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Viscosity approximation method for

m-accretive mapping

and variational inequality in Banach space

Zhenhua He1, Deifei Zhang1, Feng Gu2 ∗

Abstract

This paper introduces a composite viscosity iterative scheme to ap-
proximate a zero of m−accretive operator A defined on Banach spaces
E with uniformly Gâteaux differentiable norm. It is also shown that the
zero is a solution of some variation inequalities. The results in this paper
improve and extend the corresponding that of [3] and some others.

1 Introduction and preliminaries

Let E be a real Banach space and E∗ its dual space. Let J denote the
normalized duality mapping from E into 2E∗

defined by J(x) = {f ∈ E∗ :
〈x, f〉 = ‖x‖2 = ‖f‖2}, where 〈·, ·〉 denote the generalized duality pairing
between E and E∗. It is well-known that if E∗ is strictly convex then J is
sing-valued. In the sequel, we shall denote the single-valued normalized duality
mapping by j.

Let K be a nonempty subset of E. We first recall some definitions and
conclusions:

Definition 1.1 T : K → K is said to be a L−Lipschitz mapping, if ∀
x, y ∈ K, ‖Tx−Ty‖ ≤ L‖x−y‖. Especially, if L = 1, i.e. ‖Tx−Ty‖ ≤ ‖x−y‖,
then T is said to non-expansive; if 0 < L < 1, then T is said to contraction
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mapping.

Definition 1.2 An operator A (possibly multivalued) with domain D(A)
and range R(A) in E is called accretive mapping, if ∀ xi ∈ D(A) and yi ∈
Axi(i=1,2), there exists j(x2−x1) ∈ J(x2−x1) such that 〈y2−y1, j(x2−x1)〉 ≥
0. Especially, an accretive operator A is called m-accretive if R(I + rA) = E
for all r > 0.

Note that if A is accretive, then JA := (I + A)−1 is a nonexpansive single-
valued mapping from R(I + A) to D(A) and F (JA) = N(A), where N(A) =
{x ∈ D(A) : Ax = 0}.

Definition 1.3. T : K → K is called pseudocontractive mapping, if there
exists j(x−y) ∈ J(x−y) such that 〈Tx−Ty, j(x−y)〉 ≤ ‖x−y‖2, ∀ x, y ∈ K.

Remark. If T is pseudocontractive, then I − T is accretive, where I is an
identity operator.

Let S = {x ∈ E : ‖x‖ = 1} denote the unit sphere of the real Banach space
E. E is said to have a Gâteaux differentiable norm if the limit

lim
t→0

‖x + ty‖ − ‖x‖

t

exists for each x, y ∈ S; and E is said to have a uniformly Gâteaux differentiable

norm if for each y ∈ S, the limit is attained uniformly for x ∈ S. Furthermore,
it is well known that if E has a uniformly Gâteaux differentiable norm, then
the dual space E∗ is uniformly convex and so the duality map j is single valued

and uniformly continuous on bounded subsets of E. Let E be a normed space
with dim E ≥ 2, the modulus of smoothness of E is the function ρE : [0,∞) →
[0,∞) defined by

ρE(τ) := sup{
‖x + y‖ + ‖x − y‖

2
− 1 : ‖x‖ = 1; ‖y‖ = τ}.

The space E is called uniformly smooth if and only if limτ→0+ ρEτ/τ = 0.
In 2006, H.K. Xu considered the following algorithm,

xn+1 = αnu + (1 − αn)Jrn
xn, n ≥ 0, (1)

where u ∈ K is arbitrary (but fixed), Jrn
= (I + rnA)−1, {αn} is a sequence

in (0,1), and {rn} is a sequence of positive numbers. Xu proved that if E
is a uniformly smooth Banach space, then the sequence {xn} given by (1.1)
converges strongly to a point in N(A) provided the sequences {αn} and {rn}
satisfy certain conditions.

Inspired by (1.1), R. Chen and Z. Zhu [3] studied the following two iterative
schemes:
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xt,nt
= tf(xt,nt

) + (1 − t)Jrnt
xt,nt

, t ∈ (0, 1) (2)

and

xn+1 = αnf(xn) + (1 − αn)Jrn
xn, n ≥ 0. (3)

where Jrn
= (I +rnA)−1, σ ∈ (0, 1) is arbitrary (but fixed). I denotes identity

operator.
Under appropriate conditions, R. Chen and Z. Zhu [3] proved that if E is

a uniformly smooth Banach space, then the sequence {xt,nt
} and {xn} given

by (1.2) and (1.3) converge strongly to a zero point of m−accretive operator
A, respectively.

Motivated by Chen and Zhu’s work, in this paper, we study two new iter-
ative schemes in reflexive Banach spaces E with uniformly Gâteaux differen-
tiable norm as follows:

xt = tf(xt) + (1 − t)Srxt, t ∈ (0, 1) (4)

and
{

xn+1 = αnf(xn) + (1 − αn)yn,
yn = βnxn + (1 − βn)Srn

xn, n ≥ 0,
(5)

where Sr = (1 − σ)I + σJr, Jr = (I + rA)−1, Srn
= (1 − σ)I + σJrn

, Jrn
=

(I + rnA)−1, σ ∈ (0, 1) is arbitrary(but fixed), I denotes identity operator.
Especially, if βn = 0, then (1.5) reduces to following iterative scheme:

xn+1 = αnf(xn) + (1 − αn)Srn
xn, n ≥ 0, (6)

Obviously, the iterative scheme (1.4) and (1.6) are still different from that
of (1.2) and (1.3), respectively.

Under appropriate conditions, this paper proves that {xt} defined by (1.4)
converge strongly to a p ∈ N(A) which is a solution of some variational inequal-
ities in the framework of reflexive Banach spaces E with uniformly Gâteaux
differentiable norm. At the same time, we also prove that {xn} converges
strongly to a p ∈ N(A). The results obtained in this paper improve and
extend that of Chen and Zhu [3] and some others.

In what follows, we shall make use of the following Lemmas.

Lemma 1.1([2]). Let E be a real normed linear space and J the normalized
duality mapping on E, then for each x, y ∈ E and j(x + y) ∈ J(x + y), we
have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉.

Lemma 1.2(Suzuki, [6]). Let {xn} and {yn} be bounded sequences in a
Banach space E and let {βn} be a sequence in [0,1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose xn+1 = βnyn + (1− βn)xn for all integers n ≥ 0
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and lim supn→∞(‖yn+1−yn‖−‖xn+1−xn‖) ≤ 0, then, limn→∞ ‖yn−xn‖ = 0.

Lemma 1.3([9]). Let {an} be a sequence of nonnegative real numbers satis-
fying the following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0,

if (i) αn ∈ [0, 1],
∑

αn =∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0,
∑

γn<∞, then
an→0, as n→∞.

Theorem I(see,e.g.,[4,10]). Let A be a continuous and accretive operator on
the real Banach space E with D(A) = E. Then A is m−accretive.

Let µ be a continuous linear functional on l∞ satisfying ‖µ‖ = 1 = µ(1).
Then we know that µ is a mean on N if and only if

inf{an;n ∈ N} ≤ µ(a) ≤ sup{an;n ∈ N}

for every a = (a1, a2, ...) ∈ l∞ . According to time and circumstances, we use
µn(an) instead of µ(a). A mean µ on N is called a Banach limit if µn(an) =
µn(an+1) for every a = (a1, a2, ...) ∈ l∞ . Furthermore, we know the following
result [8, Lemma 1] and[7, Lemma4.5.4].

Lemma1.4([8], Lemma 1). Let K be a nonempty closed convex subset of a
Banach space E with a uniformly Gâteaux differentiable norm. Let {xn} be
a bounded sequence of E and let µ be a mean on N .Let z ∈ K. Then

µn‖xn − z‖ = min
y∈K

µn‖xn − y‖

if and only if
µn〈y − z, j(xn − z)〉 ≤ 0, ∀ y ∈ K,

where j is the duality mapping of E.

Lemma 1.5([1, 5]). For λ > 0 and µ > 0 and x ∈ E,

Jλx = Jµ

(µ

λ
x +

(

1 −
µ

λ

)

Jλx
)

.

2 Main results

Throughout this paper, suppose that
(a) E is a real reflexive Banach space E which has a uniformly Gâteaux dif-
ferentiable norms;
(b) K is a nonempty closed convex subset of E;
(c) every nonempty closed bounded convex subset of E has the fixed point
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property for nonexpansive mappings.

Theorem 2.1. Let A : K → E be a m−accretive mapping with N(A) 6= ∅.
Let f : K → K be a contraction with contraction constantα ∈ (0, 1), then
there exists xt ∈ K such that

xt = tf(xt) + (1 − t)Srxt, (1)

where Sr = (1 − σ)I + σJr with Jr = (I + rA)−1 and σ ∈ (0, 1), I denotes
identity operator. Further, as t → 0+, xt converges strongly a zero p ∈ N(A)
which solutes the following variational inequality:

〈p − f(p), j(p − q)〉 ≤ 0, ∀ q ∈ N(A). (2)

Proof. Firstly, Sr is nonexpansive mapping and F (Sr) = N(A) 6= ∅. Sec-

ondly, let Hf
t denote a mapping defined by

Hf
t x = tf(x) + (1 − t)Srx, ∀ t ∈ (0, 1), ∀x ∈ K.

Obviously, Hf
t is contraction, then by Banach contraction mapping principle

there exists xt ∈ K such that

xt = tf(xt) + (1 − t)Srxt.

Now, let p ∈ N(A), then

‖xt − p‖ = ‖t(f(xt) − p) + (1 − t)(Srxt − p)‖ ≤ tα‖xt − p‖ + t‖f(p) − p‖ + (1 − t)‖xt − p‖,

i.e.,
‖xt − p‖ ≤

‖f(p) − p‖

1 − α
.

Hence {xt} is bounded. Assume that tn → 0+ as n → ∞. Set xn := xtn
,

define a function g on K by

g(x) = µn‖xn − x‖2.

Let
C = {x ∈ K; g(x) = min

y∈K
µn‖xn − y‖2}.

It is easy to see that C is a closed convex bounded subset of E. Since ‖xn −
Srxn‖ → 0(n → ∞), hence

g(Srx) = µn‖xn − Srx‖
2 = µn‖Srxn − Srx‖

2 ≤ µn‖xn − x‖2 = g(x),

it follows that Sr(C) ⊂ C, that is C is invariant under Sr. By assumption (c),
non-expansive mapping Sr has fixed point p ∈ C. Using Lemma 1.4 we obtain

µn〈x − p, j(xn − p)〉 ≤ 0.
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Taking x = f(p), then

µn〈f(p) − p, j(xn − p)〉 ≤ 0. (3)

Since

xt − p = t(f(xt) − p) + (1 − t)(Srxt − p),

then

‖xt−p‖2 = t〈f(xt)−p, j(xt−p)〉+(1−t)〈Srxt−p, j(xt−p)〉≤ t〈f(xt)−p, j(xt−p)〉+(1−t)‖xt−p‖2

Further,

‖xt − p‖2 ≤ 〈f(xt) − p, j(xt − p)〉 = 〈f(xt) − f(p), j(xt − p)〉 + 〈f(p) − p, j(xt − p)〉.

Thus,

µn‖xn − p‖2 ≤ µnα‖xn − p‖2 + µn〈f(p) − p, j(xn − p)〉.

it follows from (2.3) that

µn‖xn − p‖2 = 0.

Hence there exists a subsequence of {xn} which is still denoted by {xn} such
that lim

n→∞
‖xn − p‖ = 0. Now assume that another subsequence {xm} of {xn}

converge strongly to p̄ ∈ N(A). Since j is uniformly continuous on bounded
subsets of E, then for any q ∈ N(A),we have

|〈xm − f(xm), j(xm − q)〉 − 〈p̄ − f(p̄), j(p̄ − q)〉|

= |〈xm− f(xm)− (p̄ −f(p̄)), j(xm − q)〉+ 〈(p̄ − f(p̄)), j(xm − q)〉 − 〈p̄ − f(p̄), j(p̄ − q)〉|

≤ ‖(I − f)xm− (I− f)p̄‖‖xm − q‖ +|〈p̄ −f(p̄), j(xm − q) −j(p̄ − q)〉| → 0 (m → ∞),(4)

i.e.,

〈p̄ − f(p̄), j(p̄ − q)〉 = lim
n→∞

〈xm − f(xm), j(xm − q)〉. (5)

Since xm = tf(xm) + (1 − t)Srxm, we have

(I − f)xm = −
1 − t

t
(I − Sr)xm,

hence for any q ∈ N(A),

〈(I − f)xm, j(xm − q)〉 = −
1 − t

t
〈(I − Sr)xm − (I − Sr)q, j(xm − q)〉 ≤ 0, (6)

it follows from (2.5) and (2.6) that

〈p̄ − f(p̄), j(p̄ − q)〉 ≤ 0. (7)
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Interchange p and q to obtain

〈p̄ − f(p̄), j(p̄ − p)〉 ≤ 0, (8)

i.e.,

〈p̄ − p + p − f(p̄), j(p̄ − p)〉 ≤ 0, (9)

hence

‖p̄ − p‖2 ≤ 〈f(p̄) − p, j(p̄ − p)〉. (10)

Interchange p and p̄ to obtain

‖p̄ − p‖2 ≤ 〈f(p) − p̄, j(p − p̄)〉. (11)

Adding up (2.10) and (2.11) yields that

2‖p̄ − p‖2 ≤ (1 + α)‖p̄ − p‖, (12)

this implies that p = p̄. Hence xt → p as t → 0+ and p is a solution of the
following variational inequality

〈p − f(p), j(p − q)〉 ≤ 0, ∀ q ∈ N(A).

This completes the proof of Theorem 2.1.
It is well known that the duality mapping j is identity mapping on Hilbert

space. Next we give an example for the variational inequality (2.2).

Example 1. Let Tx = 1
2x2 − 1

4(|a|+|b|)x
3, ∀ x ∈ [a, b], a, b ∈ R1, a < b. By

Weierstrass Theorem we know that there exists x0 ∈ [a, b] such that

Tx0 = min
a≤x≤b

Tx.

Moreover, there has following results:
(i) If x0 ∈ (a, b), then T ′x0 = 0;
(ii) If x0 = a, then T ′x0 ≥ 0;
(iii) If x0 = b, then T ′x0 ≤ 0.
By (i)-(iii), we have T ′x0(x − x0) ≥ 0, ∀ x ∈ [a, b]. Thus the following

variational inequality is obtained by inner product of R1:

〈T ′x0, x − x0〉 ≥ 0, ∀ x ∈ [a, b]. (∗)

Notice that

T ′x = x −
3

4(|a| + |b|)
x2.

Let f(x) = 3
4(|a|+|b|)x

2,∀ x ∈ [a, b], then it is obvious that f is a contraction.

This shows that the variate inequality (∗) is a special case of the variational
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inequality (2.2).

Theorem 2.2. Let A : K → E be m−accretive with N(A) 6= ∅ and f : K →
K be contractive with constant α ∈ (0, 1). For given x0 ∈ K, let {xn} be
generated by the algorithm

{

xn+1 = αnf(xn) + (1 − αn)yn

yn = βnxn + (1 − βn)Srn
xn,

(13)

where Srn
:= (1−σ)I+σJrn

with Jrn
:= (I+rnA)−1, {αn}, {βn} ⊂ [0, 1]. σ ∈

(0, 1) is arbitrary (but fixed). Suppose that {αn}, {rn} satisfy the following
conditions:

(i) 0 ≤ αn ≤ 1 for all n ≥ 0, lim αn→∞ = 0, Σ∞
n=0αn = ∞,

(ii) rn ≥ ε > 0 for all n ≥ 0 and limn→∞ |rn+1 − rn| = 0,
then {xn} converges strongly to a zero p ∈ N(A), where p = limt→0+ xt is a
solution of variational inequality (2.2).

Proof. We is easy to know that F (Srn
) = F (Jrn

) = N(A) 6= ∅ and Srn
is

nonexpansive. Since p ∈ N(A), then p ∈ F (Srn
). It follows from (2.13)

‖yn − p‖ ≤ ‖xn − p‖, ‖xn+1 − p‖ ≤ (1 − (1 − α)αn)‖xn − p‖ + αn‖f(p) − p‖,

which yields that

‖xn − p‖ ≤ max{‖x0 − p‖,
‖f(p) − p‖

1 − α
}.

Hence, {xn} is bounded and so are {yn} and {Srn
xn}.

Let M be a constant such that for all n ≥ 0,

max{‖f(xn‖, ‖f(xn+1‖, ‖Jrn+1
xn+1 − xn+1‖, ‖Jrn+1

xn+1‖} ≤ M.

Then from (2.13) and Lemma 1.5 we have

‖Jrn+1
xn+1 − Jrn

xn‖ ≤ ‖xn+1−xn‖ +

∣

∣

∣

∣

1 −
rn

rn+1

∣

∣

∣

∣

M. (14)

and

‖Srn+1
xn+1−Srn

xn‖ ≤ ‖xn+1 − xn‖ +

∣

∣

∣

∣

1 −
rn

rn+1

∣

∣

∣

∣

M, (15)

Now, we shall show ‖xn+1−xn‖ → 0 as n → ∞. We shall split two cases
to study it.

Case 1. If lim supn→∞ βn = 1, then it follows from (2.13) that

xn+1 − xn = αnf(xn) + (1 − αn)(1 − βn)(Srn
xn − xn),

which implies that ‖xn+1 − xn‖ → 0, as n → ∞.
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Case 2. Let lim supn→∞ βn ≤ a < 1. Let γn = αn + (1 − βn)(1 − αn)σ,

yn = xn+1−xn+γnxn

γn

, i.e. yn =
αnf(xn)+(1−αn)(1−βn)σJrn

xn

γn

, then

yn+1−yn =
αn+1

γn+1
f(xn+1)−

αn

γn

f(xn)+
(1−αn+1)(1−βn+1)σJrn+1

xn+1

γn+1
−

(1 −αn)(1−βn)σJrn
xn

γn

=
αn+1

γn+1
f(xn+1) −

αn

γn

f(xn) +
(1−αn)(1 − βn)σ

γn

(Jrn+1
xn+1−Jrn

xn)

+

(

(1−αn+1)(1 − βn+1)

γn+1
−

(1−αn)(1 − βn)

γn

)

σJrn+1
xn+1,

which yields that

‖yn+1−yn‖ ≤
αn+1 + αn

γn+1γn

M+
(1−αn)(1 − βn)σ

γn

‖xn+1 − xn‖ +
1

γn

|1 −
rn

rn+1
|M

+

∣

∣

∣

∣

(1−αn+1)(1 − βn+1)

γn+1
−

(1−αn)(1 − βn)

γn

∣

∣

∣

∣

M. (16)

Using the conditions (i-ii), from (2.16) we get that

lim sup
n→∞

{‖yn+1−yn‖ − ‖xn+1−xn‖} ≤ 0. (17)

Based on Lemma 1.2 and (2.17), we obtain limn→∞ ‖yn − xn‖ = 0, which
implies

lim
n→∞

‖xn+1 − xn‖ = 0.

By case 1 and case 2 we know limn→∞ ‖xn+1 − xn‖ = 0.
Since ‖xn+1 − yn‖ = αn‖f(xn) − yn‖ → 0 as n → ∞, then ‖xn − yn‖ → 0

and

‖xn − Srn
xn‖ ≤

1

1 − a
‖xn − yn‖ → 0 as n → ∞. (18)

Since

‖xn − Jrn
xn‖ =

1

σ
‖xn − Srn

xn‖,

it follows from (2.18) that ‖xn − Jrn
xn‖ → 0 as n → ∞.

Let r > 0 is a constant such that ε > r > 0, then

‖xn − Jrxn‖ ≤ ‖xn − Jrn
xn‖ + ‖Jrxn − Jrn

xn‖

= ‖xn − Jrn
xn‖ + ‖Jrxn − Jr(

r

rn

xn + (1 −
r

rn

)Jrn
xn)‖

≤ 2‖xn − Jrn
xn‖ → 0(n → ∞). (19)
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It follows from (2.19) that ‖xn − Srxn‖ → 0 as n → ∞, where Srxn =
(1 − σ)xn + σJrxn. Let xt be defined by (2.1), i.e.,

xt = tf(xt) + (1 − t)Srxt, ∀ t ∈ (0, 1).

Then, using Lemma 1.1, we have

‖xt − xn‖
2 = ‖t(f(xt) − xn) + (1 − t)(Srxt − xn)‖2

≤ (1 − t)2‖Srxt − xn‖
2 + 2t〈f(xt) − xn, j(xt − xn)〉

≤ (1 − t)2(‖Srxt − Srxn‖ + ‖Srxn − xn‖)
2 + 2t〈f(xt) − xt + xt − xn, j(xt − xn)〉

≤ (1 + t2)‖xt −xn‖
2+ ‖Srxn− xn‖(2‖xt − xn‖+ ‖Srxn −xn‖) +2t〈f(xt) − xt, j(xt − xn)〉,

hence,

〈f(xt) − xt, j(xn − xt)〉 ≤
t

2
‖xt − xn‖

2 +
‖Srxn − xn‖

2t
(2‖zt − xn‖ + ‖Srxn − xn‖),

let n → ∞ in the last inequality, then we obtain

lim sup
n→∞

〈f(xt) − xt, j(xn − xt)〉 ≤
t

2
M ′,

where M ′ ≥ 0 is a constant such that‖xt − xn‖
2 ≤ M for all t ∈ (0, 1) and

n ≥ 0. Now letting t → 0+, then we have that

lim sup
t→0+

lim sup
n→∞

〈f(xt) − xt, j(xn − xt)〉 ≤ 0.

Thus , for ∀ ε > 0, there exists a positive number δ′ such that for any t ∈ (0, δ′),

lim sup
n→∞

〈f(xt) − xt, j(xn − xt)〉 ≤
ε

2
.

On the other hand, By Theorem 2.1 we have xt → p ∈ F (Sr) = N(A) as
t → 0+. In addition, j is norm-to-weak∗ uniformly continuous on bounded
subsets of E, so there exists δ′′ > 0 such that, for any t ∈ (0, δ′′), we have

|〈(f(p) − p, j(xn − p)〉 − 〈f(xt) − xt, j(xn − xt)〉|

≤ |〈f(p)−p, j(xn−p)〉−〈f(p)−p, j(xn−xt)〉|+|〈f(p)− p, j(xn −xt)〉−〈f(xt)−xt, j(xn− xt)〉|

≤ ‖f(p) − p‖‖j(xn − p) − j(xn − xt)‖ + (1 + α)‖ xt − p‖‖xn − xt‖

<
ε

2
.

Taking δ = min{δ′, δ′′}, for t ∈ (0, δ), we have that

〈f(p) − p, j(xn − p)〉 ≤ 〈f(xt) − xt, j(xn − xt)〉 +
ε

2
.

Hence,

lim sup
n→∞

〈f(p) − p, j(xn − p)〉 ≤ ε, where ε > 0 is arbitrary,
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which yields that

lim sup
n→∞

〈f(p) − p, j(xn − p)〉 ≤ 0. (20)

Now we prove that {xn} converges strongly to p. It follows from Lemma 1.1
and (2.13) that

‖xn+1−p‖2= ‖αn(f(xn) − p) + (1 − αn)(yn − p)‖2

≤ (1 − αn)2‖yn − p‖2 + 2αn〈f(xn) − p, j(xn+1 − p)〉

= (1 − αn)2‖xn − p‖2 + 2αn〈f(xn) − f(p) + f(p) − p, j(xn+1 − p)〉

≤ (1 − αn)2‖xn − p‖2 + 2αnα‖xn − p‖‖xn+1 − p‖ + 2αn〈f(p) − p, j(xn+1 − p)〉

≤ (1−αn)2‖xn−p‖2+αnα(‖xn−p‖2+‖xn+1−p‖2)+2αn〈f(p)−p, j(xn+1−p)〉,(21)

which yields that

‖xn+1−p‖2 ≤
1−(2−α)αn

1 − ααn

‖xn−p‖2+
α2

n

1−ααn

‖xn−p‖2+
2αn

1− ααn

〈f(p)−p, j(xn+1−p)〉

= (1− ᾱn)‖xn−p‖2+
α2

n

1−ααn

‖xn−p‖2+
2αn

1− ααn

〈f(p)−p, j(xn+1−p)〉,(22)

where ᾱn = 2(1−α)αn

1−ααn

. By boundness of {xn} the condition (i) and Lemma 1.3,
{xn} converges strongly to p. This completes the proof of Theorem 2.2.

Theorem 2.3. Let E and αn, βn satisfy the conditions of Theorem 2.2. Let
A : E → E , be a continuous accretive mapping with N(A) 6= ∅. For given
x0 ∈ E, let {xn} be generated by the algorithm (2.13), then {xn} converges
strongly to a zero p ∈ N(A) which solutes the variational inequality (2.2).

Proof. It follows from Theorem I that A is m−accretive mapping. Then by
Theorem 2.2 we know that Theorem 2.3 is true. This completes the proof of
Theorem 2.3.

Theorem 2.4. Let E and αn, βn satisfy the conditions of Theorem 2.2. Let
T : K → E, be a pseudocontractive mapping such that (I−T ) is m−accretive
on K with F (T ) 6= ∅. For given x0 ∈ E, let {xn} be generated by the algorithm

{

xn+1 = αnf(xn) + (1 − αn)yn

yn = βnxn + (1 − βn)Srn
xn,

(23)

where Srn
:= (1 − σ)I + σJrn

with Jrn
:= (I + rn(I − T ))−1 and 0 < σ < 1.

Then {xn} converges strongly to a a fixed point p ∈ F (T ) which solutes the
variational inequality (2.2).

Proof. Let A = (I − T ), then A is m−accretive. Note that N(A) = F (T ),
which yields that N(A) = F (T ) 6= ∅. We complete the proof of Theorem 2.4
by Theorem 2.2.
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If βn ≡ 0, from Theorem 2.2-2.4 we have the following Corollary 2.5-2.7,
respectively.

Corollary 2.5. We choose K, E, A, Srn
, rn, αn such that they satisfy the

conditions of Theorem 2.2. For given x0 ∈ K, let {xn} be generated by the
algorithm (1.6), then {xn} converges strongly to p ∈ N(A) which solutes the
variational inequality (2.2).

Corollary 2.6. Let E and αn satisfy the conditions of Theorem 2.2. Let
A : E → E , be a continuous accretive mapping with N(A) 6= ∅. For given
x0 ∈ E, let {xn} be generated by the algorithm (1.6) . Then {xn} converges
strongly to a a zero p ∈ N(A) which solutes the variational inequality (2.2).

Corollary 2.7. Let E and K and αn satisfy the conditions of Theorem 2.2.
Let T : K → E, be a continuous pseudocontractive mapping with F (T ) 6= ∅.
For given x0 ∈ E, let {xn} be generated by the algorithm

xn+1 = αnf(xn) + (1 − αn)Srn
xn, (24)

where Srn
:= (1 − σ)I + σJrn

with Jrn
:= (I + rn(I − T ))−1 and 0 < σ < 1.

Then {xn} converges strongly to a fixed point p ∈ F (T ) which solutes the
variational inequality (2.2).

Remark 2.8. Since Corollary 2.5 is obtained under the coefficient αn satis-
fying limαn = 0 and Σ∞

n=0αn = ∞, then it is an improvement of Theorem 3.2
of [3].

Example 2. Let

αn =

{

0, if n = 2k;
1
n
, if n = 2k − 1.

and rn =

{

1
2 , if n = 2k;
1
2 − 1

n
, if n = 2k − 1.

where k is some positive integer. Obviously, the coefficient αn and rn sat-
isfy the condition of this paper. But because of Σ∞

n=1|αn+1 − αn| = ∞,
Σ∞

n=1|rn+1 − rn| = ∞, hence the coefficient αn and rn do not satisfy the
condition of Theorem 3.2 of [3].

Remark 2.9. If E is uniformly smooth then E is reflexive and has a uni-
formly Gâteaux differentiable norm with the property that every nonempty
closed and bounded subset of E has the fixed point property for nonexpansive
mappings(see, remark 3.5 of [10]). Thus, if E is a real uniformly smooth Ba-
nach space, then the results in this paper are true, too.
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