n+1) _ )\(3 _ 2)\)qm+n+1 + E(qm _ qn>2) )
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for all X € 0,1] such that ¢™ + A5%— and ¢" — A25%— are in T and

n __ ,m n __ ,m
L et e

2 2
where
t)— f(t
M= s |{@ f()’.
te(qm™,q™) (q _’1)t
Proof. In this situation, one has
Ml gvs
hk(t,s):H Vq , forall t,seT
v=0 3. g#
pn=0
wd flat) - (0
qt) —
FA0) =
(¢—1)t
Therefore,

h2 (qm’qm +>‘q —

2 11¢
ha (tvqm + Z 2qm> - t-(-3)d" - 361"]1[1—(](1 — ) g™t = Agnt]
O R s
and

ha (qm,qn - )\q" ;qm> — 3" —q™) [¢" - §1+ q’\) gt = 3]

Thus, we get the result.

3 Some particular integral inequalities on time scales

In this section we point out some particular integral inequalities on time scales
as special cases, such as: rectangle inequality on time scales, trapezoid inequal-
ity on time scales, mid-point inequality on time scales, Simpson inequality on
time scales, averaged mid-point-trapezoid inequality on time scales and others.
Throughout this section, we always assume T is a time scale; a,b € T with
a < b; f:[a,b] = R is differentiable. We denote
M = sup [f2(z)|.

a<z<b
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Corollary 7 Under the assumptions of Theorem 4 with A =1 and t = C‘T*'b €
T. Then we have the trapezoid inequality on time scales

L0012 (s222) o 0 251).

(8)

Remark 2 If we take A = 0 in Theorem 4, then Theorem 2 is recaptured.
Therefore, Theorem 4 may be regarded as a generalization of Theorem 2.

Corollary 8 Under the assumptions of Theorem 4 with A = L. Then we have

3
the following integral inequality on time scales

1 Y
§ U@+ F0) +470) — = [ 17(s)as
<b1‘_4a <h2 (a, 5a6+ +h () 5a6+b (9)

forallt e [5“+b a+5b] NT.

Remark 3 If we choose t = “T'H’ in (9), we get the Simpson inequality on
time scales

1 a+b
s (f@var (52) 10 - 52
M 5a 4+ b a+b ba+b
<
S (hz( 5 >+h2( 5 6 )
a+b a+5b a+ 5b
+h2( 7 6 )+h2<b7 6 ))

Corollary 9 Under the assumptions of Theorem 4 with A = % Then we have
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the following integral inequality on time scales

O ) -k [ s
b]\fa <h2 (a73a4+b
thy (t, a4 23b> 1 hy (b, a4 Zgb) )

“TH’ in (10), we get the averaged mid-point-

<

N——
w
S
+
>

forallt e [3““’ “+‘3b] NT.

Remark 4 If we choose t =
trapezoid inequality on time scales

(25201 (43) 5% [ o
. bz\_4 <h2< Saz—b) h (a—2|—b73a2—b>

a+b a+3b a+ 3b
+h2( 5 1 )+h2(b, 1 ))

Corollary 10 Under the assumptions of Theorem 4 with t = ‘%b € T. Then
we have the following integral inequality on time scales

(1= N/ (a;b>+Af(a);rf(b) _bia/abfo(s)As

M b b b
< <h2<aa+)\2)+h2<a; a4 A 2“) (11)

“b—a

a+b b—a b—a
h b— A\ h —
+2< 2 ) 9 )+ 2(; 2 ))

for all X € [0,1] such that a + A(b—a)/2 and b — \(b—a)/2 are in T.
Remark 5 If we choose A = 0 in (11), we get the mid-point inequality on

time scales
f(a—i-b) <h2<a—2|—b )+h2<a;—b7b)>.

)AL <
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