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Univalence preserving integral operators
defined by generalized Al-Oboudi differential

operators

Serap BULUT

Abstract

In this paper, we investigate sufficient conditions for the univalence
of an integral operator defined by generalized Al-Oboudi differential

operator.

1 Introduction

Let A denote the class of all functions of the form
f(2) :z—l—Zakzk (1.1)
k=2

which are analytic in the open unit disk U = {z€C:|z| <1}, and § =
{f € A: f is univalent in U}.

The following definition of fractional derivative by Owa [8] (also by Srivas-

tava and Owa [14]) will be required in our investigation.
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The fractional derivative of order « is defined, for a function f, by

L d [T
DU = i | g 0<v<n. ()

where the function f is analytic in a simply connected region of the complex

z-plane containing the origin, and the multiplicity of (z — £)~7 is removed by

requiring log(z — &) to be real when z — £ > 0.

It readily follows from (1.2) that

I'(k+1) _

DIk = ) kv (0<~y <1, EeN={1,2,..}).
- s 0<y<LkeN={12..))
Using D} f, Owa and Srivastava [9] introduced the operator Q7 : A — A,

which is known as an extension of fractional derivative and fractional integral,

as follows:
Qf(z) = T'2-7v)2"DIf(» )7 Y #2,3,4,...
Fk+1DIT2—-7v) 4
Z k:—l—l— 7 apz"”. (1.3)
k=
Note that

Q°f(2) = f(2).
n [3], Al-Oboudi and Al-Amoudi defined the linear multiplier fractional

differential operator DY’ as follows:

Df(z) = f(2),

D\ f(z) = (L=A)QVf(z) + Az (Qf(2))

= D] (f(z)), X>0,0<~vy<1, (1.4)
DYf(z) = DY (DY),
DY f(z) = D (Df\”mf(z)> , neN (1.5)

If f is given by (1.1), then by (1.3), (1.4) and (1.5), we see that

DY f(z) _z+2\pkn v, A arz®,  n e Ny =NU{0}, (1.6)
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where (i T ) "
T(k+ 1) (2 —~

Uy, A) = 1+k-1)N)]| . 1.7
(10 = | R 1 (= 1) (1.7
Remark 1.1. (i) When v = 0, we get Al-Oboudi differential operator [2].
(ii) When v = 0 and A = 1, we get Silagean differential operator [13].

(iii) When n = 1 and A = 0, we get Owa-Srivastava fractional differential

operator [9].

By using the generalized Al-Oboudi differential operator D{"”, we intro-

duce the following integral operator:

Definition 1.1 Let n € No,m € N, g € C with R(8) > 0 and o; € C
(i € {1,...,m}). We define the integral operator

I (frseeos fn) 1 AT — A,

I (1o ) (2) = {ﬁ/oztﬁ‘lljl (W) idt} (z €U), (1.8)

where D' is the generalized Al-Oboudi differential operator.

Remark 1.2. (i) Form € N, 3 € C, R(3) > 0, a; € C and D37 f;(2) =
Dy’ fi(2) = fi(z) € S (i € {1,...,m}), we have the integral operator

which was introduced in [4].
(ii) For m € N, 8 =1, a; € C and D7 fi(z) = Dy’ fi(z) = fi(z) € S

(i € {1,...,m}), we have the integral operator

I(fh...,fm)(z)—/oz (flt“))m..(fn;(t))amdt

which was studied in [4].
(iii) Forn € No,m € N, 8 = 1, a; € Cand DY fi(z) = D" fi(2) (i € {1,...,m}),
we have the integral operator

I"(fl,...,fm)(z)/oz (W)al-.-<lw>amdt
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which was studied in [5].
(iv)Forn=0,m=1,8=101 =1, a0 =az3 = -+ = @, = 0 and
Dg"yfl(z) = Dy f1(2) = f(2) € A, we have Alexander integral operator

1)) = [ L

which was introduced in [1].
(V) Forn=0,m=1,=1, a1 =a€[0,1],as=a3 =" =, =0and
DO’Vfl z) = Dl’ofl z) = f(z) € S, we have the integral operator
A 0

e - [ (H2) a

which was studied in [6].

To discuss our problems, we have to recall here the following results.

General Schwarz Lemma [7]. Let the function f be reqular in the disk
Ugr = {2 € C:|z| < R}, with |f(2)| < M for fixed M. If f(z) has one zero
with multiplicity order bigger than m for z =0, then

£(2)] < Rﬂm ™ (2 € Up).

The equality can hold only if
f(z) =€” (M/R™) 2",

where 0 is constant.

Theorem A [10]. Let « be a complex number with R(«) > 0 and f € A.
If f(z) satisfies
1 _ |Z|2§R(a)

R(a)
for all z € U, then the integral operator

Fo(2) = {a/oz t"‘_lf’(t)dt}

2f"(2)
f'(2)

)

Q=

s in the class S.
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Theorem B [11]. Let o be a complex number with () > 0 and f € A.
If f(z) satisfies

R()

2f"(2)
f'(z)

then, for any complex number [ with R(5) > R(«), the integral operator

<1 (z € 1),

1

mat) = {5 [ i)

1s in the class S.

Theorem C [12]. Let (8 be a complex number with R(3) > 0, ¢ a complex
number with |c| <1, ¢ # —1, and f(z) given by (1.1) an analytic function in
U. If

<1

clof + (1 - 1o 2

for all z € U, then the function

Fy(z) = {ﬂ/oz tﬁlf’(t)dt} — g

18 analytic and univalent in U.

2 Main Results

Theorem 2.1 Letay,...,am, 3 € C and each of the functions f; € A (i € {1,...

If
2 (DY fi(2))

DY fi(z) 1

<1 (z€U,neNy)

and

R(3) = 3 Ja >0,
=1

then the integral operator Ig‘”(fl, .oy fm) defined by (1.8) is in the univalent
function class S.
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Proof. Since f; € A (i € {1,...,m}), by (1.6), we have

Y
4—1%—2\1}]6” ’}/, aklz -1 (néNo)
and
DY)
z
for all z € U.
Let us define X N
z M Dn,'y : t 23
o= [T (220",
i=1

so that, obviously,

ey = (BTAO)T (Y™

for all z € U. This equality implies that

DY fi(z)

Y
lnh/(z):a11n7+.,,+amlnw
z

z

or equivalently
Inh'(z) = a1 [ImDY7 fi(2) —Inz] + - + ap, [In DY frn(2) — In 2]
By differentiating above equality, we get

Wz S, |31
W(z) _i:Zl [ DY fi(2) z]

Hence, we obtain from this equality that

h// "’Yfz( ))
ol | —=im T — 1
Z' P
So by the conditions of the Theorem 2.1, we find
— 12)2B) | 2 (2) _ 1f| |2R i| | 2 (DY fi(2)) 1
R(B) h(z) |~ DY)

< m;‘aﬂﬁl
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Finally, applying Theorem A for the function h(z), we prove that Ig’7 (fi,--, fm) €

S.
Remark 2.1. If we set # =1 and v = 0 in Theorem 2.1, then we have
Theorem 2.3 in [5].

Corollary 2.2 Leta; > 0, 8 € C and each of the functions f; € A (i € {1,...,
If
2 (D37 fi(2))

DY fi(z) L

<1 (z€U,neNy)

and .
8) = Z i,
i=1

then the integral operator Ig’ﬂ’(fl, ..oy fm) defined by (1.8) is in the univalent
function class S.

Remark 2.2. If we set § = 1 and v = 0 in Corollary 2.2, then we have
Corollary 2.5 in [5].

Theorem 2.3 Let M; > 1 and suppose that each of the functions f; € A
(i e{l,...,m},m € N) satisfies the inequality

22 (DY fi(2))
(DY fi(2))?

Also let aq, ..., apy,,a € C with

—1| <1 (ZEU,TLGN()).

Z o;] (2M; +1) > 0.
If
IDY7 fi(2)] < M; (€U i€ {1,...,m}),

then, for any complex number B with R(G8) > R(«), the integral operator
57 (frs -y fm) defined by (1.8) is in the univalent function class S.

Proof. We know from the proof of Theorem 2.1 that

2 (DY fi(2)
AL

h//
z —1].
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So, by the imposed conditions, we find

L 2 |20(2) R 2 (DY fi(2)
R | | < we & Tope |t
LM N (2O RE) | | D3R
< e & orner T
L R OO ey €2)30/TC0) N IV,
< ww &N T

1 m
Ria) 2o ol @M+ D)

By applying Theorem B for the function h(2), we prove that 137 (f1,. .., fm) €
S.

Corollary 2.4 Let M; > 1, a; > 0 and suppose that each of the functions
fie A (@i e{l,...,m}) satisfies the inequality

22 (D;'Yf,(z )

(D"”Yf-(z))Z -1 <1 (2€U,neNy).
N Ji

Also let o € C with .
R(a) > a; (2M; +1).

i=1
If
IDY7 fi(2)] < M (€ Us i € {1,...,m}),
then, for any complex number B with R(B8) > R(«), the integral operator
57 (f1y -, fm) defined by (1.8) s in the univalent function class S.

Corollary 2.5 Let M > 1 and suppose that each of the functions f; € A

(ie{l,...,m},m € N) satisfies the inequality

2 (D" fi(2))'

L e ) IR
(D" fi(2))

Also let aq, ..., apy,,a € C with

1‘§1 (ZEUJ’LEN()).

R(a) > (2M + l)i la;| > 0.

=1
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If
ID"f;(2)| < M (2 €U; i € {1,...,m}),

then, for any complex number B with R(3) > R(«), the integral operator
[g’v(fl, .oy fm) defined by (1.8) is in the univalent function class S.

Proof. In Theorem 2.3, we consider My = --- = M,, = M.

Corollary 2.6 Suppose that each of the functions f; € A (i € {1,...,m})
satisfies the inequality

22 (DY fi2))
(DY fi(2))?

Also let aq,...,am,,a € C with

-1/ <1 (2€U,neNy).

R(a) >3 |as] > 0.
=1

If
DY) 1 (e V5 i€ {1,.m}),

then, for any complex number B with R(B) > RN(«a), the integral operator
157 (f1y -, fm) defined by (1.8) is in the univalent function class S.

Proof. In Corollary 2.5, we consider M = 1.

Remark 2.3. In Corollary 2.6, if we set

(i) =1 and v = 0, then we have Theorem 2.6,

(ii) f=1,vy=0and a; >0 (i € {1,...,m}), then we have Corollary 2.8
in [5].

Theorem 2.7 Suppose that each of the functions f; € A (i € {1,...,m})

satisfies the inequality

2 (DY fi(2))
DY fi(z)

Also let aq, ..., am, 8 € C with

-1/ <1 (ZEU,HGNQ).

R(B) =) |ai| >0
1=1



46 SERAP BULUT

and let ¢ € C be such that

1 m
|c|§l—m;|ai|.

Then the integral operator Ig"y(fl, ooy fm) defined by (1.8) is in the univalent

function class S.

Proof. We know from the proof of Theorem 2.1 that

el (D37 £i(2)'
S5 ]

So we obtain

clef? + (1= 1) 5| = >
< Je+ |2 ‘Z' im :3}:’(()))
< \c|+m;|ai|
< c|+%(1mg|ai|s1

Finally, applying Theorem C for the function h(z), we prove that 137 (f1,. ..

S.

Corollary 2.8 Suppose that each of the functions f; € A (i €{1,...,

satisfies the inequality

z(DY7 fi(2))
—a——"——1| <1 N
D7) (z € U,n € Ny)
Also let a;; > 0,8 € C with
R(B) = Zai
i=1

and let ¢ € C be such that

1 m
|C| S 1—Wgai.

D” i
ol Z l Dmf:((f) -

11

)fm) E

m})
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Then the integral operator Ig"’ (f1,--y fm) defined by (1.8) is in the univalent
function class S.

Theorem 2.9 Let M; > 1 and suppose that each of the functions f; € A
(i € {1,...,m}) satisfies the inequality
2 (DY fi(2))
, 2
(DX fi(2))
Also let aq,...,am,, 3 € C with

-1/ <1 (2€U,neNy).

B) = lai (2M; +1) > 0,
=1

c € C be such that
1 m
le] <1— — la;] (2M; + 1)
R0 2
and

|IDY7 fi(z)| < M; (€ U; i e {1,...,m}).

Then the integral operator Ig” (f1,--+, fm) defined by (1.8) is in the univalent
function class S.

Proof. We know from the proof of Theorem 2.1 that

@) s [0 s
W) [ DY7E(C) 1]'

i=1

So we obtain

28 25, 21" (2)
clz|™ + (1 = |2 )ﬂh’(:a)

B . DY fi(2)

el 4 (1 oL S o l(Dm) _1]

< o+ 1_"2' ( 5:7]{ +1>
) (D37 (2)) || DR (2)
< |+IBIZZ< DR |1 2 “)
(DY fi(2) 4 4
< e+ = a2 Z\ ( R 1| M; + M; + 1)
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m

1
lc| + W;Mﬂ (2M; +1) < 1.

Finally, applying Theorem C for the function h(z), we prove that Ig” (fi,- -y fm) €
S.

Corollary 2.10 Let M; > 1, o; > 0 and suppose that each of the functions
fie A (i e{l,...,m}) satisfies the inequality

A K3

Also let B € C with
R(B) =D i (2M; +1),
i=1

c € C be such that

1 m
el <1— —— a; (2M; + 1
o < 1 gy Do s 20+ 1)
and
|IDY7 fi(2)| < M; (2 € U; i€ {1,...,m}).
Then the integral operator Ig”(fl, ooy fm) defined by (1.8) is in the univalent

function class S.

Corollary 2.11 Let M > 1 and suppose that each of the functions f; € A
(i € {1,...,m}) satisfies the inequality

2 (DY fi(2)
(DY fil2))?

Also let aq, ..., qpy,, 0 € C with

11 <1 (ZEU,REN()).

m

R(B) > 2M +1)Y" o] > 0,

c € C be such that

m

2M +1
e <1— |
R &




UNIVALENCE PRESERVING INTEGRAL OPERATORS 49

and
DY) < M (z€T; i € {1, om}).

Then the integral operator Ig"’ (f1,--+, fm) defined by (1.8) is in the univalent

function class S.
Proof. In Theorem 2.9, we consider M, = --- = M, = M.

Corollary 2.12 Suppose that each of the functions f; € A (i € {1,...,m})

satisfies the inequality

2 (DY fi(2)
(DY fi(2))?

Also let aq,...,am,, 3 € C with

<1 (ZEU,’I%GN()).

R(B) 23 lai| >0,
=1

c € C be such that
3 m
cl<1— ——— Qi
el < %(B);| |
and
DY) €1 (s € ;i € {1,...m}).

Then the integral operator Ig’y (f1,---, fm) defined by (1.8) is in the univalent

function class S.

Proof. In Corollary 2.11, we consider M = 1.
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