OPERATION-SEPARATION AXIOMS IN BITOPOLOGICAL SPACES

S.M. Al-Areefi

Abstract

In this paper, the concept of pairwise $\gamma - T_0$, weak pairwise $\gamma - T_1$, $\gamma_i - T_1$, pairwise $\gamma - T_1$, weak pairwise $\gamma - T_2$, $\gamma_i - T_2$, pairwise $\gamma - T_2$, strong pairwise $\gamma - T_2$, pairwise $\gamma - R_0$ and pairwise $\gamma - R_1$ are introduced and studied as a unification of several characterizations and properties of T_0, T_1, T_2, R_0 and R_1 in bitopological spaces

1. Introduction

As a continuation of the study of operations in bitopological spaces introduced in [8], the aim of this paper is to introduce and study some separation axioms in bitopological spaces using the concept of operations on such spaces. In Section 2, we give a brief account of the definitions and results obtained in [8] which we need in this article. Section 3 is devoted to introduce the concepts of pairwise $\gamma - T_0$, weak pairwise $\gamma - T_1$, $\gamma_i - T_1$, pairwise $\gamma - T_1$, weak pairwise $\gamma - T_2$, $\gamma_i - T_2$, pairwise $\gamma - T_2$ and strong pairwise $\gamma - T_2$ and study some of their properties. Finally, the concepts of pairwise $\gamma - R_0$ and pairwise $\gamma - R_1$ are introduced and studied in Section 4.

Throughout the paper, (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or briefly, X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of X, by i - int(A) and i - cl(A), we denote respectively the interior and the closure of A with respect to τ_i (or σ_i) for i = 1, 2. Also i, j = 1, 2 and $i \neq j$. By *id* we mean the identity and *nbd* is the abbreviation of neighborhood. Also $X \setminus A = A^c$ is the complement of A in X.

Key Words: Bitopological spaces, operation and separation axioms

Mathematics Subject Classification: 54C55, 54D10, 54D15 Received: March, 2009

Accepted: September, 2009

⁵

2. Preliminary

Here, we give a brief account of the definitions and results obtained in [8] which we need in this paper.

Definition 2.1. Let (X, τ_1, τ_2) be a bitopological space. An operation γ on $\tau_1 \cup \tau_2$ is a mapping $\gamma : \tau_1 \cup \tau_2 \to P(X)$ such that $V \subset V^{\gamma}$ for each $V \in \tau_1 \cup \tau_2$, where V^{γ} denotes the value of γ at V. The operators $\gamma(V) = V, \gamma(V) = j - cl(V)$ and $\gamma(V) = i - int(j - cl(V))$ for $V \in \tau_i$ are operations in $\tau_1 \cup \tau_2$.

Definition 2.2. A subset A of a bitopological space (X, τ_1, τ_2) will be called a γ_i -open set if for each $x \in A$, there exists a τ_j - open set U such that $x \in U$ and $U^{\gamma} \subset A$. $\tau_{i\gamma}$ will denote the set of all γ_i -open sets. Clearly we have $\tau_{i\gamma} \subset \tau_i$. A subset B of X is said to be γ_i -closed if $X \setminus B$ is γ_i -open in X.

If $\gamma(u) = u$ (resp. j - cl(u)) and j - cl(i - int(u))) for each $u \in T_i$ then, the concept of γ_i -open sets coincides with the concept of τ_i -open (resp. ij - o - open [3] and $cj - \delta$ -open [3] sets.

Definition 2.3. An operation γ on $\tau_1 \cup \tau_2$ in (X, τ_1, τ_2) is said to be *i-regular* if for every pair U, V of τ_i -open nbds of each point $x \in X$, there exists a τ_i -open nbd W of x such that $W^{\gamma} \subset U^{\gamma} \cap V^{\gamma}$. If γ is 1-regular and 2-regular then it is called pairwise regular or, simply, regular.

Definition 2.4. An operation γ on (X, τ_1, τ_2) is said to be *i*-open if for every τ_i -open neighborhood U of each $x \in X$, there exists a γ_i -open set S such that $x \in S$ and $S \subset U^{\gamma}$. If γ is 1-open and 2-open then it is called pairwise open or, simply, open.

Example 2.5. Let $X = \{a, b, c\}$ and let $\tau_1 = \tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Let $\gamma : \tau_1 \cup \tau_2 \to P(X)$ be an operation defined by $\gamma(B) = i - cl(B)$ and $\lambda : \tau_1 \cup \tau_2 \to P(X)$ be an operation defined by $\lambda(B) = i - int(j - cl(B))$. Then we have $\tau_{i\gamma} = \{\phi, X\}$ and $\tau_{1\lambda} = \tau_i$. It is easy to see that γ is i-regular but it is not i-open on (X, τ_1, τ_2) .

Example 2.6. Let $X = \{a, b, c\}$ and let $\tau_1 = \tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $b \in X$ we define an operation $\gamma : \tau_1 \cup \tau_2 \to P(X)$ by

$$\gamma(A) = A^{\gamma} = \begin{cases} A & \text{if } b \in A \\ i - cl(A) & \text{if } b \notin A \end{cases}$$

Then the operation $\gamma : \tau_1 \cup \tau_2 \to P(X)$ is not regular on $\tau_1 \cup \tau_2$. In fact, let $U = \{a\}$ and $V = \{a, b\}$ be i-open neighborhoods of a, then $U^{\gamma} \cap V^{\gamma} = \{a, c\} \cap \{a, c\} = \{a\}$ and $W^{\gamma} \not\subset U^{\gamma} \cap V^{\gamma}$ for any i-open neighborhood W of a. **Definition 2.7.** Let γ, μ be two operations on $\tau_1 \cup \tau_2$ in (X, τ_1, τ_2) . Then (X, τ_1, τ_2) is called $(\gamma, \mu)_i$ -regular if for each $x \in X$ and each τ_i -open nbd V of x, there exists a τ_i -open set U containing x such that $U^{\gamma} \subset V^{\mu}$. If $\mu = id$, then the $(\gamma, \mu)_i$ -regular space is called γ_i -regular. If (X, τ_1, τ_2) is $(\gamma, \mu)_1$ -regular and $(\gamma, \mu)_2$ -regular, then it is called pairwise (γ, μ) -regular. Moreover, we can show that this operation is i-open on $\tau_1 \cup \tau_2$.

In the rest of this paper, instead of " γ operation on $\tau_1 \cup \tau_2$ in (X, τ_1, τ_2) ", we shall say " γ operation on (X, τ_1, τ_2) ".

Proposition 2.8. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then (X, τ_1, τ_2) is a γ_i -regular space if and only if $\tau_i = \tau_{i\gamma}$ holds.

Proposition 2.9. Let γ be an *i*-regular operation on a bitopological space (X, τ_1, τ_2) , then

- (i) If A and B are γ_i -open sets of X, then $A \cap B$ is γ_i -open.
- (ii) $\tau_{i\gamma}$ is a topology on X.

Remark 2.10. If γ is not *i*-regular, then the above proposition is not true in general. In Exmaple 2.6, γ is not *i*-regular. In fact $\tau_{i\gamma} = \{\phi, X, \{b\}, \{a, b\}\{a, c\}\}$ which is not a topology on X.

Definition 2.11. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is in the γ_i -closure of a set $A \subset X$ if $U^{\gamma} \cap A \neq \phi$ for each τ_i -open nbd U of x. The γ_i -closure of the set A is denoted by $cl_{i\gamma}(A)$. A subset A of X is said to be γ_i -closed (in the sense of $cl_{i\gamma}(A)$) if $cl_{i\gamma}(A) \subset A$.

Definition 2.12. Let $A \subset (X, \tau_1, \tau_2)$. For the family $\tau_{i\gamma}$, we define a set $\tau_{i\gamma} - cl(A)$ as follows:

$$\tau_{i\gamma} - cl(A) = \cap \{F : A \subset F, X \setminus F \in \tau_{i\gamma}\}.$$

Proposition 2.13. For a point $x \in X$, $x \in \tau_{i\gamma} - cl(A)$ if and only if $V \cap A \neq \phi$ for any $V \in \tau_{i\gamma}$ such that $x \in V$.

Remark 2.14. It is easily shown that for any subset A of (X, τ_1, τ_2) , $A \subset \tau_i - cl(A) \subset cl_{i\gamma}(A) \subset \tau_{i\gamma} - cl(A)$.

Theorem 2.15. Let γ be an operation on a bitopological space (X, τ_1, τ_2) , then

- (i) $cl_{i\gamma}(A)$ is τ_i -closed in (X, τ_1, τ_2) .
- (ii) If (X, τ_1, τ_2) is γ_i -regular, then $cl_{i\gamma}(A) = \tau_i cl(A)$ holds.

(iii) If γ is open, then $cl_{i\gamma}(A) = \tau_{i\gamma} - cl(A)$ and $cl_{i\gamma}(cl_{i\gamma}(A)) = cl_{i\gamma}(A)$ hold and $cl_{i\gamma}(A)$ is γ_i -closed (in the sense of Definition 2.11).

Theorem 2.16. Let γ be an operation on a bitopological space (X, τ_1, τ_2) and $A \subset X$, then the following are equivalent:

- (a) A is γ_i -open in (X, τ_1, τ_2) .
- (b) $cl_{i\gamma}(X \setminus A) = X \setminus A$ (i.e., $X \setminus A$ is γ_i -closed in the sense of Definition 2.11).
- (c) $\tau_{i\gamma} cl(X \setminus A) = X \setminus A.$
- (d) $X \setminus A$ is γ_i -closed (in the sense of Definition 2.12) in (X, τ_1, τ_2) .

Lemma 2.17. If γ is a regular operation on (X, τ_1, τ_2) , then $cl_{i\gamma}(A \cup B) = cl_{i\gamma}(A) \cup cl_{i\gamma}(B)$, for any subsets A and B of X.

Corollary 2.18. If γ is a regular and open operation on (X, τ_1, τ_2) , then $cl_{i\gamma}$ satisfies the Kuratowski closure axioms.

Definition 2.19. A mapping $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be $(\gamma, \beta)_i$ continuous if for each point x of X and each σ_i -open set V containing f(x), there exists a τ_i -open set U such that $x \in U$ and $f(U^{\gamma}) \subset V^{\beta}$. If f is $(\gamma, \beta)_i$ continuous for i = 1, 2, then it is called pairwise (γ, β) -continuous.

Example 2.20. If $(\gamma, \beta) = (id, id)$ (resp. id, j - cl), (j - cl, id), (j - cl - j - cl), $(id, i-int\circ j-cl)$, $(i-int\circ j-cl, id)$, $(i-int\circ j-cl, j-cl)$, $(j-cl, i-int\circ j-cl)$ and $(i - int \circ j - cl, i - int \circ j - cl)$) then pairwise (γ, β) -continuity coincides with pairwise continuity [7] (resp. pairwise weak continuity [5], pairwise strong θ -continuity [3], pairwise θ -continuity [4], pairwise almost continuity [5], pairwise almost strong θ -continuity [3] and pairwise δ -continuity [3]).

Proposition 2.21. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a $(\gamma, \beta)_i$ -continuous mapping, then

- (i) $f(cl_{i\gamma}(A)) \subset cl_{i\beta}(f(A))$ for every $A \subset X$.
- (ii) for any β_i -closed set B of Y, $f^{-1}(B)$ is γ_i -closed in X, i.e., for any $U \in \sigma_{i\beta}, f^{-1}(U) \in \tau_{i\gamma}$.

Definition 2.22. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . A subset $K \subset X$ is said to be γ_i -compact if for every τ_i -open cover **C** of K,

there exists a finite subfamily $\{G_1, \ldots, G_n\}$ of **C** such that $K \subset \bigcup_{r=1}^{n} G_r^{\gamma}$.

Example 2.23. If $\gamma = id$ (resp. j - cl and $i - int \circ j - cl$) then γ_i compactness coincides with τ_i -compactness (resp. ij-almost-compactness [11] and ij-near-compactness [3]).

Theorem 2.24. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . If X is γ_i -compact, then every cover of X by γ_i -open sets has a finite subcover. If γ is open, then the converse is true.

3. Pairwise $\gamma - T_k$ Spaces

Definition 3.25. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is called *pairwise* $\gamma - T_0$ if for any two distinct points of X, there exists a subset which is either γ_i -open or γ_j -open containing one of the points but not the other.

Example 3.26. In Definition 3.25, if $\gamma = id$, then we obtain the definition of pairwise T_0 spaces [6]. If $\gamma(U) = j - cl(U)$ (resp. i - int(j - cl(U)) for $U \in \tau_i$, then pairwise $\gamma - T_0$ spaces are called pairwise $\theta - T_0$ (resp. pairwise $\delta - T_0$). If $\gamma(U) = i - int(i - cl(U))$ for $U \in \tau_i$, then we obtain pairwise rT_0 spaces [2].

Theorem 3.27. Let γ be an operation on a bitopological space $(X.\tau_1, \tau_2)$. If X is pairwise $\gamma - T_0$, then for any two distinct points x and y of X, there exists a subset U which is either τ_i -open or τ_j -open containing one of them (say x) such that $y \notin U^{\gamma}$. If γ is open, then the converse is true.

Proof. Let $x, y \in X$ such that $x \neq y$, then there exists a set U which is (say) $\tau_{i\gamma}$ -open such that $x \in U$ and $y \notin U$. Then there exists a τ_i -open set G containing x such that $G^{\gamma} \subset U$. Obviously, $y \notin G^{\gamma}$. Now, if γ is open, let $x, y \in X$ such that $x \neq y$. Then, by assumption, there exists a τ_i -open set U such that $x \in U$ and $y \notin U^{\gamma}$. Since γ is open, there exists a $\tau_{i\gamma}$ -open set S such that $x \in S$ and $S \subset U^{\gamma}$. Obviously, $y \notin S$. This shows that X is pairwise $\gamma - T_0$.

Theorem 3.28. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is pairwise $\gamma - T_0$ if and only if for each two distinct points x and y of X, either $\tau_{i\gamma} - cl\{x\} \neq \tau_{i\gamma} - cl\{y\}$ or $\tau_{j\gamma} - cl\{x\} \neq \tau_{j\gamma} - cl\{y\}$.

Proof. Let X be a pairwise $\gamma - T_0$ space and $x, y \in X$ such that $x \neq y$. Suppose U is a γ_i -open set containing x but not y. Then $y \in \tau_{i\gamma} - cl\{y\} \subset X \setminus U$ and so $x \notin \tau_{i\gamma} - cl\{y\}$. Hence $\tau_{i\gamma} - cl\{x\} \neq \tau_{i\gamma} - cl\{y\}$. Conversely, let $x, y \in X$ such that $x \neq y$. Then either $\tau_{i\gamma} - cl\{x\} \neq \tau_{i\gamma} - cl\{y\}$ or $\tau_{j\gamma} - cl\{x\} \neq \tau_{j\gamma} - cl\{y\}$. In the former case, let $z \in X$ such that $z \in \tau_{i\gamma} - cl\{y\}$ and $z \notin \tau_{i\gamma} - cl\{x\}$. We

assert that $y \notin \tau_{iy} - cl\{x\}$. If $y \in \tau_{i\gamma} - cl\{x\}$, then $\tau_{i\gamma} - cl\{y\} \subset \tau_{i\gamma} - cl\{x\}$, so $z \in \tau_{i\gamma} - cl\{y\} \subset \tau_{i\gamma} - cl\{x\}$, a contradiction. Hence $y \notin \tau_{i\gamma} - cl\{x\}$ and therefore $U = X \setminus \tau_{i\gamma} - cl\{x\}$ is a γ_i -open set containing y but not x. The case $\tau_{j\gamma} - cl\{x\} \neq \tau_{j\gamma} - cl\{y\}$ can be dealt with similarly. \Box

Corollary 3.29. A bitopological space (X, τ_1, τ_2) is pairwise $\theta - T_0$ if and only if for each two distinct points x and y of X, either $ij - cl_{\theta}\{x\} \neq ij - cl_{\theta}\{y\}$ or $ji - cl_{\theta}\{x\} \neq ji - cl_{\theta}\{y\}$.

Corollary 3.30. A bitopological space (X, τ_1, τ_2) is pairwise $\delta - T_0$ if and only if each two distinct points x and y of X, either $ij - cl_{\delta}\{x\} \neq ij - cl_{\delta}\{y\}$ or $ji - cl_{\delta}\{x\} \neq ji - cl_{\delta}\{y\}$.

Definition 3.31. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is called weakly pairwise $\gamma - T_1$ if for any two distinct points x and y of X, there exists a γ_i -open set U and a γ_j -open set V such that either $x \in U \setminus V$ and $y \in V \setminus U$ or $y \in U \setminus V$ and $x \in V \setminus U$.

Example 3.32. In Definition 3.31, if $\gamma = id$, then we obtain the definition of weakly pairwise T_1 [10]. If $\gamma(U) = j - cl(U)$ (resp. i - int(j - cl(U))) for $U \in \tau_i$, then weakly pairwise $\gamma - T_1$ spaces are called weakly pairwise $\theta - T_1$ (resp. weakly pairwise $\delta - T_1$). If $\gamma(U) = i - int(i - cl(U))$ for $U \in \tau_i$, then we obtain weakly pairwise rT_1 spaces [2].

Theorem 3.33. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then the following are equivalent:

- (i) (X, τ_1, τ_2) is weakly pairwise γT_1 .
- (ii) $\tau_{1\gamma} cl\{x\} \cap \tau_{2\gamma} cl\{x\} = \{x\}$ for every $x \in X$.
- (iii) For every $x \in X$, the intersection of all γ_1 -open nbds and all γ_2 -open nbds of x is $\{x\}$.

Proof. (i) \Rightarrow (ii): Let $x \in X$ and $y \in \tau_{1\gamma} - cl\{x\} \cap \tau_{2\gamma} - cl\{x\}$, where $y \neq x$. Since X is weakly pairwise $\gamma - T_1$, there exists a γ_1 -open set U such that $y \in U$, $x \notin U$ or there exists a γ_2 -open set V such that $y \in V$, $x \notin V$. In either case, $y \notin \tau_{1\gamma} - cl\{x\} \cap \tau_{2\gamma} - cl\{x\}$. Hence $\{x\} = \tau_{1\gamma} - cl\{x\} \cap \tau_{2\gamma} - cl\{x\}$.

(ii) \Rightarrow (iii): If $x, y \in X$ such that $x \neq y$, then $x \notin \tau_{1\gamma} - cl\{y\} \cap \tau_{2\gamma} - cl\{y\}$, so there is a γ_1 -open set or a γ_2 -open set containing x but not y. Therefore ydoes not belong to the intersection of all γ_1 -open nbds and all γ_2 -open nbds of x.

(iii) \Rightarrow (i): Let x and y be two distinct points of X. By (iii), y does not belong to a γ_1 -nbd or a γ_2 -nbd of x. Therefore there exists a γ_1 -open or a γ_2 -open set containing x but not y. Hence x is a weakly pairwise $\gamma - T_1$ space. **Corollary 3.34.** For a bitopological space (X, τ_1, τ_2) , the following are equivalent:

- (i) (X, τ_1, τ_2) is weakly pairwise θT_1 .
- (*ii*) $12 cl_{\theta}\{x\} \cap 21 cl_{\theta}\{x\} = \{x\}$ for every $x \in X$.
- (iii) For every $x \in X$, the intersection of all 12θ -open nbds and all 21θ -open nbds of x is $\{x\}$.

Corollary 3.35. For $x \in X$, the intersection of all $12 - \delta$ -open neighborhoods and all $21 - \theta$ -open neighborhoods of x is $\{x\}$.

Theorem 3.36. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . If X is weakly pairwise $\gamma - T_1$, then for any two distinct points x and y of X, there exists a τ_i -open set U and a τ_j -open set V such that either $x \in U$, $y \notin U^{\gamma}$ and $y \in V$, $= x \notin V^{\gamma}$ or $y \in U$, $x \notin U^{\gamma}$ and $x \in V, y \notin V^{\gamma}$. If γ is open, then the converse is true.

Proof. Similar to that of Theorem 3.27.

Definition 3.37. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is called $\gamma_i - T_1$ if for any two distinct points x and y of X, there exist two γ_i -open sets U and V such that $x \in U \setminus V$ and $y \in V \setminus U$. If X is $\gamma_1 - T_1$ and $\gamma_2 - T_1$, then it is called pairwise $\gamma - T_1$.

Example 3.38. In Definition 3.37, if $\gamma = id$, then we obtain the definition of pairwise T_1 [14]. If $\gamma(U) = j - cl(U)$ (resp. i - int(j - cl(U))) for $U \in \tau_i$, then pairwise $\gamma - T_1$ spaces are called pairwise $\theta - T_1$ (resp. pairwise $\delta - T_1$) and $\gamma_i - T_1$ spaces are called $ij - \theta - T_1$ (resp. $ij - \delta - T_1$) spaces.

Theorem 3.39. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is $\gamma_i - T_1$ if and only if $\tau_{i\gamma} - cl\{x\} = \{x\}$, for every $x \in X$.

Proof. Let $y \notin \{x\}$, then $y \neq x$ and there exists a $\tau_{i\gamma}$ -open set U such that $y \in U$ and $x \notin U$. Therefore $y \notin \tau_{i\gamma} - cl\{x\}$ and so $\tau_{i\gamma} - cl\{x\} = \{x\}$. Conversely, let $x, y \in X$ such that $x \neq y$. Since $\tau_{i\gamma} - cl\{x\} = \{x\}$ and $\tau_{i\gamma} - cl\{y\} = \{y\}$, then there exists a γ_i -open set U and γ_i -open set V such that $x \in U \setminus V$ and $y \in V \setminus U$. Thus X is $\gamma_i - T_1$.

Corollary 3.40. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is pairwise $\gamma - T_1$ if and only if $\tau_{1\gamma} - cl\{x\} = \{x\} = \tau_{2\gamma} - cl\{x\}$, for every $x \in X$.

Corollary 3.41. A bitopological space (X, τ_1, τ_2) is pairwise T_1 if and only if $\tau_1 - cl\{x\} = \{x\} = \tau_2 - cl\{x\}$, for every $x \in X$.

Corollary 3.42. A bitopological space (X, τ_1, τ_2) is pairwise $\theta - T_1$ if and only if $12 - cl_{\theta}\{x\} = \{x\} = 21 - cl_{\theta}\{x\}$, for every $x \in X$.

Corollary 3.43. A bitopological space (X, τ_1, τ_2) is pairwise $\delta - T_1$ if and only if $12 - cl_{\delta}\{x\} = \{x\} = 21 - cl_{\delta}\{x\}$, for every $x \in X$.

Definition 3.44. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is called *weakly pairwise* $\gamma - T_2$ if for any two distinct points x and y of X, there exist a γ_i -open set U and a disjoint γ_j -open set V such that $x \in U$ and $y \in V$ or $x \in V$ and $y \in U$.

Example 3.45. If $\gamma = id$ in Definition 3.44, we obtain the definition weakly pairwise T_2 [15]. In case $\gamma(U) = j - cl(U)$ (resp. i - int(j - cl(U))) for $U \in \tau_i$, then weakly pairwise $\gamma - T_2$ is called weakly pairwise $\theta - T_2$ (resp. weakly pairwise $\delta - T_2$). If $\gamma(U) = i - int(i - cl(U))$ for $U \in \tau_i$, then we obtain a pairwise semi rT_2 [2].

Definition 3.46. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is called $\gamma_i - T_2$ if for any two distinct points x and y of X, there exist two disjoint γ_i -open sets U and V such that $x \in U$ and $y \in V$. If X is $\gamma_1 - T_2$ and $\gamma_2 - T_2$, then it is called pairwise $\gamma - T_2$.

Definition 3.47. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is called *strongly pairwise* $\gamma - T_2$ if for any two distinct points x and y of X, there exist a γ_i -open set U and a disjoint γ_j -open set V such that $x \in U$ and $y \in V$.

Example 3.48. If $\gamma = id$ in Definition 3.47, we obtain the definition pairwise T_2 [7]. In case $\gamma(U) = j - cl(U)$ (resp. i - int(j - cl(U))) for $U \in \tau_i$, then strongly pairwise $\gamma - T_2$ is called strongly pairwise $\theta - T_2$ (resp. strongly pairwise $\delta - T_2$). If $\gamma(U) = i - int(i - cl(U))$ for $U \in \tau_i$, then we obtain pairwise rT_2 [2].

Theorem 3.49. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is strongly pairwise $\gamma - T_2$ if and only if the intersection of all γ_i closed γ_i -nbd of each point of X is reduced to that point.

Proof. Let X be strongly pairwise $\gamma - T_2$ and $x \in X$. To each $y \in X$, $x \neq y$, there exist a γ_i -open set G and a γ_j -open set H such that $x \in H$, $y \in G$ and $G \cap H = \phi$. Since $x \in H \subset X \setminus G$, therefore $X \setminus G$ is γ_i -closed γ_j -nbd of x to which y does not belong. Consequently, the intersection of all γ_i -closed γ_j -nbds of X is reduced to $\{x\}$. Conversely, let $x, y \in X$ such that $x \neq y$, then by hypothesis, there exists a γ_i -closed γ_j -nbd U of x such that $y \notin U$. Now, there exists a γ_i -open set G such that $x \in G \subset U$. Thus G is a γ_i -open set, $X \setminus U$ is a γ_j -open set, $x \in G$, $y \in X \setminus U$ and $G \cap X \setminus U = \phi$. Hence X is strongly pairwise $\gamma - T_2$. **Theorem 3.50.** Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then X is $\gamma_i - T_2$ if and only if the intersection of all γ_i -closed γ_i -nbds of each point of X is reduced to that point.

Proof. Similar to that of Theorem 3.49.

Theorem 3.51. Let γ be a regular operation on a strongly pairwise $\gamma - T_2$ space (X, τ_1, τ_2) and $A \subset X$ a γ_i -compact. Then A is γ_j -closed.

Proof. If A = X, then A is obviously γ_j -closed. If $A \neq X$, then there is a point $x \in X \setminus A$. Since X is strongly pairwise $\gamma - T_2$, for every $y \in A$, there exist a γ_j -open set U_y and a γ_i -open set V_y such that $x \in U_y$, $y \in V_y$ and $U_y \cap V_y = \phi$. Then $\{V_y : y \in A\}$ is a γ_i -open cover of A which is γ_i -compact,

then there exists a finite subfamily V_{y_1}, \ldots, V_{y_n} such that $A \subset \bigcup_{r=1} V_{y_r}$. Let

 $U = \bigcap_{r=1}^{n} U_{y_r} \text{ and } V = \bigcup_{r=1}^{n} V_{y_r}. \text{ Since } \gamma \text{ is regular, therefore } U \text{ is a } \gamma_j \text{-open set,}$ $V \text{ is a } \gamma_i \text{-open set, } x \in U, A \subset V \text{ and } U \cap U = \phi. \text{ Thus } x \in U \subset X \setminus A \text{ and}$ so $X \setminus A$ is γ_j -open and so A is γ_j -closed. \Box

Corollary 3.52. If A is an ij-almost-compact subset of a strongly pairwise $\theta - T_2$ space (X, τ_1, τ_2) , then A is $ji - \theta$ -closed.

Corollary 3.53. If A is an ij-nearly-compact subset of a strongly pairwise $\delta - T_2$ space (X, τ_1, τ_2) , then A is $ji - \delta$ -closed.

Theorem 3.54. Let γ (resp. β) be an operation on a bitopological space (X, τ_1, τ_2) (resp. (Y, σ_1, σ_2)) and $f : X \to Y$ be a pairwise (γ, β) -continuous injection. If Y is pairwise $\beta - T_0$ (resp. weak pairwise $\beta - T_1, \beta_i - T_1$, pairwise $\beta - T_1$, weak pairwise $\beta - T_2, \beta_i - T_2$, pairwise $\beta - T_2$ and strong pairwise $\beta - T_2$, then X is pairwise $\gamma - T_0$ (resp. weak pairwise $\gamma - T_1, \gamma_i - T_1$, pairwise $\gamma - T_1$, weak pairwise $\gamma - T_2, \gamma_i - T_2$, pairwise $\gamma - T_2$ and strong pairwise $\gamma - T_2$).

Proof. Suppose that Y is strong pairwise $\beta - T_2$ and let $x, y \in X$ such that $x \neq y$. Then there exist a $\sigma_{i\beta}$ -open set U and a $\sigma_{j\beta}$ -open set V such that $f(x) \in U, f(y) \in V$ and $U \cap V = \phi$. Since f is pairwise (γ, β) -continuous, by Proposition 2.21, $f^{-1}(U)$ is $\tau_{i\gamma}$ -open and $f^{-1}(V)$ is $\tau_{j\gamma}$ -open. Also, $x \in f^{-1}(U), y \in f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \phi$. This show that X is strong pairwise $\gamma - T_2$. The proofs of the other cases are similar. \Box

For different choices for γ and β in Theorem 3.54, we can write down a lot of results, for example, we have the following

Corollary 3.55. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is pairwise weakly continuous injection and Y is a strong pairwise $\theta - T_2$ space, then X is pairwise Hausdorff.

Corollary 3.56. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_2, \sigma_2)$ is pairwise almost continuous injection and Y is a strong pairwise $\delta - T_2$ space, then X is pairwise Hausdorff.

Corollary 3.57. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_2, \sigma_2)$ is pairwise strongly θ -continuous injection and Y is a pairwise Hausdorff space, then X is strong pairwise $\theta - T_2$.

Corollary 3.58. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_2, \sigma_2)$ is pairwise super continuous injection and Y is a pairwise Hausdorff space, then X is strong pairwise $\delta - T_2$.

Corollary 3.59. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_2, \sigma_2)$ is pairwise θ -continuous injection and Y is a strong pairwise $\theta - T_2$ space, then X is strong pairwise $\theta - T_2$.

Corollary 3.60. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_2, \sigma_2)$ is pairwise weakly θ -continuous injection and Y is a strong pairwise $\theta - T_2$ space, then X is strong pairwise $\delta - T_2$.

Definition 3.61. Let γ be an operation on a bitopological space (X, τ_1, τ_2) and $H \subset X$, then the relative operation $\gamma^* : \tau_1/H \cup \tau_2/H \to P(H)$ is an operation on $(H, \tau_1/H, \tau_2/H)$ defined by $(G \cap H)^{\gamma^*} = G^{\gamma} \cap H$ for each $G \in$ $\tau_1 \cup \tau_2$, where $\tau_i/H = \{U \cap H : U \in \tau_i\}$.

Lemma 3.62. Let γ be an operation on a bitopological space (X, τ_1, τ_2) , $H \subset X$ and γ^* be the relative operation in the subspace $(H, \tau_1/H, \tau_2/H)$. If U is γ_i -open in X, then $U \cap H$ is γ_i^* -open in H.

Theorem 3.63. Every subspace of a pairwise $\gamma - T_0$ (resp. weak pairwise $\gamma - T_1, \gamma_i - T_1$, pairwise $\gamma - T_1$, weak pairwise $\gamma - T_2, \gamma_i - T_2$, pairwise $\gamma - T_2$ and strong pairwise $\gamma - T_2$) is a pairwise $\gamma^* - T_0$ (resp. weak pairwise $\gamma^* - T_1, \gamma_i^* - T_1$, pairwise $\gamma^* - T_1$, weak pairwise $\gamma^* - T_2, \gamma_i^* - T_2$, pairwise $\gamma^* - T_2$ and strong pairwise $\gamma^* - T_2$).

Proof. Follows directly from Lemma 3.62.

Remark 3.64. The argument of Theorem 3.36 is true for the cases of weak pairwise $\gamma - T_1$, $\gamma_i - T_1$, pairwise $\gamma - T_1$, weak pairwise $\gamma - T_2$, $\gamma_i - T_2$, pairwise $\gamma - T_2$ and strong pairwise $\gamma - T_2$ spaces.

For different choices for γ in Remark 3.64, we can write down a lot of results, for example, we have the following

Corollary 3.65. A bitopological space (X, τ_1, τ_2) is weak pairwise $\delta - T_1$ if and only if for any two distinct points x and y of X, there exist a τ_i -open set U and a τ_j -open set V such that either $x \in U, y \notin i - int(j - cl(U))$ and $y \in V, x \notin j - int(i - cl(V))$ or $y \in U, x \notin i - int(j - cl(U))$ and $x \in V, y \notin j - int(i - cl(V))$.

Corollary 3.66. A bitopological space (X, τ_1, τ_2) is weak pairwise $\delta - T_2$ if and only if for any two distinct points x and y of X, there exist a τ_i -open set U and a τ_j -open set V such that either $x \in U$ and $y \in V$ or $y \in U$, and $x \in V$ and $i - int(j - cl(U)) \cap j - int(i - cl(V)) = \phi$.

Corollary 3.67. A bitopological space (X, τ_1, τ_2) is strong pairwise $\delta - T_2$ if and only if for any two distinct points x and y of X, there exist a τ_i -open set U and a τ_j -open set V such that $x \in U, y \in V$, and $i - int(j - cl(U)) \cap j - int(i - cl(V)) = \phi$.

Theorem 3.68. Let γ be an open and regular operation on a bitopological space (X, τ_1, τ_2) . Then (X, τ_1, τ_2) is pairwise $\gamma - T_0$ (resp. weak pairwise $\gamma - T_1$, pairwise $\gamma - T_1$, weak pairwise $\gamma - T_2$ and strong pairwise $\gamma - T_2$) if and only if $(X, \tau_{1\gamma}, \tau_{2\gamma})$ is pairwise T_0 (resp. weak pairwise T_1 , pairwise T_1 , weak pairwise T_2 , and strong pairwise T_2).

Proof. It is straight forward by Proposition 2.9 and Remark 3.64

For different choices for γ in Theorem 3.68, we can write down a lot of results, for example, we have the following

Corollary 3.69. A bitopological space (X, τ_1, τ_2) is pairwise $\delta - T_0$ if and only if $(X, \tau_{1\delta}, \tau_{2\delta})$ is pairwise T_0 .

Corollary 3.70. A bitopological space (X, τ_1, τ_2) is pairwise $\delta - T_1$ if and only if $(X, \tau_{1\delta}, \tau_{2\delta})$ is pairwise T_1 .

Corollary 3.71. A bitopological space (X, τ_1, τ_2) is strong pairwise $\delta - T_2$ if and only if $(X, \tau_{1\delta}, \tau_{2\delta})$ is strong pairwise T_2 .

We finish this section by investigating general operator approaches of closed graphs of mappings.

Definition 3.72. [13] Let (X, τ_1, τ_2) and (Y, σ, σ_2) be two bitopological spaces. The cross product of the two spaces X and Y is defined to be the space $(X \times Y, \mu_1, \mu_2)$, where $\mu_i = \tau_i \times \sigma_j$.

Definition 3.73. Let γ (resp. β) be an operation on the bitopological space (X, τ_1, τ_2) (resp. (Y, σ_1, σ_2)). An operation $\rho : \tau_1 \times \sigma_2 \cup \tau_2 \times \sigma_1 \to P(X \times Y)$ is

said to be associated with γ and β if $(U \times V)^{\rho} = U^{\gamma} \times V^{\beta}$ for each $U \in \tau_i$ and $V \in \sigma_j$. ρ is called regular with respect to γ and β if for each $(x, y) \in X \times Y$ and each μ_j -open nbd W of (x, y), there exist a τ_i -open nbd U of x and a σ_j -open nbd V of y such that $W^{\rho} \subset U^{\gamma} \times V^{\beta}$.

Theorem 3.74. Let ρ be an operation on $X \times X$ associated with γ and γ . If $f: X \to Y$ is a pairwise (γ, β) -continuous mapping and (Y, σ_1, σ_2) is a strong pairwise $\beta - T_2$ space, then the set $A = \{(x, y) \in X \times X : f(x) = f(y)\}$ is a ρ_i -closed subset of $X \times X$.

Proof. We show that $cl_{i\rho}(A) \subset A$. Let $(x, y) \in X \times X \setminus A$. Then there exist a σ_i -open set U and a σ_j -open set V such that $f(x) \in U, f(y) \in V$ and $U^{\beta} \cap V^{\beta} = \phi$. Moreover, there exist a τ_i -open set W and a τ_j -open set S such that $x \in W, y \in S$ and $f(W^{\gamma}) \subset U^{\beta}$ and $f(S^{\gamma}) \subset V^{\beta}$. Therefore, $(W \times S)^{\rho} \cap A = \phi$. This shows that $(x, y) \notin cl_{i\rho}(A)$ and so $cl_{i\rho}(A) \subset A$. \Box

Corollary 3.75. Let ρ be an operation on $X \times X$ associated with γ and γ which is regular with respect to γ and γ . A space X is strong pairwise $\gamma - T_2$ if and only if the diagonal set $\Delta = \{(x, x) : x \in X\}$ is ρ_i -closed in $X \times Y$.

Theorem 3.76. Let ρ be an operation on $X \times Y$ associated with γ and β . If $f: X \to Y$ is a pairwise (γ, β) -continuous mapping and (Y, σ_1, σ_2) is a strong pairwise $\beta - T_2$ space, then the graph of f, $G(f) = \{(x, f(x)) \in X \times Y\}$ is a ρ_i -closed subset of $X \times Y$.

Proof. The proof is similar to that of Theorem 3.74

References

- Abd El-Monsef, M.E. Kozae, A.M. and Taher, B.M., Compactification in bitopological spaces, Arab J. for Sci. Engin., 22(1A)(1997), 99–105.
- [2] Arya, S.P. and Nour, T.M., Separation axioms for bitopological spaces, Indian J. Pure Appl. Math., 19(1)(1988), 42–50.
- [3] Banerjee, G.K., On pairwise almost strongly θ-continuous mappings, Bull. Calcutta Math. Soc., 79(1987), 314–320.
- [4] Bose, S. and Sinha, D., Almost open, almost closed, θ-continuous and almost quasi compact mappings in bitopological spaces, Bull. Calcutta Math. Soc., 73(1981), 345–356.
- [5] Bose, S. and Sinha, D., Pairwise almost continuous map and weakly continuous map in bitopological spaces, *Bull. Calcutta Math. Soc.*, 74(1982), 195–205.

- [6] Fletcher, P., Hoyle, H.B. III and Patty, C.W., The comparison of topologies, Duke Math. J., 36(2)(1969), 325–331.
- [7] Kelly, J.C., Bitopological spaces, Proc. London Math. Soc., (3)13(1963), 7–89.
- [8] Khedr, F.H., Operations on bitopological spaces (submitted).
- [9] Khedr, F.H. and Al-Shibani, A.M., On pairwise super continuous mappings in bitoplogical spaces, *Internat. J. Math. Math. Sci.*, (4)14(1991), 715–722.
- [10] Misra, D., N., and Dube, K.K., Pairwise R₀-spaces, Ann de la Soc. Sci, Bruxells, T. 87(1)(1973), 3–15.
- [11] Mukherjee, M.N., On pairwise almost compactness and pairwise Hclosedness in a bitopologicla space, Ann. Soc. Sci. Bruxelles, T. 96, 2(1982), 98–106.
- [12] Murdeshware, M.G. and Namipally, S.A., Quasi-uniform topological spaces, *Monograph*, P. Noordoff Ltd. (1966).
- [13] Nandi, J.N. and Mukherjee, M.N., Bitopological δ-cluster sts and some applications, *Indiana J. Pure Appl. Math.*, 29(8)(1998), 837–848.
- [14] Reilly, I.L., On bitopological separation properties, Nanta Math., 5(2)(1972), 14–25.
- [15] Smithson, R.E., Mutlifunctions and bitopological spaces, J. Nat. Sci. Math., 11(2)(1971), 191–198.
- [16] Swart, J., Total disconnectedness in bitopological spaces and product bitopological spaces, Proc. Kon. Ned. Akad Wetench A 74 = Indag. Math., 33(2)(1971), 135–145.

Faculty of Science Department of Mathematics P.O. Box 838, Dammam 31113, Kingdom of Saudi Arabia Email: s.alareefi@yahoo.com