An. Şt. Univ. Ovidius Constanţa

An isoparametric function on almost k-contact manifolds

Adara M. BLAGA

Abstract

The aim of this paper is to point out an isoparametric function on an almost k-contact manifold.

1 Introduction

Almost 3-contact manifolds were introduced by Kuo [2] and independently, by Udrişte [5]. To their class belong also 3-Sasakian and 3-cosymplectic manifolds studied by Boyer and Galicki [1], whose properties were also analyzed by Montano and De Nicola [4]. In this paper, starting with a proposal for the notion of almost k-contact structure, we shall point out an isoparametric function which can be associated in this framework, by generalizing a similar construction initiated by Mihai and Rosca [3].

2 Almost k-contact manifolds

Recall that an almost contact manifold is an odd-dimensional manifold (M, Φ, ξ, η), where

1. Φ is a field of endomorphisms of the tangent space;
2. ξ is a vector field (called the Reeb vector field);
3. η is a 1 -form, such that
[^0]- $\Phi^{2}=-I_{\Gamma(T M)}+\eta \otimes \xi$
- $\eta(\xi)=1$,
where $I_{\Gamma(T M)}$ denotes the identity on the Lie algebra of vector fields.
Proposition 1 Any almost contact manifold (M, Φ, ξ, η) admits a Riemannian metric g (called compatible metric) with the properties:

$$
\begin{gathered}
g(\Phi(X), \Phi(Y))=g(X, Y)-\eta(X) \eta(Y), \\
g(\xi, X)=\eta(X),
\end{gathered}
$$

for any $X, Y \in \Gamma(T M)$.
We call (M, Φ, ξ, η, g) almost contact metric manifold. In this case, the Reeb vector field ξ is orthonormal with respect to $g[g(\xi, \xi)=\eta(\xi)=1]$.

A natural generalization of almost 3-contact manifold [4] is given by the following definition:

Definition 1 An almost k-contact manifold is an $(n+k+n k)$-dimensional manifold M with k almost contact structures $\left(\Phi_{1}, \xi_{1}, \eta_{1}\right), \ldots,\left(\Phi_{k}, \xi_{k}, \eta_{k}\right)$ such that:

- $\Phi_{i} \circ \Phi_{j}=-\delta_{i j} I_{\Gamma(T M)}+\eta_{j} \otimes \xi_{i}+\sum_{l=1}^{k} \varepsilon_{i j l} \Phi_{l}$
- $\eta_{i}\left(\xi_{j}\right)=\delta_{i j}$,
for any $i, j, l \in\{1, \ldots, k\}$, where $\varepsilon_{i j l}$ is the totally antisymmetric symbol.
It follows that $\Phi_{i}\left(\xi_{j}\right)=\sum_{l=1}^{k} \varepsilon_{i j l} \xi_{l}$ and $\eta_{i} \circ \Phi_{j}=\sum_{l=1}^{k} \varepsilon_{i j l} \eta_{l}$, for any $i, j \in\{1, \ldots, k\}$. A similar computation like in the almost contact case leads us to $\Phi_{i}\left(\xi_{i}\right)=0$ and $\eta_{i} \circ \Phi_{i}=0$, for any $i \in\{1, \ldots, k\}$. Consider now the case $i \neq j$. Then

$$
\Phi_{i} \circ \Phi_{j}=\eta_{j} \otimes \xi_{i}+\sum_{l=1}^{k} \varepsilon_{i j l} \Phi_{l}
$$

and computing this relation on ξ_{i} and respectively ξ_{j}, we obtain

$$
\sum_{l=1}^{k} \varepsilon_{i j l} \Phi_{l}\left(\xi_{i}\right)=\Phi_{i}\left(\Phi_{j}\left(\xi_{i}\right)\right)=\xi_{j}
$$

for any $i \neq j$. Multiplying $\xi_{l}=\Phi_{j}\left(\Phi_{l}\left(\xi_{j}\right)\right)$ with $\varepsilon_{i j l}$ and summing over l, we get

$$
\sum_{l=1}^{k} \varepsilon_{i j l} \xi_{l}=\sum_{l=1}^{k} \varepsilon_{i j l} \Phi_{j}\left(\Phi_{l}\left(\xi_{j}\right)\right)=\Phi_{j}\left(\sum_{l=1}^{k} \varepsilon_{i j l} \Phi_{l}\left(\xi_{j}\right)\right)=-\Phi_{j}\left(\xi_{i}\right)
$$

Then

$$
\Phi_{i}\left(\xi_{j}\right)=-\sum_{l=1}^{k} \varepsilon_{j i l} \xi_{l}=\sum_{l=1}^{k} \varepsilon_{i j l} \xi_{l}
$$

Computing $\Phi_{i}^{2}=-I_{\Gamma(T M)}+\eta_{i} \otimes \xi_{i}$ for $\Phi_{j}(X)$, with arbitrary $X \in \Gamma(T M)$, we obtain

$$
\begin{aligned}
-\Phi_{j}(X)+\eta_{i}\left(\Phi_{j}(X)\right) \xi_{i} & =\Phi_{i}^{2}\left(\Phi_{j}(X)\right)=\Phi_{i}\left[\left(\Phi_{i} \circ \Phi_{j}\right)(X)\right] \\
& =\Phi_{i}\left[\eta_{j}(X) \xi_{i}+\sum_{l=1}^{k} \varepsilon_{i j l} \Phi_{l}(X)\right] \\
& =\sum_{l=1}^{k} \varepsilon_{i j l}\left(\Phi_{i} \circ \Phi_{l}\right)(X)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left(\eta_{i} \circ \Phi_{j}\right)(X) \xi_{i} & =\Phi_{j}(X)+\sum_{l=1}^{k} \varepsilon_{i j l}\left(\Phi_{i} \circ \Phi_{l}\right)(X) \\
& =\Phi_{j}(X)+\sum_{l=1}^{k} \varepsilon_{i j l}\left[-\delta_{i l} X+\eta_{l}(X) \xi_{i}+\sum_{p=1}^{k} \varepsilon_{i l p} \Phi_{p}(X)\right] \\
& =\Phi_{j}(X)+\sum_{l=1}^{k} \varepsilon_{i j l} \eta_{l}(X) \xi_{i}-\Phi_{j}(X)=\sum_{l=1}^{k} \varepsilon_{i j l} \eta_{l}(X) \xi_{i}
\end{aligned}
$$

for any $X \in \Gamma(T M)$. Applying η_{i}, we find

$$
\left(\eta_{i} \circ \Phi_{j}\right)(X)=\sum_{l=1}^{k} \varepsilon_{i j l} \eta_{l}(X)
$$

for any $X \in \Gamma(T M)$.
Proposition 2 Any almost k-contact manifold $\left(M, \Phi_{i}, \xi_{i}, \eta_{i}\right)_{1 \leq i \leq k}$ admits a Riemannian metric g compatible with each of the k almost contact structures:

$$
\begin{gather*}
g\left(\Phi_{i}(X), \Phi_{i}(Y)\right)=g(X, Y)-\eta_{i}(X) \eta_{i}(Y), \\
g\left(\xi_{i}, X\right)=\eta_{i}(X) \tag{1}
\end{gather*}
$$

for any $X, Y \in \Gamma(T M), i \in\{1, \ldots, k\}$.
We call $\left(M, \Phi_{i}, \xi_{i}, \eta_{i}, g\right)_{1 \leq i \leq k}$ almost k-contact metric manifold. In this case, the Reeb vector fields ξ_{1}, \ldots, ξ_{k} are orthonormal with respect to g $\left[g\left(\xi_{i}, \xi_{j}\right)=\eta_{i}\left(\xi_{j}\right)=\delta_{i j}\right.$, for any $\left.i, j \in\{1, \ldots, k\}\right]$.

3 Isoparametric function

Let $\left(M, \Phi_{i}, \xi_{i}, \eta_{i}, g\right)_{1 \leq i \leq k}$ be an almost k-contact metric manifold and define $\mathcal{H}:=\cap_{i=1}^{k} \operatorname{ker} \eta_{i}$ the horizontal distribution. Then the tangent bundle splits into the orthogonal sum of the horizontal and vertical distributions,

$$
T M=\mathcal{H} \oplus<\xi_{1}, \ldots, \xi_{k}>
$$

Consider the vector field $\xi:=\sum_{i=1}^{k} \lambda_{i} \xi_{i}, \lambda_{i} \in C^{\infty}(M)$ and define the 1-form $\eta:=i_{\xi} g$. Then

$$
\eta(X)=i_{\xi} g(X)=g(\xi, X)=g\left(\sum_{i=1}^{k} \lambda_{i} \xi_{i}, X\right)=\sum_{i=1}^{k} \lambda_{i} g\left(\xi_{i}, X\right)=\sum_{i=1}^{k} \lambda_{i} \eta_{i}(X)
$$

for any $X \in \Gamma(T M)$ and in particular for $X=\xi$,

$$
\begin{equation*}
\eta(\xi)=\sum_{i=1}^{k} \lambda_{i} \eta_{i}(\xi)=\sum_{i=1}^{k} \lambda_{i} g\left(\xi_{i}, \xi\right)=g(\xi, \xi)=\|\xi\|^{2} \tag{2}
\end{equation*}
$$

Let ∇ be the Levi-Civita connection associated to g. From Cartan's structure equations, for $\left\{e_{i}\right\}_{1 \leq i \leq k}$ an orthonormal frame and θ the local connection form, we have $\nabla e=\theta \otimes e$, with $\theta_{i}^{j}=\lambda_{i} \eta_{j}-\lambda_{j} \eta_{i}, i, j \in\{1, \ldots, k\}$. If we assume that ξ defines a skew symmetric connection, then $\theta_{i}^{j}(\xi)=0$ and $d \eta_{i}=\eta \wedge \eta_{i}$, $i \in\{1, \ldots, k\}$. It follows

$$
0=d^{2} \eta_{i}=d\left(\eta \wedge \eta_{i}\right)=d \eta \wedge \eta_{i}-\eta \wedge d \eta_{i}=d \eta \wedge \eta_{i}-\eta \wedge\left(\eta \wedge \eta_{i}\right)=d \eta \wedge \eta_{i}
$$

so

$$
0=\left(d \eta \wedge \eta_{i}\right)(X, Y)=d \eta(X) \eta_{i}(Y)-d \eta(Y) \eta_{i}(X)
$$

for any $X, Y \in \Gamma(T M)$. In particular, for $X=\xi_{i}, Y=\xi_{j}, i \neq j$,

$$
0=d \eta\left(\xi_{i}\right) \eta_{i}\left(\xi_{j}\right)-d \eta\left(\xi_{j}\right) \eta_{i}\left(\xi_{i}\right)
$$

we find $d \eta\left(\xi_{j}\right)=0$, for any $j \in\{1, \ldots, k\}$. Now, for $Y=\xi_{i}$,

$$
0=d \eta(X) \eta_{i}\left(\xi_{i}\right)-d \eta\left(\xi_{i}\right) \eta_{i}(X)=d \eta(X)
$$

for any $X \in \Gamma(T M)$ and so $d \eta=0$.
Following the ideas of Mihai and Rosca [3], we shall prove that on an almost k-contact manifold, $\|\xi\|^{2}$ is an isoparametric function. Let $b(X):=i_{X} g$ and $\sharp:=b^{-1}$ be the musical isomorphisms.

Assume that $\nabla \lambda_{i}=f \xi_{i}, f \in C^{\infty}(M)$. Then $\sharp\left(d \lambda_{i}\right)=f \xi_{i} \Leftrightarrow b^{-1}\left(d \lambda_{i}\right)=$ $f \xi_{i} \Leftrightarrow d \lambda_{i}=b\left(f \xi_{i}\right)=i_{f \xi_{i}} g=f i_{\xi_{i}} g=f \eta_{i}$ and

$$
\begin{aligned}
0 & =d^{2} \lambda_{i}=d\left(f \eta_{i}\right)=d f \wedge \eta_{i}+f d \eta_{i} \\
& =d f \wedge \eta_{i}+f \eta \wedge \eta_{i}=(d f+f \eta) \wedge \eta_{i}
\end{aligned}
$$

implies $d f+f \eta=0$.
Set $2 \lambda=\|\xi\|^{2}[=g(\xi, \xi)]$. Then

$$
\begin{aligned}
d \lambda & =d\left(\frac{g(\xi, \xi)}{2}\right)=\frac{1}{2} d\left[g\left(\sum_{i=1}^{k} \lambda_{i} \xi_{i}, \sum_{j=1}^{k} \lambda_{j} \xi_{j}\right)\right]=\frac{1}{2} d\left[\sum_{1 \leq i, j \leq k} \lambda_{i} \lambda_{j} g\left(\xi_{i}, \xi_{j}\right)\right] \\
& =\frac{1}{2} d\left[\sum_{1 \leq i, j \leq k} \lambda_{i} \lambda_{j} \eta_{i}\left(\xi_{j}\right)\right]=\frac{1}{2} d\left[\sum_{1 \leq i, j \leq k} \lambda_{i} \lambda_{j} \delta_{i j}\right]=\frac{1}{2} d\left[\sum_{1 \leq i \leq k} \lambda_{i}^{2}\right] \\
& =\frac{1}{2}\left(\sum_{1 \leq i \leq k} 2 \lambda_{i} d \lambda_{i}\right)=\sum_{1 \leq i \leq k} \lambda_{i} d \lambda_{i}=\sum_{1 \leq i \leq k} \lambda_{i} f \eta_{i} \\
& =f \sum_{1 \leq i \leq k} \lambda_{i} \eta_{i}=f \eta
\end{aligned}
$$

and $d(f+\lambda)=d f+d \lambda=d f+f \eta=0$ implies $f+\lambda=c($ constant $)$.
From the structure's equations follows that

$$
\begin{equation*}
\nabla_{Z} \xi_{i}=\lambda_{i} \sum_{j=1}^{k} \eta_{j}(Z) \xi_{j}-\eta_{i}(Z) \xi \tag{3}
\end{equation*}
$$

for any $Z \in \Gamma(T M), i \in\{1, \ldots, k\}[3]$. Therefore,

Lemma 1 For any $Z \in \Gamma(T M), \nabla_{Z} \xi=(2 \lambda+f) \sum_{j=1}^{k} \eta_{j}(Z) \xi_{j}-\eta(Z) \xi$.

Proof. Indeed,

$$
\begin{aligned}
\nabla_{Z} \xi & =\sum_{i=1}^{k}\left[\lambda_{i} \nabla_{Z} \xi_{i}+Z\left(\lambda_{i}\right) \xi_{i}\right] \\
& =\sum_{i=1}^{k}\left[\lambda_{i}\left(\lambda_{i} \sum_{j=1}^{k} \eta_{j}(Z) \xi_{j}-\eta_{i}(Z) \xi\right)+Z\left(\lambda_{i}\right) \xi_{i}\right] \\
& =\left[\sum_{i=1}^{k} \lambda_{i}^{2}\right]\left[\sum_{j=1}^{k} \eta_{j}(Z) \xi_{j}\right]-\eta(Z) \xi+\sum_{i=1}^{k} d \lambda_{i}(Z) \xi_{i} \\
& =\|\xi\|^{2}\left[\sum_{j=1}^{k} \eta_{j}(Z) \xi_{j}\right]-\eta(Z) \xi+\sum_{i=1}^{k} f \eta_{i}(Z) \xi_{i} \\
& =(2 \lambda+f)\left[\sum_{i=1}^{k} \eta_{i}(Z) \xi_{i}\right]-\eta(Z) \xi,
\end{aligned}
$$

for any $Z \in \Gamma(T M)$.

Theorem 1 Let on an almost k-contact metric manifold M a number of k smooth functions λ_{i} such that for all i, the gradient vector field $\nabla \lambda_{i}$ is parallel with ξ_{i} with the same factor $f \in C^{\infty}(M)$. Then, for the vector field $\xi:=$ $\sum_{i=1}^{k} \lambda_{i} \xi_{i}$, its norm is an isoparametric function on M.

Proof. Since $\left\{\xi_{i}\right\}$ is an orthonormal set for g we have:

$$
2 \lambda=\sum_{i=1}^{k} \lambda_{i}^{2}
$$

and then:

$$
\begin{equation*}
\nabla \lambda=f\left(\sum_{i=1}^{k} \lambda_{i} \xi_{i}\right)=(c-\lambda)\left(\sum_{i=1}^{k} \lambda_{i} \xi_{i}\right)=(c-\lambda) \xi \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\|\nabla \lambda\|^{2}=(c-\lambda)^{2} 2 \lambda \tag{5}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\operatorname{div}(\nabla \lambda)=(c-\lambda) \operatorname{div} \xi-\xi(\lambda) \tag{6}
\end{equation*}
$$

but

$$
\begin{equation*}
\xi(\lambda)=\frac{1}{2} \xi(g(\xi, \xi))=g\left(\nabla_{\xi} \xi, \xi\right) \tag{7}
\end{equation*}
$$

From:

$$
\begin{equation*}
\nabla_{\xi} \xi=(\lambda+c) \xi-\eta(\xi) \xi=(c-\lambda) \xi \tag{8}
\end{equation*}
$$

it results:

$$
\begin{equation*}
\operatorname{div}(\nabla \lambda)=(c-\lambda)\left[k c+\frac{k-2}{2} 2 \lambda-2 \lambda\right]=(c-\lambda)[k c+(k-4) \lambda] \tag{9}
\end{equation*}
$$

which, for $k=3$ gives the relation (2.24) of Rosca-Mihai.

Acknowledgments

I wish to express my thanks to the referees for their useful remarks.

References

[1] C. Boyer, K. Galicki, 3-Sasakian manifolds. Surveys in differential geometry: essays on Einstein manifolds, Surv. Differ. Geom., VI, Int. Press, Boston, MA 1999, pp. 123-184.
[2] Y. Y. Kuo, On almost contact 3-structure, Tohoku Math. J., 22 (1970), 235-332.
[3] A. Mihai, R. Roşca, On vertical skew symmetric almost contact 3-structures, J. Geom., 82(2005), 146-155.
[4] B. Cappelletti Montano, A. De Nicola, 3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem, J. Geom. Phys., 57(2007), 2509-2520.
[5] C. Udrişte, Structures presque coquaternioniennes, Bull. Math. R. S. Roumanie, 13(61)(1969), 487-507.

Adara M. Blaga
Department of Mathematics and Computer Science
West University of Timişoara
Bld. V. Pârvan nr.4, 300223 Timişoara, România
adara@math.uvt.ro

[^0]: Key Words: almost k-contact manifold; isoparametric function; Riemannian metric. Mathematics Subject Classification: 53C15
 Received: December, 2008
 Accepted: March, 2009

