Viscosity approximation method for m-accretive mapping and variational inequality in Banach space

Zhenhua $\mathbf{H e}^{1}$, Deifei Zhang ${ }^{1}$, Feng Gu ${ }^{2}$ *

Abstract

This paper introduces a composite viscosity iterative scheme to approximate a zero of m-accretive operator A defined on Banach spaces E with uniformly Gâteaux differentiable norm. It is also shown that the zero is a solution of some variation inequalities. The results in this paper improve and extend the corresponding that of [3] and some others.

1 Introduction and preliminaries

Let E be a real Banach space and E^{*} its dual space. Let J denote the normalized duality mapping from E into $2^{E^{*}}$ defined by $J(x)=\left\{f \in E^{*}\right.$: $\left.\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}$, where $\langle\cdot, \cdot\rangle$ denote the generalized duality pairing between E and E^{*}. It is well-known that if E^{*} is strictly convex then J is sing-valued. In the sequel, we shall denote the single-valued normalized duality mapping by j.

Let K be a nonempty subset of E. We first recall some definitions and conclusions:

Definition 1.1 $T: K \rightarrow K$ is said to be a L-Lipschitz mapping, if \forall $x, y \in K,\|T x-T y\| \leq L\|x-y\|$. Especially, if $L=1$, i.e. $\|T x-T y\| \leq\|x-y\|$, then T is said to non-expansive; if $0<L<1$, then T is said to contraction

[^0]mapping.
Definition 1.2 An operator A (possibly multivalued) with domain $D(A)$ and range $R(A)$ in E is called accretive mapping, if $\forall x_{i} \in D(A)$ and $y_{i} \in$ $A x_{i}(i=1,2)$, there exists $j\left(x_{2}-x_{1}\right) \in J\left(x_{2}-x_{1}\right)$ such that $\left\langle y_{2}-y_{1}, j\left(x_{2}-x_{1}\right)\right\rangle \geq$ 0 . Especially, an accretive operator A is called m-accretive if $R(I+r A)=E$ for all $r>0$.

Note that if A is accretive, then $J_{A}:=(I+A)^{-1}$ is a nonexpansive singlevalued mapping from $R(I+A)$ to $D(A)$ and $F\left(J_{A}\right)=N(A)$, where $N(A)=$ $\{x \in D(A): A x=0\}$.
Definition 1.3. $T: K \rightarrow K$ is called pseudocontractive mapping, if there exists $j(x-y) \in J(x-y)$ such that $\langle T x-T y, j(x-y)\rangle \leq\|x-y\|^{2}, \forall x, y \in K$.

Remark. If T is pseudocontractive, then $I-T$ is accretive, where I is an identity operator.

Let $S=\{x \in E:\|x\|=1\}$ denote the unit sphere of the real Banach space E. E is said to have a Gâteaux differentiable norm if the limit

$$
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}
$$

exists for each $x, y \in S$; and E is said to have a uniformly Gâteaux differentiable norm if for each $y \in S$, the limit is attained uniformly for $x \in S$. Furthermore, it is well known that if E has a uniformly Gâteaux differentiable norm, then the dual space E^{*} is uniformly convex and so the duality map j is single valued and uniformly continuous on bounded subsets of E. Let E be a normed space with $\operatorname{dim} E \geq 2$, the modulus of smoothness of E is the function $\rho_{E}:[0, \infty) \rightarrow$ $[0, \infty)$ defined by

$$
\rho_{E}(\tau):=\sup \left\{\frac{\|x+y\|+\|x-y\|}{2}-1:\|x\|=1 ;\|y\|=\tau\right\} .
$$

The space E is called uniformly smooth if and only if $\lim _{\tau \rightarrow 0^{+}} \rho_{E} \tau / \tau=0$.
In 2006, H.K. Xu considered the following algorithm,

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) J_{r_{n}} x_{n}, n \geq 0 \tag{1}
\end{equation*}
$$

where $u \in K$ is arbitrary (but fixed), $J_{r_{n}}=\left(I+r_{n} A\right)^{-1},\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$, and $\left\{r_{n}\right\}$ is a sequence of positive numbers. Xu proved that if E is a uniformly smooth Banach space, then the sequence $\left\{x_{n}\right\}$ given by (1.1) converges strongly to a point in $N(A)$ provided the sequences $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ satisfy certain conditions.

Inspired by (1.1), R. Chen and Z. Zhu [3] studied the following two iterative schemes:

$$
\begin{equation*}
x_{t, n_{t}}=t f\left(x_{t, n_{t}}\right)+(1-t) J_{r_{n_{t}}} x_{t, n_{t}}, \quad t \in(0,1) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) J_{r_{n}} x_{n}, \quad n \geq 0 . \tag{3}
\end{equation*}
$$

where $J_{r_{n}}=\left(I+r_{n} A\right)^{-1}, \sigma \in(0,1)$ is arbitrary (but fixed). I denotes identity operator.

Under appropriate conditions, R. Chen and Z. Zhu [3] proved that if E is a uniformly smooth Banach space, then the sequence $\left\{x_{t, n_{t}}\right\}$ and $\left\{x_{n}\right\}$ given by (1.2) and (1.3) converge strongly to a zero point of m-accretive operator A, respectively.

Motivated by Chen and Zhu's work, in this paper, we study two new iterative schemes in reflexive Banach spaces E with uniformly Gâteaux differentiable norm as follows:

$$
\begin{equation*}
x_{t}=t f\left(x_{t}\right)+(1-t) S_{r} x_{t}, \quad t \in(0,1) \tag{4}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) y_{n} \tag{5}\\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S_{r_{n}} x_{n}, \quad n \geq 0
\end{array}\right.
$$

where $S_{r}=(1-\sigma) I+\sigma J_{r}, J_{r}=(I+r A)^{-1}, S_{r_{n}}=(1-\sigma) I+\sigma J_{r_{n}}, J_{r_{n}}=$ $\left(I+r_{n} A\right)^{-1}, \sigma \in(0,1)$ is arbitrary(but fixed), I denotes identity operator. Especially, if $\beta_{n}=0$, then (1.5) reduces to following iterative scheme:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S_{r_{n}} x_{n}, \quad n \geq 0 \tag{6}
\end{equation*}
$$

Obviously, the iterative scheme (1.4) and (1.6) are still different from that of (1.2) and (1.3), respectively.

Under appropriate conditions, this paper proves that $\left\{x_{t}\right\}$ defined by (1.4) converge strongly to a $p \in N(A)$ which is a solution of some variational inequalities in the framework of reflexive Banach spaces E with uniformly Gâteaux differentiable norm. At the same time, we also prove that $\left\{x_{n}\right\}$ converges strongly to a $p \in N(A)$. The results obtained in this paper improve and extend that of Chen and Zhu [3] and some others.

In what follows, we shall make use of the following Lemmas.
Lemma 1.1([2]). Let E be a real normed linear space and J the normalized duality mapping on E, then for each $x, y \in E$ and $j(x+y) \in J(x+y)$, we have

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle .
$$

Lemma 1.2(Suzuki, [6]). Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space E and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq$ $\lim \sup _{n \rightarrow \infty} \beta_{n}<1$. Suppose $x_{n+1}=\beta_{n} y_{n}+\left(1-\beta_{n}\right) x_{n}$ for all integers $n \geq 0$
and $\lim \sup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0$, then, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

Lemma 1.3([9]). Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers satisfying the following relation:

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} \sigma_{n}+\gamma_{n}, n \geq 0
$$

if (i) $\alpha_{n} \in[0,1], \sum \alpha_{n}=\infty$; (ii) $\limsup \sigma_{n} \leq 0$; (iii) $\gamma_{n} \geq 0, \sum \gamma_{n}<\infty$, then $a_{n} \rightarrow 0$, as $n \rightarrow \infty$.
Theorem I(see,e.g., [4,10]). Let A be a continuous and accretive operator on the real Banach space E with $D(A)=E$. Then A is m-accretive.

Let μ be a continuous linear functional on l^{∞} satisfying $\|\mu\|=1=\mu(1)$. Then we know that μ is a mean on N if and only if

$$
\inf \left\{a_{n} ; n \in N\right\} \leq \mu(a) \leq \sup \left\{a_{n} ; n \in N\right\}
$$

for every $a=\left(a_{1}, a_{2}, \ldots\right) \in l^{\infty}$. According to time and circumstances, we use $\mu_{n}\left(a_{n}\right)$ instead of $\mu(a)$. A mean μ on N is called a Banach limit if $\mu_{n}\left(a_{n}\right)=$ $\mu_{n}\left(a_{n+1}\right)$ for every $a=\left(a_{1}, a_{2}, \ldots\right) \in l^{\infty}$. Furthermore, we know the following result [8, Lemma 1] and[7, Lemma4.5.4].
Lemma1.4([8], Lemma 1). Let K be a nonempty closed convex subset of a Banach space E with a uniformly Gâteaux differentiable norm. Let $\left\{x_{n}\right\}$ be a bounded sequence of E and let μ be a mean on N.Let $z \in K$. Then

$$
\mu_{n}\left\|x_{n}-z\right\|=\min _{y \in K} \mu_{n}\left\|x_{n}-y\right\|
$$

if and only if

$$
\mu_{n}\left\langle y-z, j\left(x_{n}-z\right)\right\rangle \leq 0, \quad \forall y \in K
$$

where j is the duality mapping of E.
Lemma 1.5([1, 5]). For $\lambda>0$ and $\mu>0$ and $x \in E$,

$$
J_{\lambda} x=J_{\mu}\left(\frac{\mu}{\lambda} x+\left(1-\frac{\mu}{\lambda}\right) J_{\lambda} x\right) .
$$

2 Main results

Throughout this paper, suppose that
(a) E is a real reflexive Banach space E which has a uniformly Gâteaux differentiable norms;
(b) K is a nonempty closed convex subset of E;
(c) every nonempty closed bounded convex subset of E has the fixed point
property for nonexpansive mappings.
Theorem 2.1. Let $A: K \rightarrow E$ be a m-accretive mapping with $N(A) \neq \emptyset$. Let $f: K \rightarrow K$ be a contraction with contraction constant $\alpha \in(0,1)$, then there exists $x_{t} \in K$ such that

$$
\begin{equation*}
x_{t}=t f\left(x_{t}\right)+(1-t) S_{r} x_{t} \tag{1}
\end{equation*}
$$

where $S_{r}=(1-\sigma) I+\sigma J_{r}$ with $J_{r}=(I+r A)^{-1}$ and $\sigma \in(0,1)$, I denotes identity operator. Further, as $t \rightarrow 0^{+}, x_{t}$ converges strongly a zero $p \in N(A)$ which solutes the following variational inequality:

$$
\begin{equation*}
\langle p-f(p), j(p-q)\rangle \leq 0, \quad \forall q \in N(A) . \tag{2}
\end{equation*}
$$

Proof. Firstly, S_{r} is nonexpansive mapping and $F\left(S_{r}\right)=N(A) \neq \emptyset$. Secondly, let H_{t}^{f} denote a mapping defined by

$$
H_{t}^{f} x=t f(x)+(1-t) S_{r} x, \quad \forall t \in(0,1), \forall x \in K
$$

Obviously, H_{t}^{f} is contraction, then by Banach contraction mapping principle there exists $x_{t} \in K$ such that

$$
x_{t}=t f\left(x_{t}\right)+(1-t) S_{r} x_{t} .
$$

Now, let $p \in N(A)$, then
$\left\|x_{t}-p\right\|=\left\|t\left(f\left(x_{t}\right)-p\right)+(1-t)\left(S_{r} x_{t}-p\right)\right\| \leq t \alpha\left\|x_{t}-p\right\|+t\|f(p)-p\|+(1-t)\left\|x_{t}-p\right\|$,
i.e.,

$$
\left\|x_{t}-p\right\| \leq \frac{\|f(p)-p\|}{1-\alpha}
$$

Hence $\left\{x_{t}\right\}$ is bounded. Assume that $t_{n} \rightarrow 0^{+}$as $n \rightarrow \infty$. Set $x_{n}:=x_{t_{n}}$, define a function g on K by

$$
g(x)=\mu_{n}\left\|x_{n}-x\right\|^{2} .
$$

Let

$$
C=\left\{x \in K ; g(x)=\min _{y \in K} \mu_{n}\left\|x_{n}-y\right\|^{2}\right\} .
$$

It is easy to see that C is a closed convex bounded subset of E. Since $\| x_{n}-$ $S_{r} x_{n} \| \rightarrow 0(n \rightarrow \infty)$, hence

$$
g\left(S_{r} x\right)=\mu_{n}\left\|x_{n}-S_{r} x\right\|^{2}=\mu_{n}\left\|S_{r} x_{n}-S_{r} x\right\|^{2} \leq \mu_{n}\left\|x_{n}-x\right\|^{2}=g(x),
$$

it follows that $S_{r}(C) \subset C$, that is C is invariant under S_{r}. By assumption (c), non-expansive mapping S_{r} has fixed point $p \in C$. Using Lemma 1.4 we obtain

$$
\mu_{n}\left\langle x-p, j\left(x_{n}-p\right)\right\rangle \leq 0 .
$$

Taking $x=f(p)$, then

$$
\begin{equation*}
\mu_{n}\left\langle f(p)-p, j\left(x_{n}-p\right)\right\rangle \leq 0 . \tag{3}
\end{equation*}
$$

Since

$$
x_{t}-p=t\left(f\left(x_{t}\right)-p\right)+(1-t)\left(S_{r} x_{t}-p\right),
$$

then
$\left\|x_{t}-p\right\|^{2}=t\left\langle f\left(x_{t}\right)-p, j\left(x_{t}-p\right)\right\rangle+(1-t)\left\langle S_{r} x_{t}-p, j\left(x_{t}-p\right)\right\rangle \leq t\left\langle f\left(x_{t}\right)-p, j\left(x_{t}-p\right)\right\rangle+(1-t)\left\|x_{t}-p\right\|^{2}$
Further,
$\left\|x_{t}-p\right\|^{2} \leq\left\langle f\left(x_{t}\right)-p, j\left(x_{t}-p\right)\right\rangle=\left\langle f\left(x_{t}\right)-f(p), j\left(x_{t}-p\right)\right\rangle+\left\langle f(p)-p, j\left(x_{t}-p\right)\right\rangle$.
Thus,

$$
\mu_{n}\left\|x_{n}-p\right\|^{2} \leq \mu_{n} \alpha\left\|x_{n}-p\right\|^{2}+\mu_{n}\left\langle f(p)-p, j\left(x_{n}-p\right)\right\rangle
$$

it follows from (2.3) that

$$
\mu_{n}\left\|x_{n}-p\right\|^{2}=0
$$

Hence there exists a subsequence of $\left\{x_{n}\right\}$ which is still denoted by $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=0$. Now assume that another subsequence $\left\{x_{m}\right\}$ of $\left\{x_{n}\right\}$ converge strongly to $\bar{p} \in N(A)$. Since j is uniformly continuous on bounded subsets of E, then for any $q \in N(A)$, we have
$\left|\left\langle x_{m}-f\left(x_{m}\right), j\left(x_{m}-q\right)\right\rangle-\langle\bar{p}-f(\bar{p}), j(\bar{p}-q)\rangle\right|$
$=\left|\left\langle x_{m}-f\left(x_{m}\right)-(\bar{p}-f(\bar{p})), j\left(x_{m}-q\right)\right\rangle+\left\langle(\bar{p}-f(\bar{p})), j\left(x_{m}-q\right)\right\rangle-\langle\bar{p}-f(\bar{p}), j(\bar{p}-q)\rangle\right|$
$\leq\left\|(I-f) x_{m}-(I-f) \bar{p}\right\|\left\|x_{m}-q\right\|+\left|\left\langle\bar{p}-f(\bar{p}), j\left(x_{m}-q\right)-j(\bar{p}-q)\right\rangle\right| \rightarrow 0(m \rightarrow \infty)(4)$
i.e.,

$$
\begin{equation*}
\langle\bar{p}-f(\bar{p}), j(\bar{p}-q)\rangle=\lim _{n \rightarrow \infty}\left\langle x_{m}-f\left(x_{m}\right), j\left(x_{m}-q\right)\right\rangle . \tag{5}
\end{equation*}
$$

Since $x_{m}=t f\left(x_{m}\right)+(1-t) S_{r} x_{m}$, we have

$$
(I-f) x_{m}=-\frac{1-t}{t}\left(I-S_{r}\right) x_{m}
$$

hence for any $q \in N(A)$,
$\left\langle(I-f) x_{m}, j\left(x_{m}-q\right)\right\rangle=-\frac{1-t}{t}\left\langle\left(I-S_{r}\right) x_{m}-\left(I-S_{r}\right) q, j\left(x_{m}-q\right)\right\rangle \leq 0$,
it follows from (2.5) and (2.6) that

$$
\begin{equation*}
\langle\bar{p}-f(\bar{p}), j(\bar{p}-q)\rangle \leq 0 . \tag{7}
\end{equation*}
$$

Interchange p and q to obtain

$$
\begin{equation*}
\langle\bar{p}-f(\bar{p}), j(\bar{p}-p)\rangle \leq 0, \tag{8}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\langle\bar{p}-p+p-f(\bar{p}), j(\bar{p}-p)\rangle \leq 0, \tag{9}
\end{equation*}
$$

hence

$$
\begin{equation*}
\|\bar{p}-p\|^{2} \leq\langle f(\bar{p})-p, j(\bar{p}-p)\rangle \tag{10}
\end{equation*}
$$

Interchange p and \bar{p} to obtain

$$
\begin{equation*}
\|\bar{p}-p\|^{2} \leq\langle f(p)-\bar{p}, j(p-\bar{p})\rangle \tag{11}
\end{equation*}
$$

Adding up (2.10) and (2.11) yields that

$$
\begin{equation*}
2\|\bar{p}-p\|^{2} \leq(1+\alpha)\|\bar{p}-p\| \tag{12}
\end{equation*}
$$

this implies that $p=\bar{p}$. Hence $x_{t} \rightarrow p$ as $t \rightarrow 0^{+}$and p is a solution of the following variational inequality

$$
\langle p-f(p), j(p-q)\rangle \leq 0, \quad \forall q \in \mathrm{~N}(\mathrm{~A}) .
$$

This completes the proof of Theorem 2.1.
It is well known that the duality mapping j is identity mapping on Hilbert space. Next we give an example for the variational inequality (2.2).
Example 1. Let $T x=\frac{1}{2} x^{2}-\frac{1}{4(|a|+|b|)} x^{3}, \forall x \in[a, b], a, b \in R^{1}, a<b$. By Weierstrass Theorem we know that there exists $x_{0} \in[a, b]$ such that

$$
T x_{0}=\min _{a \leq x \leq b} T x .
$$

Moreover, there has following results:
(i) If $x_{0} \in(a, b)$, then $T^{\prime} x_{0}=0$;
(ii) If $x_{0}=a$, then $T^{\prime} x_{0} \geq 0$;
(iii) If $x_{0}=b$, then $T^{\prime} x_{0} \leq 0$.

By (i)-(iii), we have $T^{\prime} x_{0}\left(x-x_{0}\right) \geq 0, \forall x \in[a, b]$. Thus the following variational inequality is obtained by inner product of R^{1} :

$$
\left\langle T^{\prime} x_{0}, x-x_{0}\right\rangle \geq 0, \quad \forall x \in[a, b] . \quad(*)
$$

Notice that

$$
T^{\prime} x=x-\frac{3}{4(|a|+|b|)} x^{2}
$$

Let $f(x)=\frac{3}{4(|a|+|b|)} x^{2}, \forall x \in[a, b]$, then it is obvious that f is a contraction. This shows that the variate inequality $(*)$ is a special case of the variational
inequality (2.2).
Theorem 2.2. Let $A: K \rightarrow E$ be m-accretive with $N(A) \neq \emptyset$ and $f: K \rightarrow$ K be contractive with constant $\alpha \in(0,1)$. For given $x_{0} \in K$, let $\left\{x_{n}\right\}$ be generated by the algorithm
$\left\{\begin{array}{l}x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) y_{n} \\ y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S_{r_{n}} x_{n},\end{array}\right.$
where $S_{r_{n}}:=(1-\sigma) I+\sigma J_{r_{n}}$ with $J_{r_{n}}:=\left(I+r_{n} A\right)^{-1},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1] . \sigma \in$ $(0,1)$ is arbitrary (but fixed). Suppose that $\left\{\alpha_{n}\right\},\left\{r_{n}\right\}$ satisfy the following conditions:
(i) $0 \leq \alpha_{n} \leq 1$ for all $n \geq 0, \lim \alpha_{n \rightarrow \infty}=0, \Sigma_{n=0}^{\infty} \alpha_{n}=\infty$,
(ii) $r_{n} \geq \varepsilon>0$ for all $n \geq 0$ and $\lim _{n \rightarrow \infty}\left|r_{n+1}-r_{n}\right|=0$,
then $\left\{x_{n}\right\}$ converges strongly to a zero $p \in N(A)$, where $p=\lim _{t \rightarrow 0^{+}} x_{t}$ is a solution of variational inequality (2.2).
Proof. We is easy to know that $F\left(S_{r_{n}}\right)=F\left(J_{r_{n}}\right)=N(A) \neq \emptyset$ and $S_{r_{n}}$ is nonexpansive. Since $p \in N(A)$, then $p \in F\left(S_{r_{n}}\right)$. It follows from (2.13)
$\left\|y_{n}-p\right\| \leq\left\|x_{n}-p\right\|, \quad\left\|x_{n+1}-p\right\| \leq\left(1-(1-\alpha) \alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\|$,
which yields that

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|, \frac{\|f(p)-p\|}{1-\alpha}\right\}
$$

Hence, $\left\{x_{n}\right\}$ is bounded and so are $\left\{y_{n}\right\}$ and $\left\{S_{r_{n}} x_{n}\right\}$.
Let M be a constant such that for all $n \geq 0$,

$$
\max \left\{\| f\left(x_{n}\|,\| f\left(x_{n+1}\|,\| J_{r_{n+1}} x_{n+1}-x_{n+1}\|,\| J_{r_{n+1}} x_{n+1} \|\right\} \leq M\right.\right.
$$

Then from (2.13) and Lemma 1.5 we have

$$
\begin{equation*}
\left\|J_{r_{n+1}} x_{n+1}-J_{r_{n}} x_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\left|1-\frac{r_{n}}{r_{n+1}}\right| M . \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|S_{r_{n+1}} x_{n+1}-S_{r_{n}} x_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\left|1-\frac{r_{n}}{r_{n+1}}\right| M \tag{15}
\end{equation*}
$$

Now, we shall show $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. We shall split two cases to study it.
Case 1. If $\lim \sup _{n \rightarrow \infty} \beta_{n}=1$, then it follows from (2.13) that

$$
x_{n+1}-x_{n}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left(S_{r_{n}} x_{n}-x_{n}\right),
$$

which implies that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$, as $n \rightarrow \infty$.

Case 2. Let $\limsup \operatorname{sum}_{n \rightarrow \infty} \beta_{n} \leq a<1$. Let $\gamma_{n}=\alpha_{n}+\left(1-\beta_{n}\right)\left(1-\alpha_{n}\right) \sigma$, $\bar{y}_{n}=\frac{x_{n+1}-x_{n}+\gamma_{n} x_{n}}{\gamma_{n}}$, i.e. $\bar{y}_{n}=\frac{\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right) \sigma J_{r_{n}} x_{n}}{\gamma_{n}}$, then

$$
\begin{aligned}
\bar{y}_{n+1}-\bar{y}_{n}= & \frac{\alpha_{n+1}}{\gamma_{n+1}} f\left(x_{n+1}\right)-\frac{\alpha_{n}}{\gamma_{n}} f\left(x_{n}\right)+\frac{\left(1-\alpha_{n+1}\right)\left(1-\beta_{n+1}\right) \sigma J_{r_{n+1}} x_{n+1}}{\gamma_{n+1}}-\frac{\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right) \sigma J_{r_{n}} x_{n}}{\gamma_{n}} \\
= & \frac{\alpha_{n+1}}{\gamma_{n+1}} f\left(x_{n+1}\right)-\frac{\alpha_{n}}{\gamma_{n}} f\left(x_{n}\right)+\frac{\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right) \sigma}{\gamma_{n}}\left(J_{r_{n+1}} x_{n+1}-J_{r_{n}} x_{n}\right) \\
& \quad+\left(\frac{\left(1-\alpha_{n+1}\right)\left(1-\beta_{n+1}\right)}{\gamma_{n+1}}-\frac{\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)}{\gamma_{n}}\right) \sigma J_{r_{n+1}} x_{n+1}
\end{aligned}
$$

which yields that

$$
\begin{align*}
\left\|\bar{y}_{n+1}-\bar{y}_{n}\right\| \leq & \frac{\alpha_{n+1}+\alpha_{n}}{\gamma_{n+1} \gamma_{n}} M+\frac{\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right) \sigma}{\gamma_{n}}\left\|x_{n+1}-x_{n}\right\|+\frac{1}{\gamma_{n}}\left|1-\frac{r_{n}}{r_{n+1}}\right| M \\
& +\left|\frac{\left(1-\alpha_{n+1}\right)\left(1-\beta_{n+1}\right)}{\gamma_{n+1}}-\frac{\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)}{\gamma_{n}}\right| M \tag{16}
\end{align*}
$$

Using the conditions (i-ii), from (2.16) we get that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{\left\|\bar{y}_{n+1}-\bar{y}_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right\} \leq 0 \tag{17}
\end{equation*}
$$

Based on Lemma 1.2 and (2.17), we obtain $\lim _{n \rightarrow \infty}\left\|\bar{y}_{n}-x_{n}\right\|=0$, which implies

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

By case 1 and case 2 we know $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$.

$$
\text { Since }\left\|x_{n+1}-y_{n}\right\|=\alpha_{n}\left\|f\left(x_{n}\right)-y_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty, \text { then }\left\|x_{n}-y_{n}\right\| \rightarrow 0
$$

and

$$
\begin{equation*}
\left\|x_{n}-S_{r_{n}} x_{n}\right\| \leq \frac{1}{1-a}\left\|x_{n}-y_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{18}
\end{equation*}
$$

Since

$$
\left\|x_{n}-J_{r_{n}} x_{n}\right\|=\frac{1}{\sigma}\left\|x_{n}-S_{r_{n}} x_{n}\right\|
$$

it follows from (2.18) that $\left\|x_{n}-J_{r_{n}} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Let $r>0$ is a constant such that $\varepsilon>r>0$, then

$$
\begin{align*}
\left\|x_{n}-J_{r} x_{n}\right\| & \leq\left\|x_{n}-J_{r_{n}} x_{n}\right\|+\left\|J_{r} x_{n}-J_{r_{n}} x_{n}\right\| \\
& =\left\|x_{n}-J_{r_{n}} x_{n}\right\|+\left\|J_{r} x_{n}-J_{r}\left(\frac{r}{r_{n}} x_{n}+\left(1-\frac{r}{r_{n}}\right) J_{r_{n}} x_{n}\right)\right\| \\
& \leq 2\left\|x_{n}-J_{r_{n}} x_{n}\right\| \rightarrow 0(n \rightarrow \infty) . \tag{19}
\end{align*}
$$

It follows from (2.19) that $\left\|x_{n}-S_{r} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, where $S_{r} x_{n}=$ $(1-\sigma) x_{n}+\sigma J_{r} x_{n}$. Let x_{t} be defined by (2.1), i.e.,

$$
x_{t}=t f\left(x_{t}\right)+(1-t) S_{r} x_{t}, \quad \forall t \in(0,1) .
$$

Then, using Lemma 1.1, we have

$$
\begin{aligned}
& \left\|x_{t}-x_{n}\right\|^{2}=\left\|t\left(f\left(x_{t}\right)-x_{n}\right)+(1-t)\left(S_{r} x_{t}-x_{n}\right)\right\|^{2} \\
& \leq(1-t)^{2}\left\|S_{r} x_{t}-x_{n}\right\|^{2}+2 t\left\langle f\left(x_{t}\right)-x_{n}, j\left(x_{t}-x_{n}\right)\right\rangle \\
& \leq(1-t)^{2}\left(\left\|S_{r} x_{t}-S_{r} x_{n}\right\|+\left\|S_{r} x_{n}-x_{n}\right\|\right)^{2}+2 t\left\langle f\left(x_{t}\right)-x_{t}+x_{t}-x_{n}, j\left(x_{t}-x_{n}\right)\right\rangle \\
& \leq\left(1+t^{2}\right)\left\|x_{t}-x_{n}\right\|^{2}+\left\|S_{r} x_{n}-x_{n}\right\|\left(2\left\|x_{t}-x_{n}\right\|+\left\|S_{r} x_{n}-x_{n}\right\|\right)+2 t\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{t}-x_{n}\right)\right\rangle,
\end{aligned}
$$

hence,
$\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \leq \frac{t}{2}\left\|x_{t}-x_{n}\right\|^{2}+\frac{\left\|S_{r} x_{n}-x_{n}\right\|}{2 t}\left(2\left\|z_{t}-x_{n}\right\|+\left\|S_{r} x_{n}-x_{n}\right\|\right)$,
let $n \rightarrow \infty$ in the last inequality, then we obtain

$$
\limsup _{n \rightarrow \infty}\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \leq \frac{t}{2} M^{\prime}
$$

where $M^{\prime} \geq 0$ is a constant such that $\left\|x_{t}-x_{n}\right\|^{2} \leq M$ for all $t \in(0,1)$ and $n \geq 0$. Now letting $t \rightarrow 0^{+}$, then we have that

$$
\limsup _{t \rightarrow 0^{+}} \limsup _{n \rightarrow \infty}\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \leq 0 .
$$

Thus, for $\forall \varepsilon>0$, there exists a positive number δ^{\prime} such that for any $t \in\left(0, \delta^{\prime}\right)$,

$$
\limsup _{n \rightarrow \infty}\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \leq \frac{\varepsilon}{2} .
$$

On the other hand, By Theorem 2.1 we have $x_{t} \rightarrow p \in F\left(S_{r}\right)=N(A)$ as $t \rightarrow 0^{+}$. In addition, j is norm-to-weak* uniformly continuous on bounded subsets of E, so there exists $\delta^{\prime \prime}>0$ such that, for any $t \in\left(0, \delta^{\prime \prime}\right)$, we have

$$
\begin{aligned}
& \mid\left\langle\left(f(p)-p, j\left(x_{n}-p\right)\right\rangle-\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle\right| \\
& \leq\left|\left\langle f(p)-p, j\left(x_{n}-p\right)\right\rangle-\left\langle f(p)-p, j\left(x_{n}-x_{t}\right)\right\rangle\right|+\left|\left\langle f(p)-p, j\left(x_{n}-x_{t}\right)\right\rangle-\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle\right| \\
& \leq\|f(p)-p\|\left\|j\left(x_{n}-p\right)-j\left(x_{n}-x_{t}\right)\right\|+(1+\alpha)\left\|x_{t}-p\right\|\left\|x_{n}-x_{t}\right\| \\
& <\frac{\varepsilon}{2}
\end{aligned}
$$

Taking $\delta=\min \left\{\delta^{\prime}, \delta^{\prime \prime}\right\}$, for $t \in(0, \delta)$, we have that

$$
\left\langle f(p)-p, j\left(x_{n}-p\right)\right\rangle \leq\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle+\frac{\varepsilon}{2} .
$$

Hence,

$$
\limsup _{n \rightarrow \infty}\left\langle f(p)-p, j\left(x_{n}-p\right)\right\rangle \leq \varepsilon, \text { where } \varepsilon>0 \text { is arbitrary }
$$

which yields that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f(p)-p, j\left(x_{n}-p\right)\right\rangle \leq 0 \tag{20}
\end{equation*}
$$

Now we prove that $\left\{x_{n}\right\}$ converges strongly to p. It follows from Lemma 1.1 and (2.13) that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} & =\left\|\alpha_{n}\left(f\left(x_{n}\right)-p\right)+\left(1-\alpha_{n}\right)\left(y_{n}-p\right)\right\|^{2} \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|y_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-p, j\left(x_{n+1}-p\right)\right\rangle \\
& =\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-f(p)+f(p)-p, j\left(x_{n+1}-p\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}+2 \alpha_{n} \alpha\left\|x_{n}-p\right\|\left\|x_{n+1}-p\right\|+2 \alpha_{n}\left\langle f(p)-p, j\left(x_{n+1}-p\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}+\alpha_{n} \alpha\left(\left\|x_{n}-p\right\|^{2}+\left\|x_{n+1}-p\right\|^{2}\right)+2 \alpha_{n}\left\langle f(p)-p, j\left(x_{n+1}-p\right)\right\rangle(21)
\end{aligned}
$$

which yields that

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & \leq \frac{1-(2-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}}\left\|x_{n}-p\right\|^{2}+\frac{\alpha_{n}^{2}}{1-\alpha \alpha_{n}}\left\|x_{n}-p\right\|^{2}+\frac{2 \alpha_{n}}{1-\alpha \alpha_{n}}\left\langle f(p)-p, j\left(x_{n+1}-p\right)\right\rangle \\
& =\left(1-\bar{\alpha}_{n}\right)\left\|x_{n}-p\right\|^{2}+\frac{\alpha_{n}^{2}}{1-\alpha \alpha_{n}}\left\|x_{n}-p\right\|^{2}+\frac{2 \alpha_{n}}{1-\alpha \alpha_{n}}\left\langle f(p)-p, j\left(x_{n+1}-p\right)\right\rangle,(22) \tag{22}
\end{align*}
$$

where $\bar{\alpha}_{n}=\frac{2(1-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}}$. By boundness of $\left\{x_{n}\right\}$ the condition (i) and Lemma 1.3, $\left\{x_{n}\right\}$ converges strongly to p. This completes the proof of Theorem 2.2.
Theorem 2.3. Let E and α_{n}, β_{n} satisfy the conditions of Theorem 2.2. Let $A: E \rightarrow E$, be a continuous accretive mapping with $N(A) \neq \emptyset$. For given $x_{0} \in E$, let $\left\{x_{n}\right\}$ be generated by the algorithm (2.13), then $\left\{x_{n}\right\}$ converges strongly to a zero $p \in N(A)$ which solutes the variational inequality (2.2).
Proof. It follows from Theorem I that A is m-accretive mapping. Then by Theorem 2.2 we know that Theorem 2.3 is true. This completes the proof of Theorem 2.3.
Theorem 2.4. Let E and α_{n}, β_{n} satisfy the conditions of Theorem 2.2. Let $T: K \rightarrow E$, be a pseudocontractive mapping such that $(I-T)$ is m-accretive on K with $F(T) \neq \emptyset$. For given $x_{0} \in E$, let $\left\{x_{n}\right\}$ be generated by the algorithm

$$
\left\{\begin{array}{l}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) y_{n} \tag{23}\\
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S_{r_{n}} x_{n}
\end{array}\right.
$$

where $S_{r_{n}}:=(1-\sigma) I+\sigma J_{r_{n}}$ with $J_{r_{n}}:=\left(I+r_{n}(I-T)\right)^{-1}$ and $0<\sigma<1$. Then $\left\{x_{n}\right\}$ converges strongly to a a fixed point $p \in F(T)$ which solutes the variational inequality (2.2).
Proof. Let $A=(I-T)$, then A is m-accretive. Note that $N(A)=F(T)$, which yields that $N(A)=F(T) \neq \emptyset$. We complete the proof of Theorem 2.4 by Theorem 2.2.

If $\beta_{n} \equiv 0$, from Theorem 2.2-2.4 we have the following Corollary 2.5-2.7, respectively.
Corollary 2.5. We choose $K, E, A, S_{r_{n}}, r_{n}, \alpha_{n}$ such that they satisfy the conditions of Theorem 2.2. For given $x_{0} \in K$, let $\left\{x_{n}\right\}$ be generated by the algorithm (1.6), then $\left\{x_{n}\right\}$ converges strongly to $p \in N(A)$ which solutes the variational inequality (2.2).
Corollary 2.6. Let E and α_{n} satisfy the conditions of Theorem 2.2. Let $A: E \rightarrow E$, be a continuous accretive mapping with $N(A) \neq \emptyset$. For given $x_{0} \in E$, let $\left\{x_{n}\right\}$ be generated by the algorithm (1.6). Then $\left\{x_{n}\right\}$ converges strongly to a a zero $p \in N(A)$ which solutes the variational inequality (2.2).
Corollary 2.7. Let E and K and α_{n} satisfy the conditions of Theorem 2.2. Let $T: K \rightarrow E$, be a continuous pseudocontractive mapping with $F(T) \neq \emptyset$. For given $x_{0} \in E$, let $\left\{x_{n}\right\}$ be generated by the algorithm
$x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S_{r_{n}} x_{n}$,
where $S_{r_{n}}:=(1-\sigma) I+\sigma J_{r_{n}}$ with $J_{r_{n}}:=\left(I+r_{n}(I-T)\right)^{-1}$ and $0<\sigma<1$. Then $\left\{x_{n}\right\}$ converges strongly to a fixed point $p \in F(T)$ which solutes the variational inequality (2.2).

Remark 2.8. Since Corollary 2.5 is obtained under the coefficient α_{n} satisfying $\lim \alpha_{n}=0$ and $\Sigma_{n=0}^{\infty} \alpha_{n}=\infty$, then it is an improvement of Theorem 3.2 of [3].
Example 2. Let
$\alpha_{n}=\left\{\begin{array}{ll}0, & \text { if } n=2 k ; \\ \frac{1}{n}, & \text { if } n=2 k-1 .\end{array}\right.$ and $r_{n}= \begin{cases}\frac{1}{2}, & \text { if } n=2 k ; \\ \frac{1}{2}-\frac{1}{n}, & \text { if } n=2 k-1 .\end{cases}$
where k is some positive integer. Obviously, the coefficient α_{n} and r_{n} satisfy the condition of this paper. But because of $\Sigma_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|=\infty$, $\Sigma_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|=\infty$, hence the coefficient α_{n} and r_{n} do not satisfy the condition of Theorem 3.2 of [3].
Remark 2.9. If E is uniformly smooth then E is reflexive and has a uniformly Gâteaux differentiable norm with the property that every nonempty closed and bounded subset of E has the fixed point property for nonexpansive mappings(see, remark 3.5 of [10]). Thus, if E is a real uniformly smooth Banach space, then the results in this paper are true, too.

References

[1] [1] V.Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, No-
ordhoff,1976.
[2] [2]S.S.Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal., 30(1997), 4197-4208.
[3] [3]R. Chen,Z. Zhu, Viscosity approximation method for accretive operator in Banach space, Nonlinear Analysis, 69(2008),1356-1363.
[4] [4]I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
[5] [5] X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl., 329(2007), 415-424.
[6] [6]Tomonari Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory and Applications, 2005:1(2005), 103-123.
[7] [7] W.Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[8] [8]W. Takahashi, Y. Ueda, On Reich's strong convergence for resolvents of accretive operators, J. Math. Anal. Appl. 104(1984), 546-553.
[9] [9] Hong-Kun Xu , Iterative algorithms for nonlinear operators, J. London. Math. Soc., 2(2002), 240-256.
[10] [10] Habtu Zegeye, Naseer Shahzad, Strong convergence theorems for a common zero of a finite family of m-accretive mappings, Nonlinear Anal., 66(2007), 1161-1169.
${ }^{1}$ Depart. of Math.
Honghe university, Mengzi, Yunnan, 661100, China
${ }^{2}$ Depart. of Math., Hangzhou normal university,
Zhejiang, 310036, China
e-mail: zhenhuahe@126.com

[^0]: Key Words: Strong convergence; Accretive mapping; Pseudocontractive mapping; Viscosity approximation method; Uniformly Gâteaux differentiable norm; Variational inequality.

 Mathematics Subject Classification: 47H06; 47H10; 47J05; 54H25
 Received: December, 2008
 Accepted: April, 2009
 *The present studies were supported by the Honghe University foundation(XSS07006), the Scientific Research Foundation from Yunnan Province Education Committee (08Y0338).

