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Univalence preserving integral operators

defined by generalized Al-Oboudi differential

operators

Serap BULUT

Abstract

In this paper, we investigate sufficient conditions for the univalence

of an integral operator defined by generalized Al-Oboudi differential

operator.

1 Introduction

Let A denote the class of all functions of the form

f(z) = z +
∞
∑

k=2

akzk (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}, and S =

{f ∈ A : f is univalent in U}.

The following definition of fractional derivative by Owa [8] (also by Srivas-

tava and Owa [14]) will be required in our investigation.

Key Words: Analytic function; Univalent function; Differential operator; Integral operator.
Mathematics Subject Classification: 30C45.
Received: January, 2009
Accepted: April, 2009

37



38 Serap BULUT

The fractional derivative of order γ is defined, for a function f , by

Dγ
z f(z) =

1

Γ(1 − γ)

d

dz

∫ z

0

f(ξ)

(z − ξ)γ
dξ (0 ≤ γ < 1), (1.2)

where the function f is analytic in a simply connected region of the complex

z-plane containing the origin, and the multiplicity of (z − ξ)−γ is removed by

requiring log(z − ξ) to be real when z − ξ > 0.

It readily follows from (1.2) that

Dγ
z zk =

Γ(k + 1)

Γ(k + 1 − γ)
zk−γ (0 ≤ γ < 1, k ∈ N = {1, 2, . . .}).

Using Dγ
z f , Owa and Srivastava [9] introduced the operator Ωγ : A → A,

which is known as an extension of fractional derivative and fractional integral,

as follows:

Ωγf(z) = Γ (2 − γ) zγDγ
z f(z), γ 6= 2, 3, 4, . . .

= z +
∞
∑

k=2

Γ(k + 1)Γ (2 − γ)

Γ(k + 1 − γ)
akzk. (1.3)

Note that

Ω0f(z) = f(z).

In [3], Al-Oboudi and Al-Amoudi defined the linear multiplier fractional

differential operator Dn,γ
λ as follows:

D0f(z) = f(z),

D1,γ
λ f(z) = (1 − λ) Ωγf(z) + λz (Ωγf(z))

′

= Dγ
λ (f(z)) , λ ≥ 0, 0 ≤ γ < 1, (1.4)

D2,γ
λ f(z) = Dγ

λ

(

D1,γ
λ f(z)

)

,

...

Dn,γ
λ f(z) = Dγ

λ

(

Dn−1,γ
λ f(z)

)

, n ∈ N. (1.5)

If f is given by (1.1), then by (1.3), (1.4) and (1.5), we see that

Dn,γ
λ f(z) = z +

∞
∑

k=2

Ψk,n (γ, λ) akzk, n ∈ N0 = N∪{0} , (1.6)
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where

Ψk,n (γ, λ) =

[

Γ(k + 1)Γ (2 − γ)

Γ(k + 1 − γ)
(1 + (k − 1) λ)

]n

. (1.7)

Remark 1.1. (i) When γ = 0, we get Al-Oboudi differential operator [2].

(ii) When γ = 0 and λ = 1, we get Sălăgean differential operator [13].

(iii) When n = 1 and λ = 0, we get Owa-Srivastava fractional differential

operator [9].

By using the generalized Al-Oboudi differential operator Dn,γ
λ , we intro-

duce the following integral operator:

Definition 1.1 Let n ∈ N0,m ∈ N, β ∈ C with ℜ(β) > 0 and αi ∈ C

(i ∈ {1, . . . ,m}). We define the integral operator

In,γ
β (f1, . . . , fm) : Am → A,

In,γ
β (f1, . . . , fm)(z) =

{

β

∫ z

0

tβ−1
m
∏

i=1

(

Dn,γ
λ fi(t)

t

)αi

dt

}
1

β

(z ∈ U), (1.8)

where Dn,γ
λ is the generalized Al-Oboudi differential operator.

Remark 1.2. (i) For m ∈ N, β ∈ C, ℜ(β) > 0, αi ∈ C and D0,γ
λ fi(z) =

D1,0
0 fi(z) = fi(z) ∈ S (i ∈ {1, . . . ,m}), we have the integral operator

Iβ(f1, . . . , fm)(z) =

{

β

∫ z

0

tβ−1
m
∏

i=1

(

fi(t)

t

)αi

dt

}
1

β

which was introduced in [4].

(ii) For m ∈ N, β = 1, αi ∈ C and D0,γ
λ fi(z) = D1,0

0 fi(z) = fi(z) ∈ S

(i ∈ {1, . . . ,m}), we have the integral operator

I(f1, . . . , fm)(z) =

∫ z

0

(

f1(t)

t

)α1

· · ·

(

fm(t)

t

)αm

dt

which was studied in [4].

(iii) For n ∈ N0, m ∈ N, β = 1, αi ∈ C and Dn,0
λ fi(z) = Dnfi(z) (i ∈ {1, . . . ,m}),

we have the integral operator

In(f1, . . . , fm)(z) =

∫ z

0

(

Dnf1(t)

t

)α1

· · ·

(

Dnfm(t)

t

)αm

dt
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which was studied in [5].

(iv) For n = 0, m = 1, β = 1, α1 = 1, α2 = α3 = · · · = αm = 0 and

D0,γ
λ f1(z) = D1,0

0 f1(z) = f(z) ∈ A, we have Alexander integral operator

I(f)(z) =

∫ z

0

f(t)

t
dt

which was introduced in [1].

(v) For n = 0, m = 1, β = 1, α1 = α ∈ [0, 1], α2 = α3 = · · · = αm = 0 and

D0,γ
λ f1(z) = D1,0

0 f1(z) = f(z) ∈ S, we have the integral operator

I(f)(z) =

∫ z

0

(

f(t)

t

)α

dt

which was studied in [6].

To discuss our problems, we have to recall here the following results.

General Schwarz Lemma [7]. Let the function f be regular in the disk

UR = {z ∈ C : |z| < R}, with |f(z)| < M for fixed M . If f(z) has one zero

with multiplicity order bigger than m for z = 0, then

|f(z)| ≤
M

Rm
|z|

m
(z ∈ UR).

The equality can hold only if

f(z) = eiθ (M/Rm) zm,

where θ is constant.

Theorem A [10]. Let α be a complex number with ℜ(α) > 0 and f ∈ A.

If f(z) satisfies

1 − |z|
2ℜ(α)

ℜ(α)

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤ 1,

for all z ∈ U, then the integral operator

Fα(z) =

{

α

∫ z

0

tα−1f ′(t)dt

}
1

α

is in the class S.



Univalence preserving integral operators 41

Theorem B [11]. Let α be a complex number with ℜ(α) > 0 and f ∈ A.

If f(z) satisfies

1 − |z|
2ℜ(α)

ℜ(α)

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤ 1 (z ∈ U),

then, for any complex number β with ℜ(β) ≥ ℜ(α), the integral operator

Fβ(z) =

{

β

∫ z

0

tβ−1f ′(t)dt

}
1

β

is in the class S.

Theorem C [12]. Let β be a complex number with ℜ(β) > 0, c a complex

number with |c| ≤ 1, c 6= −1, and f(z) given by (1.1) an analytic function in

U. If
∣

∣

∣

∣

c |z|
2β

+ (1 − |z|
2β

)
zf ′′(z)

βf ′(z)

∣

∣

∣

∣

≤ 1

for all z ∈ U, then the function

Fβ(z) =

{

β

∫ z

0

tβ−1f ′(t)dt

}
1

β

= z + · · ·

is analytic and univalent in U.

2 Main Results

Theorem 2.1 Let α1, . . . , αm, β ∈ C and each of the functions fi ∈ A (i ∈ {1, . . . ,m}).

If
∣

∣

∣

∣

∣

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0)

and

ℜ(β) ≥
m
∑

i=1

|αi| > 0,

then the integral operator In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent

function class S.
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Proof. Since fi ∈ A (i ∈ {1, . . . ,m}), by (1.6), we have

Dn,γ
λ fi(z)

z
= 1 +

∞
∑

k=2

Ψk,n (γ, λ) ak,iz
k−1 (n ∈ N0)

and
Dn,γ

λ fi(z)

z
6= 0

for all z ∈ U.

Let us define

h(z) =

∫ z

0

m
∏

i=1

(

Dn,γ
λ fi(t)

t

)αi

dt,

so that, obviously,

h′(z) =

(

Dn,γ
λ f1(z)

z

)α1

· · ·

(

Dn,γ
λ fm(z)

z

)αm

for all z ∈ U. This equality implies that

lnh′(z) = α1 ln
Dn,γ

λ f1(z)

z
+ · · · + αm ln

Dn,γ
λ fm(z)

z

or equivalently

lnh′(z) = α1 [lnDn,γ
λ f1(z) − ln z] + · · · + αm [lnDn,γ

λ fm(z) − ln z] .

By differentiating above equality, we get

h′′(z)

h′(z)
=

m
∑

i=1

αi

[

(Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

−
1

z

]

.

Hence, we obtain from this equality that

∣

∣

∣

∣

zh′′(z)

h′(z)

∣

∣

∣

∣

≤

m
∑

i=1

|αi|

∣

∣

∣

∣

∣

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

∣

∣

∣

∣

∣

.

So by the conditions of the Theorem 2.1, we find

1 − |z|
2ℜ(β)

ℜ(β)

∣

∣

∣

∣

zh′′(z)

h′(z)

∣

∣

∣

∣

≤
1 − |z|

2ℜ(β)

ℜ(β)

m
∑

i=1

|αi|

∣

∣

∣

∣

∣

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

∣

∣

∣

∣

∣

≤
1

ℜ(β)

m
∑

i=1

|αi| ≤ 1.
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Finally, applying Theorem A for the function h(z), we prove that In,γ
β (f1, . . . , fm) ∈

S.

Remark 2.1. If we set β = 1 and γ = 0 in Theorem 2.1, then we have

Theorem 2.3 in [5].

Corollary 2.2 Let αi > 0, β ∈ C and each of the functions fi ∈ A (i ∈ {1, . . . ,m}).

If
∣

∣

∣

∣

∣

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0)

and

ℜ(β) ≥
m
∑

i=1

αi,

then the integral operator In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent

function class S.

Remark 2.2. If we set β = 1 and γ = 0 in Corollary 2.2, then we have

Corollary 2.5 in [5].

Theorem 2.3 Let Mi ≥ 1 and suppose that each of the functions fi ∈ A

(i ∈ {1, . . . ,m} ,m ∈ N) satisfies the inequality

∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2 − 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0).

Also let α1, . . . , αm, α ∈ C with

ℜ(α) ≥
m
∑

i=1

|αi| (2Mi + 1) > 0.

If

|Dn,γ
λ fi(z)| ≤ Mi (z ∈ U; i ∈ {1, . . . ,m}),

then, for any complex number β with ℜ(β) ≥ ℜ(α), the integral operator

In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent function class S.

Proof. We know from the proof of Theorem 2.1 that

∣

∣

∣

∣

zh′′(z)

h′(z)

∣

∣

∣

∣

≤

m
∑

i=1

|αi|

∣

∣

∣

∣

∣

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

∣

∣

∣

∣

∣

.
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So, by the imposed conditions, we find

1 − |z|
2ℜ(α)

ℜ(α)

∣

∣

∣

∣

zh′′(z)

h′(z)

∣

∣

∣

∣

≤
1 − |z|

2ℜ(α)

ℜ(α)

m
∑

i=1

|αi|

(
∣

∣

∣

∣

∣

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

∣

∣

∣

∣

∣

+ 1

)

≤
1 − |z|

2ℜ(α)

ℜ(α)

m
∑

i=1

|αi|

(∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

Dn,γ
λ fi(z)

z

∣

∣

∣

∣

+ 1

)

≤
1 − |z|

2ℜ(α)

ℜ(α)

m
∑

i=1

|αi|

(∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2 − 1

∣

∣

∣

∣

∣

Mi + Mi + 1

)

≤
1

ℜ(α)

m
∑

i=1

|αi| (2Mi + 1) ≤ 1

By applying Theorem B for the function h(z), we prove that In,γ
β (f1, . . . , fm) ∈

S.

Corollary 2.4 Let Mi ≥ 1, αi > 0 and suppose that each of the functions

fi ∈ A (i ∈ {1, . . . ,m}) satisfies the inequality
∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2 − 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0).

Also let α ∈ C with

ℜ(α) ≥

m
∑

i=1

αi (2Mi + 1) .

If

|Dn,γ
λ fi(z)| ≤ Mi (z ∈ U; i ∈ {1, . . . ,m}),

then, for any complex number β with ℜ(β) ≥ ℜ(α), the integral operator

In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent function class S.

Corollary 2.5 Let M ≥ 1 and suppose that each of the functions fi ∈ A

(i ∈ {1, . . . ,m} ,m ∈ N) satisfies the inequality
∣

∣

∣

∣

∣

z2 (Dnfi(z))
′

(Dnfi(z))
2 − 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0).

Also let α1, . . . , αm, α ∈ C with

ℜ(α) ≥ (2M + 1)

m
∑

i=1

|αi| > 0.
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If

|Dnfi(z)| ≤ M (z ∈ U; i ∈ {1, . . . ,m}),

then, for any complex number β with ℜ(β) ≥ ℜ(α), the integral operator

In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent function class S.

Proof. In Theorem 2.3, we consider M1 = · · · = Mm = M .

Corollary 2.6 Suppose that each of the functions fi ∈ A (i ∈ {1, . . . ,m})

satisfies the inequality

∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2 − 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0).

Also let α1, . . . , αm, α ∈ C with

ℜ(α) ≥ 3
m
∑

i=1

|αi| > 0.

If

|Dn,γ
λ fi(z)| ≤ 1 (z ∈ U; i ∈ {1, . . . ,m}),

then, for any complex number β with ℜ(β) ≥ ℜ(α), the integral operator

In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent function class S.

Proof. In Corollary 2.5, we consider M = 1.

Remark 2.3. In Corollary 2.6, if we set

(i) β = 1 and γ = 0, then we have Theorem 2.6,

(ii) β = 1, γ = 0 and αi > 0 (i ∈ {1, . . . ,m}), then we have Corollary 2.8

in [5].

Theorem 2.7 Suppose that each of the functions fi ∈ A (i ∈ {1, . . . ,m})

satisfies the inequality

∣

∣

∣

∣

∣

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0).

Also let α1, . . . , αm, β ∈ C with

ℜ(β) ≥

m
∑

i=1

|αi| > 0
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and let c ∈ C be such that

|c| ≤ 1 −
1

ℜ(β)

m
∑

i=1

|αi| .

Then the integral operator In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent

function class S.

Proof. We know from the proof of Theorem 2.1 that

zh′′(z)

h′(z)
=

m
∑

i=1

αi

[

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

]

.

So we obtain
∣

∣

∣

∣

c |z|
2β

+ (1 − |z|
2β

)
zh′′(z)

βh′(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

c |z|
2β

+ (1 − |z|
2β

)
1

β

m
∑

i=1

αi

[

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

]∣

∣

∣

∣

∣

≤ |c| +

∣

∣

∣

∣

∣

1 − |z|
2β

β

∣

∣

∣

∣

∣

m
∑

i=1

|αi|

∣

∣

∣

∣

∣

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

∣

∣

∣

∣

∣

≤ |c| +
1

|β|

m
∑

i=1

|αi|

≤ |c| +
1

ℜ(β)

m
∑

i=1

|αi| ≤ 1.

Finally, applying Theorem C for the function h(z), we prove that In,γ
β (f1, . . . , fm) ∈

S.

Corollary 2.8 Suppose that each of the functions fi ∈ A (i ∈ {1, . . . ,m})

satisfies the inequality
∣

∣

∣

∣

∣

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0).

Also let αi > 0, β ∈ C with

ℜ(β) ≥

m
∑

i=1

αi

and let c ∈ C be such that

|c| ≤ 1 −
1

ℜ(β)

m
∑

i=1

αi.



Univalence preserving integral operators 47

Then the integral operator In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent

function class S.

Theorem 2.9 Let Mi ≥ 1 and suppose that each of the functions fi ∈ A

(i ∈ {1, . . . ,m}) satisfies the inequality

∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2 − 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0).

Also let α1, . . . , αm, β ∈ C with

ℜ(β) ≥
m
∑

i=1

|αi| (2Mi + 1) > 0,

c ∈ C be such that

|c| ≤ 1 −
1

ℜ(β)

m
∑

i=1

|αi| (2Mi + 1)

and

|Dn,γ
λ fi(z)| ≤ Mi (z ∈ U; i ∈ {1, . . . ,m}).

Then the integral operator In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent

function class S.

Proof. We know from the proof of Theorem 2.1 that

zh′′(z)

h′(z)
=

m
∑

i=1

αi

[

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

]

.

So we obtain
∣

∣

∣

∣

c |z|
2β

+ (1 − |z|
2β

)
zh′′(z)

βh′(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

c |z|
2β

+ (1 − |z|
2β

)
1

β

m
∑

i=1

αi

[

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

− 1

]∣

∣

∣

∣

∣

≤ |c| +

∣

∣

∣

∣

∣

1 − |z|
2β

β

∣

∣

∣

∣

∣

m
∑

i=1

|αi|

(∣

∣

∣

∣

∣

z (Dn,γ
λ fi(z))

′

Dn,γ
λ fi(z)

∣

∣

∣

∣

∣

+ 1

)

≤ |c| +
1

|β|

m
∑

i=1

|αi|

(∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

Dn,γ
λ fi(z)

z

∣

∣

∣

∣

+ 1

)

≤ |c| +
1

|β|

m
∑

i=1

|αi|

(
∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2 − 1

∣

∣

∣

∣

∣

Mi + Mi + 1

)
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≤ |c| +
1

ℜ(β)

m
∑

i=1

|αi| (2Mi + 1) ≤ 1.

Finally, applying Theorem C for the function h(z), we prove that In,γ
β (f1, . . . , fm) ∈

S.

Corollary 2.10 Let Mi ≥ 1, αi > 0 and suppose that each of the functions

fi ∈ A (i ∈ {1, . . . ,m}) satisfies the inequality

∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2 − 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0).

Also let β ∈ C with

ℜ(β) ≥

m
∑

i=1

αi (2Mi + 1) ,

c ∈ C be such that

|c| ≤ 1 −
1

ℜ(β)

m
∑

i=1

αi (2Mi + 1)

and

|Dn,γ
λ fi(z)| ≤ Mi (z ∈ U; i ∈ {1, . . . ,m}).

Then the integral operator In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent

function class S.

Corollary 2.11 Let M ≥ 1 and suppose that each of the functions fi ∈ A

(i ∈ {1, . . . ,m}) satisfies the inequality

∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2 − 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0).

Also let α1, . . . , αm, β ∈ C with

ℜ(β) ≥ (2M + 1)

m
∑

i=1

|αi| > 0,

c ∈ C be such that

|c| ≤ 1 −
2M + 1

ℜ(β)

m
∑

i=1

|αi|
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and

|Dn,γ
λ fi(z)| ≤ M (z ∈ U; i ∈ {1, . . . ,m}).

Then the integral operator In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent

function class S.

Proof. In Theorem 2.9, we consider M1 = · · · = Mm = M .

Corollary 2.12 Suppose that each of the functions fi ∈ A (i ∈ {1, . . . ,m})

satisfies the inequality

∣

∣

∣

∣

∣

z2 (Dn,γ
λ fi(z))

′

(Dn,γ
λ fi(z))

2 − 1

∣

∣

∣

∣

∣

≤ 1 (z ∈ U, n ∈ N0).

Also let α1, . . . , αm, β ∈ C with

ℜ(β) ≥ 3

m
∑

i=1

|αi| > 0,

c ∈ C be such that

|c| ≤ 1 −
3

ℜ(β)

m
∑

i=1

|αi|

and

|Dn,γ
λ fi(z)| ≤ 1 (z ∈ U; i ∈ {1, . . . ,m}).

Then the integral operator In,γ
β (f1, . . . , fm) defined by (1.8) is in the univalent

function class S.

Proof. In Corollary 2.11, we consider M = 1.
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[13] G. Ş. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-

Finnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer,

Berlin, 1983, pp. 362-372.

[14] H. M. Srivastava and S. Owa, (Eds.), Univalent Functions, Fractional Calculus, and

Their Applications, Ellis Horwood Series: Mathematics and Its Applications, Ellis

Horwood, Chichester, UK; JohnWiley & Sons, New York, NY, USA, 1989.

Kocaeli University

Civil Aviation College

Arslanbey Campus
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