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An isoparametric function on almost k-contact

manifolds

Adara M. BLAGA

Abstract

The aim of this paper is to point out an isoparametric function on

an almost k-contact manifold.

1 Introduction

Almost 3-contact manifolds were introduced by Kuo [2] and independently,
by Udrişte [5]. To their class belong also 3-Sasakian and 3-cosymplectic man-
ifolds studied by Boyer and Galicki [1], whose properties were also analyzed
by Montano and De Nicola [4]. In this paper, starting with a proposal for
the notion of almost k-contact structure, we shall point out an isoparametric
function which can be associated in this framework, by generalizing a similar
construction initiated by Mihai and Rosca [3].

2 Almost k-contact manifolds

Recall that an almost contact manifold is an odd-dimensional manifold
(M,Φ, ξ, η), where

1. Φ is a field of endomorphisms of the tangent space;

2. ξ is a vector field (called the Reeb vector field);

3. η is a 1-form, such that
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• Φ2 = −IΓ(TM) + η ⊗ ξ

• η(ξ) = 1,

where IΓ(TM) denotes the identity on the Lie algebra of vector fields.

Proposition 1 Any almost contact manifold (M,Φ, ξ, η) admits a Rieman-
nian metric g (called compatible metric) with the properties:

g(Φ(X),Φ(Y )) = g(X,Y ) − η(X)η(Y ),

g(ξ,X) = η(X),

for any X,Y ∈ Γ(TM).

We call (M,Φ, ξ, η, g) almost contact metric manifold . In this case,
the Reeb vector field ξ is orthonormal with respect to g [g(ξ, ξ) = η(ξ) = 1].

A natural generalization of almost 3-contact manifold [4] is given by the
following definition:

Definition 1 An almost k-contact manifold is an (n + k + nk)-dimen-
sional manifold M with k almost contact structures (Φ1, ξ1, η1),...,(Φk, ξk, ηk)
such that:

• Φi ◦ Φj = −δijIΓ(TM) + ηj ⊗ ξi +
∑k

l=1 εijlΦl

• ηi(ξj) = δij,

for any i, j, l ∈ {1, ..., k}, where εijl is the totally antisymmetric symbol.

It follows that Φi(ξj) =
∑k

l=1 εijlξl and ηi ◦ Φj =
∑k

l=1 εijlηl, for any
i, j ∈ {1, ..., k}. A similar computation like in the almost contact case leads
us to Φi(ξi) = 0 and ηi ◦ Φi = 0, for any i ∈ {1, ..., k}. Consider now the case
i 6= j. Then

Φi ◦ Φj = ηj ⊗ ξi +

k∑

l=1

εijlΦl

and computing this relation on ξi and respectively ξj , we obtain

k∑

l=1

εijlΦl(ξi) = Φi(Φj(ξi)) = ξj ,

for any i 6= j. Multiplying ξl = Φj(Φl(ξj)) with εijl and summing over l, we
get

k∑

l=1

εijlξl =

k∑

l=1

εijlΦj(Φl(ξj)) = Φj(

k∑

l=1

εijlΦl(ξj)) = −Φj(ξi).



An isoparametric function 17

Then

Φi(ξj) = −

k∑

l=1

εjilξl =

k∑

l=1

εijlξl.

Computing Φ2
i = −IΓ(TM) +ηi⊗ξi for Φj(X), with arbitrary X ∈ Γ(TM),

we obtain

−Φj(X) + ηi(Φj(X))ξi = Φ2
i (Φj(X)) = Φi[(Φi ◦ Φj)(X)]

= Φi[ηj(X)ξi +
k∑

l=1

εijlΦl(X)]

=

k∑

l=1

εijl(Φi ◦ Φl)(X).

It follows that

(ηi ◦ Φj)(X)ξi = Φj(X) +

k∑

l=1

εijl(Φi ◦ Φl)(X)

= Φj(X) +
k∑

l=1

εijl[−δilX + ηl(X)ξi +
k∑

p=1

εilpΦp(X)]

= Φj(X) +

k∑

l=1

εijlηl(X)ξi − Φj(X) =

k∑

l=1

εijlηl(X)ξi,

for any X ∈ Γ(TM). Applying ηi, we find

(ηi ◦ Φj)(X) =

k∑

l=1

εijlηl(X),

for any X ∈ Γ(TM).

Proposition 2 Any almost k-contact manifold (M,Φi, ξi, ηi)1≤i≤k admits a
Riemannian metric g compatible with each of the k almost contact structures:

g(Φi(X),Φi(Y )) = g(X,Y ) − ηi(X)ηi(Y ),

g(ξi,X) = ηi(X), (1)

for any X,Y ∈ Γ(TM), i ∈ {1, ..., k}.

We call (M,Φi, ξi, ηi, g)1≤i≤k almost k-contact metric manifold . In
this case, the Reeb vector fields ξ1,...,ξk are orthonormal with respect to g
[g(ξi, ξj) = ηi(ξj) = δij , for any i, j ∈ {1, ..., k}].
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3 Isoparametric function

Let (M,Φi, ξi, ηi, g)1≤i≤k be an almost k-contact metric manifold and define
H := ∩k

i=1 ker ηi the horizontal distribution. Then the tangent bundle splits
into the orthogonal sum of the horizontal and vertical distributions,

TM = H⊕ < ξ1, ..., ξk > .

Consider the vector field ξ :=
∑k

i=1 λiξi, λi ∈ C∞(M) and define the
1-form η := iξg. Then

η(X) = iξg(X) = g(ξ,X) = g(

k∑

i=1

λiξi,X) =

k∑

i=1

λig(ξi,X) =

k∑

i=1

λiηi(X),

for any X ∈ Γ(TM) and in particular for X = ξ,

η(ξ) =
k∑

i=1

λiηi(ξ) =
k∑

i=1

λig(ξi, ξ) = g(ξ, ξ) =‖ ξ ‖2 . (2)

Let ∇ be the Levi-Civita connection associated to g. From Cartan’s struc-
ture equations, for {ei}1≤i≤k an orthonormal frame and θ the local connection

form, we have ∇e = θ⊗e, with θj
i = λiηj −λjηi, i, j ∈ {1, ..., k}. If we assume

that ξ defines a skew symmetric connection, then θj
i (ξ) = 0 and dηi = η ∧ ηi,

i ∈ {1, ..., k}. It follows

0 = d2ηi = d(η ∧ ηi) = dη ∧ ηi − η ∧ dηi = dη ∧ ηi − η ∧ (η ∧ ηi) = dη ∧ ηi,

so

0 = (dη ∧ ηi)(X,Y ) = dη(X)ηi(Y ) − dη(Y )ηi(X),

for any X,Y ∈ Γ(TM). In particular, for X = ξi, Y = ξj , i 6= j,

0 = dη(ξi)ηi(ξj) − dη(ξj)ηi(ξi),

we find dη(ξj) = 0, for any j ∈ {1, ..., k}. Now, for Y = ξi,

0 = dη(X)ηi(ξi) − dη(ξi)ηi(X) = dη(X),

for any X ∈ Γ(TM) and so dη = 0.
Following the ideas of Mihai and Rosca [3], we shall prove that on an almost

k-contact manifold, ‖ ξ ‖2 is an isoparametric function. Let ♭(X) := iXg and
♯ := ♭−1 be the musical isomorphisms.
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Assume that ∇λi = fξi, f ∈ C∞(M). Then ♯(dλi) = fξi ⇔ ♭−1(dλi) =
fξi ⇔ dλi = ♭(fξi) = ifξi

g = fiξi
g = fηi and

0 = d2λi = d(fηi) = df ∧ ηi + fdηi

= df ∧ ηi + fη ∧ ηi = (df + fη) ∧ ηi

implies df + fη = 0.

Set 2λ =‖ ξ ‖2 [= g(ξ, ξ)]. Then

dλ = d(
g(ξ, ξ)

2
) =

1

2
d[g(

k∑

i=1

λiξi,

k∑

j=1

λjξj)] =
1

2
d[

∑

1≤i,j≤k

λiλjg(ξi, ξj)]

=
1

2
d[

∑

1≤i,j≤k

λiλjηi(ξj)] =
1

2
d[

∑

1≤i,j≤k

λiλjδij ] =
1

2
d[

∑

1≤i≤k

λ2
i ]

=
1

2
(

∑

1≤i≤k

2λidλi) =
∑

1≤i≤k

λidλi =
∑

1≤i≤k

λifηi

= f
∑

1≤i≤k

λiηi = fη

and d(f + λ) = df + dλ = df + fη = 0 implies f + λ = c(constant).

From the structure’s equations follows that

∇Zξi = λi

k∑

j=1

ηj(Z)ξj − ηi(Z)ξ, (3)

for any Z ∈ Γ(TM), i ∈ {1, ..., k} [3]. Therefore,

Lemma 1 For any Z ∈ Γ(TM), ∇Zξ = (2λ + f)
∑k

j=1 ηj(Z)ξj − η(Z)ξ.



20 Adara M. Blaga

Proof. Indeed,

∇Zξ =

k∑

i=1

[λi∇Zξi + Z(λi)ξi]

=
k∑

i=1

[λi(λi

k∑

j=1

ηj(Z)ξj − ηi(Z)ξ) + Z(λi)ξi]

= [

k∑

i=1

λ2
i ][

k∑

j=1

ηj(Z)ξj ] − η(Z)ξ +

k∑

i=1

dλi(Z)ξi

= ‖ ξ ‖2 [

k∑

j=1

ηj(Z)ξj ] − η(Z)ξ +

k∑

i=1

fηi(Z)ξi

= (2λ + f)[
k∑

i=1

ηi(Z)ξi] − η(Z)ξ,

for any Z ∈ Γ(TM).

Theorem 1 Let on an almost k-contact metric manifold M a number of k-
smooth functions λi such that for all i, the gradient vector field ∇λi is parallel
with ξi with the same factor f ∈ C∞(M). Then, for the vector field ξ :=∑k

i=1 λiξi, its norm is an isoparametric function on M .

Proof. Since {ξi} is an orthonormal set for g we have:

2λ =

k∑

i=1

λ2
i

and then:

∇λ = f(

k∑

i=1

λiξi) = (c − λ)(

k∑

i=1

λiξi) = (c − λ)ξ. (4)

Therefore,

‖ ∇λ ‖2= (c − λ)22λ. (5)

Then,

div(∇λ) = (c − λ)divξ − ξ(λ), (6)

but

ξ(λ) =
1

2
ξ(g(ξ, ξ)) = g(∇ξξ, ξ). (7)
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From:
∇ξξ = (λ + c)ξ − η(ξ)ξ = (c − λ)ξ, (8)

it results:

div(∇λ) = (c − λ)[kc +
k − 2

2
2λ − 2λ] = (c − λ)[kc + (k − 4)λ], (9)

which, for k = 3 gives the relation (2.24) of Rosca-Mihai.
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