An. Şt. Univ. Ovidius Constanţa

Univalence preserving integral operators defined by generalized Al-Oboudi differential operators

Serap BULUT

Abstract

In this paper, we investigate sufficient conditions for the univalence of an integral operator defined by generalized Al-Oboudi differential operator.

1 Introduction

Let \mathcal{A} denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$, and $\mathcal{S}=$ $\{f \in \mathcal{A}: f$ is univalent in $\mathbb{U}\}$.

The following definition of fractional derivative by Owa [8] (also by Srivastava and Owa [14]) will be required in our investigation.

[^0]The fractional derivative of order γ is defined, for a function f, by

$$
\begin{equation*}
D_{z}^{\gamma} f(z)=\frac{1}{\Gamma(1-\gamma)} \frac{d}{d z} \int_{0}^{z} \frac{f(\xi)}{(z-\xi)^{\gamma}} d \xi \quad(0 \leq \gamma<1) \tag{1.2}
\end{equation*}
$$

where the function f is analytic in a simply connected region of the complex z-plane containing the origin, and the multiplicity of $(z-\xi)^{-\gamma}$ is removed by requiring $\log (z-\xi)$ to be real when $z-\xi>0$.

It readily follows from (1.2) that

$$
D_{z}^{\gamma} z^{k}=\frac{\Gamma(k+1)}{\Gamma(k+1-\gamma)} z^{k-\gamma} \quad(0 \leq \gamma<1, k \in \mathbb{N}=\{1,2, \ldots\})
$$

Using $D_{z}^{\gamma} f$, Owa and Srivastava [9] introduced the operator $\Omega^{\gamma}: \mathcal{A} \rightarrow \mathcal{A}$, which is known as an extension of fractional derivative and fractional integral, as follows:

$$
\begin{align*}
\Omega^{\gamma} f(z) & =\Gamma(2-\gamma) z^{\gamma} D_{z}^{\gamma} f(z), \quad \gamma \neq 2,3,4, \ldots \\
& =z+\sum_{k=2}^{\infty} \frac{\Gamma(k+1) \Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} a_{k} z^{k} \tag{1.3}
\end{align*}
$$

Note that

$$
\Omega^{0} f(z)=f(z) .
$$

In [3], Al-Oboudi and Al-Amoudi defined the linear multiplier fractional differential operator $D_{\lambda}^{n, \gamma}$ as follows:

$$
\begin{align*}
D^{0} f(z)= & f(z), \\
D_{\lambda}^{1, \gamma} f(z)= & (1-\lambda) \Omega^{\gamma} f(z)+\lambda z\left(\Omega^{\gamma} f(z)\right)^{\prime} \\
= & D_{\lambda}^{\gamma}(f(z)), \quad \lambda \geq 0,0 \leq \gamma<1, \tag{1.4}\\
D_{\lambda}^{2, \gamma} f(z)= & D_{\lambda}^{\gamma}\left(D_{\lambda}^{1, \gamma} f(z)\right), \\
& \vdots \tag{1.5}\\
D_{\lambda}^{n, \gamma} f(z)= & D_{\lambda}^{\gamma}\left(D_{\lambda}^{n-1, \gamma} f(z)\right), \quad n \in \mathbb{N} .
\end{align*}
$$

If f is given by (1.1), then by (1.3), (1.4) and (1.5), we see that

$$
\begin{equation*}
D_{\lambda}^{n, \gamma} f(z)=z+\sum_{k=2}^{\infty} \Psi_{k, n}(\gamma, \lambda) a_{k} z^{k}, \quad n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{k, n}(\gamma, \lambda)=\left[\frac{\Gamma(k+1) \Gamma(2-\gamma)}{\Gamma(k+1-\gamma)}(1+(k-1) \lambda)\right]^{n} \tag{1.7}
\end{equation*}
$$

Remark 1.1. (i) When $\gamma=0$, we get Al-Oboudi differential operator [2].
(ii) When $\gamma=0$ and $\lambda=1$, we get Sălăgean differential operator [13].
(iii) When $n=1$ and $\lambda=0$, we get Owa-Srivastava fractional differential operator [9].

By using the generalized Al-Oboudi differential operator $D_{\lambda}^{n, \gamma}$, we introduce the following integral operator:

Definition 1.1 Let $n \in \mathbb{N}_{0}, m \in \mathbb{N}, \beta \in \mathbb{C}$ with $\Re(\beta)>0$ and $\alpha_{i} \in \mathbb{C}$ $(i \in\{1, \ldots, m\})$. We define the integral operator

$$
\begin{gather*}
I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right): \mathcal{A}^{m} \rightarrow \mathcal{A} \\
I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)(z)=\left\{\beta \int_{0}^{z} t^{\beta-1} \prod_{i=1}^{m}\left(\frac{D_{\lambda}^{n, \gamma} f_{i}(t)}{t}\right)^{\alpha_{i}} d t\right\}^{\frac{1}{\beta}} \quad(z \in \mathbb{U}), \tag{1.8}
\end{gather*}
$$

where $D_{\lambda}^{n, \gamma}$ is the generalized Al-Oboudi differential operator.
Remark 1.2. (i) For $m \in \mathbb{N}, \beta \in \mathbb{C}, \Re(\beta)>0, \alpha_{i} \in \mathbb{C}$ and $D_{\lambda}^{0, \gamma} f_{i}(z)=$ $D_{0}^{1,0} f_{i}(z)=f_{i}(z) \in \mathcal{S}(i \in\{1, \ldots, m\})$, we have the integral operator

$$
I_{\beta}\left(f_{1}, \ldots, f_{m}\right)(z)=\left\{\beta \int_{0}^{z} t^{\beta-1} \prod_{i=1}^{m}\left(\frac{f_{i}(t)}{t}\right)^{\alpha_{i}} d t\right\}^{\frac{1}{\beta}}
$$

which was introduced in [4].
(ii) For $m \in \mathbb{N}, \beta=1, \alpha_{i} \in \mathbb{C}$ and $D_{\lambda}^{0, \gamma} f_{i}(z)=D_{0}^{1,0} f_{i}(z)=f_{i}(z) \in \mathcal{S}$ $(i \in\{1, \ldots, m\})$, we have the integral operator

$$
I\left(f_{1}, \ldots, f_{m}\right)(z)=\int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right)^{\alpha_{1}} \cdots\left(\frac{f_{m}(t)}{t}\right)^{\alpha_{m}} d t
$$

which was studied in [4].
(iii) For $n \in \mathbb{N}_{0}, m \in \mathbb{N}, \beta=1, \alpha_{i} \in \mathbb{C}$ and $D_{\lambda}^{n, 0} f_{i}(z)=D^{n} f_{i}(z)(i \in\{1, \ldots, m\})$, we have the integral operator

$$
I^{n}\left(f_{1}, \ldots, f_{m}\right)(z)=\int_{0}^{z}\left(\frac{D^{n} f_{1}(t)}{t}\right)^{\alpha_{1}} \cdots\left(\frac{D^{n} f_{m}(t)}{t}\right)^{\alpha_{m}} d t
$$

which was studied in [5].
(iv) For $n=0, m=1, \beta=1, \alpha_{1}=1, \alpha_{2}=\alpha_{3}=\cdots=\alpha_{m}=0$ and $D_{\lambda}^{0, \gamma} f_{1}(z)=D_{0}^{1,0} f_{1}(z)=f(z) \in \mathcal{A}$, we have Alexander integral operator

$$
I(f)(z)=\int_{0}^{z} \frac{f(t)}{t} d t
$$

which was introduced in [1].
(\mathbf{v}) For $n=0, m=1, \beta=1, \alpha_{1}=\alpha \in[0,1], \alpha_{2}=\alpha_{3}=\cdots=\alpha_{m}=0$ and $D_{\lambda}^{0, \gamma} f_{1}(z)=D_{0}^{1,0} f_{1}(z)=f(z) \in \mathcal{S}$, we have the integral operator

$$
I(f)(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\alpha} d t
$$

which was studied in [6].

To discuss our problems, we have to recall here the following results.
General Schwarz Lemma [7]. Let the function f be regular in the disk $\mathbb{U}_{R}=\{z \in \mathbb{C}:|z|<R\}$, with $|f(z)|<M$ for fixed M. If $f(z)$ has one zero with multiplicity order bigger than m for $z=0$, then

$$
|f(z)| \leq \frac{M}{R^{m}}|z|^{m} \quad\left(z \in \mathbb{U}_{R}\right)
$$

The equality can hold only if

$$
f(z)=e^{i \theta}\left(M / R^{m}\right) z^{m}
$$

where θ is constant.

Theorem A [10]. Let α be a complex number with $\Re(\alpha)>0$ and $f \in \mathcal{A}$. If $f(z)$ satisfies

$$
\frac{1-|z|^{2 \Re(\alpha)}}{\Re(\alpha)}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1
$$

for all $z \in \mathbb{U}$, then the integral operator

$$
F_{\alpha}(z)=\left\{\alpha \int_{0}^{z} t^{\alpha-1} f^{\prime}(t) d t\right\}^{\frac{1}{\alpha}}
$$

is in the class \mathcal{S}.

Theorem B [11]. Let α be a complex number with $\Re(\alpha)>0$ and $f \in \mathcal{A}$. If $f(z)$ satisfies

$$
\frac{1-|z|^{2 \Re(\alpha)}}{\Re(\alpha)}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1 \quad(z \in \mathbb{U})
$$

then, for any complex number β with $\Re(\beta) \geq \Re(\alpha)$, the integral operator

$$
F_{\beta}(z)=\left\{\beta \int_{0}^{z} t^{\beta-1} f^{\prime}(t) d t\right\}^{\frac{1}{\beta}}
$$

is in the class \mathcal{S}.

Theorem C [12]. Let β be a complex number with $\Re(\beta)>0$, c a complex number with $|c| \leq 1, c \neq-1$, and $f(z)$ given by (1.1) an analytic function in U. If

$$
\left.\left.|c| z\right|^{2 \beta}+\left(1-|z|^{2 \beta}\right) \frac{z f^{\prime \prime}(z)}{\beta f^{\prime}(z)} \right\rvert\, \leq 1
$$

for all $z \in \mathbb{U}$, then the function

$$
F_{\beta}(z)=\left\{\beta \int_{0}^{z} t^{\beta-1} f^{\prime}(t) d t\right\}^{\frac{1}{\beta}}=z+\cdots
$$

is analytic and univalent in \mathbb{U}.

2 Main Results

Theorem 2.1 Let $\alpha_{1}, \ldots, \alpha_{m}, \beta \in \mathbb{C}$ and each of the functions $f_{i} \in \mathcal{A}(i \in\{1, \ldots, m\})$. If

$$
\left|\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right)
$$

and

$$
\Re(\beta) \geq \sum_{i=1}^{m}\left|\alpha_{i}\right|>0
$$

then the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Proof. Since $f_{i} \in \mathcal{A}(i \in\{1, \ldots, m\})$, by (1.6), we have

$$
\frac{D_{\lambda}^{n, \gamma} f_{i}(z)}{z}=1+\sum_{k=2}^{\infty} \Psi_{k, n}(\gamma, \lambda) a_{k, i} z^{k-1} \quad\left(n \in \mathbb{N}_{0}\right)
$$

and

$$
\frac{D_{\lambda}^{n, \gamma} f_{i}(z)}{z} \neq 0
$$

for all $z \in \mathbb{U}$.
Let us define

$$
h(z)=\int_{0}^{z} \prod_{i=1}^{m}\left(\frac{D_{\lambda}^{n, \gamma} f_{i}(t)}{t}\right)^{\alpha_{i}} d t
$$

so that, obviously,

$$
h^{\prime}(z)=\left(\frac{D_{\lambda}^{n, \gamma} f_{1}(z)}{z}\right)^{\alpha_{1}} \cdots\left(\frac{D_{\lambda}^{n, \gamma} f_{m}(z)}{z}\right)^{\alpha_{m}}
$$

for all $z \in \mathbb{U}$. This equality implies that

$$
\ln h^{\prime}(z)=\alpha_{1} \ln \frac{D_{\lambda}^{n, \gamma} f_{1}(z)}{z}+\cdots+\alpha_{m} \ln \frac{D_{\lambda}^{n, \gamma} f_{m}(z)}{z}
$$

or equivalently

$$
\ln h^{\prime}(z)=\alpha_{1}\left[\ln D_{\lambda}^{n, \gamma} f_{1}(z)-\ln z\right]+\cdots+\alpha_{m}\left[\ln D_{\lambda}^{n, \gamma} f_{m}(z)-\ln z\right] .
$$

By differentiating above equality, we get

$$
\frac{h^{\prime \prime}(z)}{h^{\prime}(z)}=\sum_{i=1}^{m} \alpha_{i}\left[\frac{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-\frac{1}{z}\right] .
$$

Hence, we obtain from this equality that

$$
\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq \sum_{i=1}^{m}\left|\alpha_{i}\right|\left|\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right| .
$$

So by the conditions of the Theorem 2.1, we find

$$
\begin{aligned}
\frac{1-|z|^{2 \Re(\beta)}}{\Re(\beta)}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| & \leq \frac{1-|z|^{2 \Re(\beta)}}{\Re(\beta)} \sum_{i=1}^{m}\left|\alpha_{i}\right|\left|\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right| \\
& \leq \frac{1}{\Re(\beta)} \sum_{i=1}^{m}\left|\alpha_{i}\right| \leq 1 .
\end{aligned}
$$

Finally, applying Theorem A for the function $h(z)$, we prove that $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right) \in$ \mathcal{S}.

Remark 2.1. If we set $\beta=1$ and $\gamma=0$ in Theorem 2.1, then we have Theorem 2.3 in [5].

Corollary 2.2 Let $\alpha_{i}>0, \beta \in \mathbb{C}$ and each of the functions $f_{i} \in \mathcal{A}(i \in\{1, \ldots, m\})$. If

$$
\left|\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right)
$$

and

$$
\Re(\beta) \geq \sum_{i=1}^{m} \alpha_{i}
$$

then the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Remark 2.2. If we set $\beta=1$ and $\gamma=0$ in Corollary 2.2, then we have Corollary 2.5 in [5].

Theorem 2.3 Let $M_{i} \geq 1$ and suppose that each of the functions $f_{i} \in \mathcal{A}$ $(i \in\{1, \ldots, m\}, m \in \mathbb{N})$ satisfies the inequality

$$
\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right)
$$

Also let $\alpha_{1}, \ldots, \alpha_{m}, \alpha \in \mathbb{C}$ with

$$
\Re(\alpha) \geq \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(2 M_{i}+1\right)>0 .
$$

If

$$
\left|D_{\lambda}^{n, \gamma} f_{i}(z)\right| \leq M_{i}(z \in \mathbb{U} ; i \in\{1, \ldots, m\})
$$

then, for any complex number β with $\Re(\beta) \geq \Re(\alpha)$, the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Proof. We know from the proof of Theorem 2.1 that

$$
\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq \sum_{i=1}^{m}\left|\alpha_{i}\right|\left|\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right| .
$$

So, by the imposed conditions, we find

$$
\begin{aligned}
\frac{1-|z|^{2 \Re(\alpha)}}{\Re(\alpha)}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| & \leq \frac{1-|z|^{2 \Re(\alpha)}}{\Re(\alpha)} \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(\left|\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}\right|+1\right) \\
& \leq \frac{1-|z|^{2 \Re(\alpha)}}{\Re(\alpha)} \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}\right|\left|\frac{D_{\lambda}^{n, \gamma} f_{i}(z)}{z}\right|+1\right) \\
& \leq \frac{1-|z|^{2 \Re(\alpha)}}{\Re(\alpha)} \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}-1\right| M_{i}+M_{i}+1\right) \\
& \leq \frac{1}{\Re(\alpha)} \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(2 M_{i}+1\right) \leq 1
\end{aligned}
$$

By applying Theorem B for the function $h(z)$, we prove that $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right) \in$ \mathcal{S}.

Corollary 2.4 Let $M_{i} \geq 1, \alpha_{i}>0$ and suppose that each of the functions $f_{i} \in \mathcal{A}(i \in\{1, \ldots, m\})$ satisfies the inequality

$$
\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right)
$$

Also let $\alpha \in \mathbb{C}$ with

$$
\Re(\alpha) \geq \sum_{i=1}^{m} \alpha_{i}\left(2 M_{i}+1\right)
$$

If

$$
\left|D_{\lambda}^{n, \gamma} f_{i}(z)\right| \leq M_{i}(z \in \mathbb{U} ; i \in\{1, \ldots, m\})
$$

then, for any complex number β with $\Re(\beta) \geq \Re(\alpha)$, the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Corollary 2.5 Let $M \geq 1$ and suppose that each of the functions $f_{i} \in \mathcal{A}$ $(i \in\{1, \ldots, m\}, m \in \mathbb{N})$ satisfies the inequality

$$
\left|\frac{z^{2}\left(D^{n} f_{i}(z)\right)^{\prime}}{\left(D^{n} f_{i}(z)\right)^{2}}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right)
$$

Also let $\alpha_{1}, \ldots, \alpha_{m}, \alpha \in \mathbb{C}$ with

$$
\Re(\alpha) \geq(2 M+1) \sum_{i=1}^{m}\left|\alpha_{i}\right|>0 .
$$

If

$$
\left|D^{n} f_{i}(z)\right| \leq M(z \in \mathbb{U} ; i \in\{1, \ldots, m\})
$$

then, for any complex number β with $\Re(\beta) \geq \Re(\alpha)$, the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Proof. In Theorem 2.3, we consider $M_{1}=\cdots=M_{m}=M$.
Corollary 2.6 Suppose that each of the functions $f_{i} \in \mathcal{A}(i \in\{1, \ldots, m\})$ satisfies the inequality

$$
\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right)
$$

Also let $\alpha_{1}, \ldots, \alpha_{m}, \alpha \in \mathbb{C}$ with

$$
\Re(\alpha) \geq 3 \sum_{i=1}^{m}\left|\alpha_{i}\right|>0
$$

If

$$
\left|D_{\lambda}^{n, \gamma} f_{i}(z)\right| \leq 1(z \in \mathbb{U} ; i \in\{1, \ldots, m\})
$$

then, for any complex number β with $\Re(\beta) \geq \Re(\alpha)$, the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Proof. In Corollary 2.5, we consider $M=1$.
Remark 2.3. In Corollary 2.6, if we set
(i) $\beta=1$ and $\gamma=0$, then we have Theorem 2.6,
(ii) $\beta=1, \gamma=0$ and $\alpha_{i}>0(i \in\{1, \ldots, m\})$, then we have Corollary 2.8 in [5].

Theorem 2.7 Suppose that each of the functions $f_{i} \in \mathcal{A}(i \in\{1, \ldots, m\})$ satisfies the inequality

$$
\left|\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right)
$$

Also let $\alpha_{1}, \ldots, \alpha_{m}, \beta \in \mathbb{C}$ with

$$
\Re(\beta) \geq \sum_{i=1}^{m}\left|\alpha_{i}\right|>0
$$

and let $c \in \mathbb{C}$ be such that

$$
|c| \leq 1-\frac{1}{\Re(\beta)} \sum_{i=1}^{m}\left|\alpha_{i}\right| .
$$

Then the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Proof. We know from the proof of Theorem 2.1 that

$$
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\sum_{i=1}^{m} \alpha_{i}\left[\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right]
$$

So we obtain

$$
\begin{aligned}
\left.\left.|c| z\right|^{2 \beta}+\left(1-|z|^{2 \beta}\right) \frac{z h^{\prime \prime}(z)}{\beta h^{\prime}(z)} \right\rvert\, & \left.=\left.|c| z\right|^{2 \beta}+\left(1-|z|^{2 \beta}\right) \frac{1}{\beta} \sum_{i=1}^{m} \alpha_{i}\left[\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right] \right\rvert\, \\
& \leq|c|+\left|\frac{1-|z|^{2 \beta}}{\beta}\right| \sum_{i=1}^{m}\left|\alpha_{i}\right|\left|\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right| \\
& \leq|c|+\frac{1}{|\beta|} \sum_{i=1}^{m}\left|\alpha_{i}\right| \\
& \leq|c|+\frac{1}{\Re(\beta)} \sum_{i=1}^{m}\left|\alpha_{i}\right| \leq 1 .
\end{aligned}
$$

Finally, applying Theorem C for the function $h(z)$, we prove that $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right) \in$ \mathcal{S}.

Corollary 2.8 Suppose that each of the functions $f_{i} \in \mathcal{A}(i \in\{1, \ldots, m\})$ satisfies the inequality

$$
\left|\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right) .
$$

Also let $\alpha_{i}>0, \beta \in \mathbb{C}$ with

$$
\Re(\beta) \geq \sum_{i=1}^{m} \alpha_{i}
$$

and let $c \in \mathbb{C}$ be such that

$$
|c| \leq 1-\frac{1}{\Re(\beta)} \sum_{i=1}^{m} \alpha_{i} .
$$

Then the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Theorem 2.9 Let $M_{i} \geq 1$ and suppose that each of the functions $f_{i} \in \mathcal{A}$ $(i \in\{1, \ldots, m\})$ satisfies the inequality

$$
\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right)
$$

Also let $\alpha_{1}, \ldots, \alpha_{m}, \beta \in \mathbb{C}$ with

$$
\Re(\beta) \geq \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(2 M_{i}+1\right)>0
$$

$c \in \mathbb{C}$ be such that

$$
|c| \leq 1-\frac{1}{\Re(\beta)} \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(2 M_{i}+1\right)
$$

and

$$
\left|D_{\lambda}^{n, \gamma} f_{i}(z)\right| \leq M_{i}(z \in \mathbb{U} ; i \in\{1, \ldots, m\})
$$

Then the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Proof. We know from the proof of Theorem 2.1 that

$$
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\sum_{i=1}^{m} \alpha_{i}\left[\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right]
$$

So we obtain

$$
\begin{aligned}
\left.\left.|c| z\right|^{2 \beta}+\left(1-|z|^{2 \beta}\right) \frac{z h^{\prime \prime}(z)}{\beta h^{\prime}(z)} \right\rvert\, & \left.=\left.|c| z\right|^{2 \beta}+\left(1-|z|^{2 \beta}\right) \frac{1}{\beta} \sum_{i=1}^{m} \alpha_{i}\left[\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}-1\right] \right\rvert\, \\
& \leq|c|+\left|\frac{1-|z|^{2 \beta}}{\beta}\right| \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(\left|\frac{z\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{n, \gamma} f_{i}(z)}\right|+1\right) \\
& \leq|c|+\frac{1}{|\beta|} \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}\right|\left|\frac{D_{\lambda}^{n, \gamma} f_{i}(z)}{z}\right|+1\right) \\
& \leq|c|+\frac{1}{|\beta|} \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}-1\right| M_{i}+M_{i}+1\right)
\end{aligned}
$$

$$
\leq|c|+\frac{1}{\Re(\beta)} \sum_{i=1}^{m}\left|\alpha_{i}\right|\left(2 M_{i}+1\right) \leq 1
$$

Finally, applying Theorem C for the function $h(z)$, we prove that $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right) \in$ \mathcal{S}.

Corollary 2.10 Let $M_{i} \geq 1, \alpha_{i}>0$ and suppose that each of the functions $f_{i} \in \mathcal{A}(i \in\{1, \ldots, m\})$ satisfies the inequality

$$
\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right)
$$

Also let $\beta \in \mathbb{C}$ with

$$
\Re(\beta) \geq \sum_{i=1}^{m} \alpha_{i}\left(2 M_{i}+1\right)
$$

$c \in \mathbb{C}$ be such that

$$
|c| \leq 1-\frac{1}{\Re(\beta)} \sum_{i=1}^{m} \alpha_{i}\left(2 M_{i}+1\right)
$$

and

$$
\left|D_{\lambda}^{n, \gamma} f_{i}(z)\right| \leq M_{i}(z \in \mathbb{U} ; i \in\{1, \ldots, m\}) .
$$

Then the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Corollary 2.11 Let $M \geq 1$ and suppose that each of the functions $f_{i} \in \mathcal{A}$ $(i \in\{1, \ldots, m\})$ satisfies the inequality

$$
\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right) .
$$

Also let $\alpha_{1}, \ldots, \alpha_{m}, \beta \in \mathbb{C}$ with

$$
\Re(\beta) \geq(2 M+1) \sum_{i=1}^{m}\left|\alpha_{i}\right|>0
$$

$c \in \mathbb{C}$ be such that

$$
|c| \leq 1-\frac{2 M+1}{\Re(\beta)} \sum_{i=1}^{m}\left|\alpha_{i}\right|
$$

and

$$
\left|D_{\lambda}^{n, \gamma} f_{i}(z)\right| \leq M(z \in \mathbb{U} ; i \in\{1, \ldots, m\})
$$

Then the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Proof. In Theorem 2.9, we consider $M_{1}=\cdots=M_{m}=M$.
Corollary 2.12 Suppose that each of the functions $f_{i} \in \mathcal{A}(i \in\{1, \ldots, m\})$ satisfies the inequality

$$
\left|\frac{z^{2}\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda}^{n, \gamma} f_{i}(z)\right)^{2}}-1\right| \leq 1 \quad\left(z \in \mathbb{U}, n \in \mathbb{N}_{0}\right)
$$

Also let $\alpha_{1}, \ldots, \alpha_{m}, \beta \in \mathbb{C}$ with

$$
\Re(\beta) \geq 3 \sum_{i=1}^{m}\left|\alpha_{i}\right|>0
$$

$c \in \mathbb{C}$ be such that

$$
|c| \leq 1-\frac{3}{\Re(\beta)} \sum_{i=1}^{m}\left|\alpha_{i}\right|
$$

and

$$
\left|D_{\lambda}^{n, \gamma} f_{i}(z)\right| \leq 1(z \in \mathbb{U} ; i \in\{1, \ldots, m\}) .
$$

Then the integral operator $I_{\beta}^{n, \gamma}\left(f_{1}, \ldots, f_{m}\right)$ defined by (1.8) is in the univalent function class \mathcal{S}.

Proof. In Corollary 2.11, we consider $M=1$.

References

[1] I. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17 (1915), 12-22.
[2] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
[3] F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl. 339 (2008), no. 1, 655-667.
[4] D. Breaz and N. Breaz, Two integral operators, Studia Univ. Babeş-Bolyai Math. 47 (2002), no. 3, 13-19.
[5] S. Bulut, Sufficient conditions for univalence of an integral operator defined by AlOboudi differential operator, J. Inequal. Appl. 2008, Art. ID 957042, 5 pages.
[6] S. S. Miller, P. T. Mocanu and M. O. Reade, Starlike integral operators, Pacific J. Math. 79 (1978), no. 1, 157-168.
[7] Z. Nehari, Conformal Mapping, McGraw-Hill Book Comp., New York, 1952 (Dover. Publ. Inc., 1975).
[8] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978), no. 1, 53-59
[9] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), no. 5, 1057-1077.
[10] N. Pascu, On a univalence criterion. II, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1985), Preprint, vol. 85, Universitatea "Babeş-Bolyai", Cluj-Napoca, 1985, pp. 153-154.
[11] N. Pascu, An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43-48.
[12] V. Pescar, A new generalization of Ahlfors's and Becker's criterion of univalence, Bull. Malaysian Math. Soc. (2) 19 (1996), no. 2, 53-54.
[13] G. Ş. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth RomanianFinnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 362-372.
[14] H. M. Srivastava and S. Owa, (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Ellis Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester, UK; JohnWiley \& Sons, New York, NY, USA, 1989.

Kocaeli University
Civil Aviation College
Arslanbey Campus
41285 İzmit-Kocaeli, TURKEY
e-mail: serap.bulut@kocaeli.edu.tr

[^0]: Key Words: Analytic function; Univalent function; Differential operator; Integral operator. Mathematics Subject Classification: 30C45
 Received: January, 2009
 Accepted: April, 2009

