
An. Şt. Univ. Ovidius Constanţa Vol. 17(1), 2009, 187–200

The edge fixed geodomination number of a

graph

A.P. SANTHAKUMARAN1 and P.TITUS2

Abstract

For a vertex x in a connected graph G = (V (G), E(G)) of order
p ≥ 3, a set S ⊆ V (G) is an x-geodominating set of G if each ver-
tex v ∈ V (G) lies on an x-y geodesic for some element y in S. The
minimum cardinality of an x-geodominating set of G is defined as the
x-geodomination number of G, denoted by gx(G). An x-geodominating
set of cardinality gx(G) is called a gx-set of G. For an edge e = xy

in G, a set S ⊆ V (G) is an e-geodominating set of G if each vertex
v ∈ V (G) lies on either an x − z geodesic or an y − z geodesic for some
element z in S. The minimum cardinality of an e-geodominating set of
G is defined as the e-geodomination number of G, denoted by ge(G). An
e-geodominating set of cardinality ge(G) is called a ge-set of G. Some
general properties satisfied by e-geodominating sets are studied. We de-
termine bounds for the e-geodomination number and find the same for
some special classes of graphs. For positive integers r, d and n ≥ 2 with
r < d ≤ 2r, there exists a connected graph G with rad G = r, diam
G = d and gxy(G) = n or n − 1 for any edge xy in G. If p, d and n are
integers such that 3 ≤ d ≤ p − 1, 2 ≤ n ≤ p − 2 and p − d − n + 1 ≥ 0,

then there exists a graph G of order p, diameter d and gxy(G) = n or
n − 1 for any edge xy in G.

1 Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q
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respectively. For basic graph theoretic terminology we refer to Harary [4]. For
vertices x and y in a connected graph G, the distance d(x, y) is the length of
a shortest x − y path in G. An x − y path of length d(x, y) is called an x − y
geodesic. A vertex v is said to lie on an x − y geodesic P if v is a vertex of P
including the vertices x and y. The diameter diam G of a connected graph G
is the length of any longest geodesic. For any vertex u of G, the eccentricity of
u is e(u) = max {d(u, v) : v ∈ V }. A vertex v of G such that d(u, v) = e(u) is
called an eccentric vertex of u. The neighborhood of a vertex v is the set N(v)
consisting of all vertices u which are adjacent with v. A vertex v is a simplicial
vertex if the subgraph induced by its neighborhood N(v) is complete.

The closed interval I[x, y] consists of all vertices lying on some x−y geodesic
of G, while for S ⊆ V, I[S] =

⋃

x,y∈S

I[x, y]. A set S of vertices is a geodetic

set if I[S] = V, and the minimum cardinality of a geodetic set is the geodetic
number g(G). A geodetic set of cardinality g(G) is called a g-set. The geodetic
number of a graph was introduced in [1,5] and further studied in [2,3]. It was
shown in [5] that determining the geodetic number of a graph is an NP-hard
problem.

The concept of vertex geodomination number was introduced by Santhaku-
maran and Titus [7] and further studied in [8,9]. A vertex y in a connected
graph G is said to x-geodominate a vertex u if u lies on an x − y geodesic.
A set S of vertices of G is an x-geodominating set if each vertex v ∈ V (G)
is x-geodominated by some element of S. The minimum cardinality of an x-
geodominating set of G is defined as the x-geodomination number of G and
is denoted by gx(G). An x-geodominating set of cardinality gx(G) is called a
gx-set.

Figure 1.1

Every vertex of an x−y geodesic is x-geodominated by the vertex y. Since,
by definition, a gx-set is minimum, the vertex x and also the internal vertices
of an x − y geodesic do not belong to a gx-set. For the graph G given in
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Figure 1.1, gu(G) = 3, gv(G) = 4, gw(G) =2, gx(G) = 2 and gy(G) = 3 with
minimum vertex geodominating sets {x, y, w}, {x, y, u, w}, {x, u}, {u,w} and
{x, u, w} respectively.

It is proved in [7] that for any vertex x in G, gx-set is unique and 1 ≤
gx(G) ≤ p − 1. An elaborate study of results in vertex geodomination with
several interesting applications is given in [7,8]. The following theorems will
be used in the sequel.

Theorem 1.1 [4] Let v be a vertex of a connected graph G. The following
statements are equivalent:

(i) v is a cut vertex of G.
(ii) There exist vertices u and w distinct from v such that v is on every

u − w path.
(iii) There exists a partition of the set of vertices V − {v} into subsets U

and W such that for any vertices u ∈ U and w ∈ W, the vertex v is on every
u − w path.

Theorem 1.2 [8] For any vertex x in a connected graph G of order p ≥ 2
and diameter d, gx(G) ≤ p − d + 1.

Theorem 1.3 [8] For any vertex x in an even cycle C, gx(C) = 1.

Throughout this paper G denotes a connected graph with at least three
vertices.

2 Edge Fixed Geodomination

Definition 2.1 Let e = xy be any edge of a connected graph G of order at
least 3. A set S of vertices of G is an e-geodominating set if every vertex of
G lies on either an x − u geodesic or a y − u geodesic in G for some element
u in S. The minimum cardinality of an e-geodominating set of G is defined
as the e-geodomination number of G and is denoted by ge(G) or gxy(G). An
e-geodominating set of cardinality ge(G) is called a ge-set of G.

Example 2.2 For the graph G given in Figure 2.1, the minimum edge geodom-
inating sets and the edge geodomination numbers are given in Table 2.1.
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Figure 2.1.

Edge e Minimum e-geodominating sets e-geodomination number
xy {z, w} 2
yv {z, w} 2
vw {z, x} 2
uv {z, w, y}, {z, w, x} 3
zu {y, w} 2
xz {w} 1
xu {z, w} 2

Table 2.1

It is proved in [7] that for any vertex x in G, gx-set of G with respect to x
is unique. However, we observe that in the case of edge geodominating sets,
there can be more than one minimum edge geodominating set. For the edge
e = uv of the graph G in Figure 2.1, {z, w, y} and {z, w, x} are two distinct
ge-sets of G.

Theorem 2.3 For any edge xy in a connected graph G of order at least 3,
the vertices x and y do not belong to any minimum xy-geodominating set of
G.

Proof. Suppose that x belongs to a minimum xy-geodominating set, say
S of G. Since G is a connected graph with at least three vertices and xy is an
edge, it follows from the definition of an xy-geodominating set that S contains
a vertex v different from x and y. Since the vertex x lies on every x−v geodesic
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in G, it follows that T = S − {x} is an xy-geodominating set of G, which is
a contradiction to S a minimum xy-geodominating set of G. Similarly, y does
not belong to any xy-geodominating set of G.

Theorem 2.4 Let xy be any edge of a connected graph G of order at least 3.
Then

(i) Every simplicial vertex of G other than the vertices x and y (whether x
or y is simplicial or not) belongs to every gxy-set.

(ii) No cut vertex of G belongs to any gxy-set.
(iii) If z is an eccentric vertex of both x and y, then z belongs to every

xy-geodominating set.

Proof. (i) By Theorem 2.3, the vertices x and y do not belong to any
gxy-set. So let u 6= x, y be a simplicial vertex of G. Let S be a gxy-set of G
such that u /∈ S. Then u is an internal vertex of either an x − v geodesic or a
y − v geodesic for some v in S. Without loss of generality, let P be an x − v
geodesic with u an internal vertex. Then both the neighbors of u on P are
not adjacent and hence u is not a simplicial vertex, which is a contradiction.

(ii) Let v be a cut vertex of G. Then by Theorem 1.1, there exists a partition
of the set of vertices V − {v} into subsets U and W such that for any vertex
u ∈ U and w ∈ W, the vertex v lies on every u−w path. Let S be any gxy-set
of G. We consider three cases.
Case 1. Both x and y belong to U . Suppose that S ∩ W = ∅. Let w1 ∈ W.
Since S is an xy-geodominating set, there exists an element z in S such that
w1 lies on either an x − z geodesic or a y − z geodesic in G. Suppose that w1

lies in an x−z geodesic P : x = z0, z1, ..., w1, ..., zn = z in G. Then the x−w1

subpath of P and w1 − z subpath of P both contain v so that P is not a path
in G, which is a contradiction. Hence S ∩ W 6= ∅. Let w2 ∈ S ∩ W. Then v is
an internal vertex of any x − w2 geodesic and v is also an internal vertex of
any y − w2 geodesic. If v ∈ S, then, let S′ = S − {v}. It is clear that every
vertex that lies on an x− v geodesic also lies on an x−w2 geodesic, and every
vertex that lies on an y − v geodesic also lies on an y − w2 geodesic. Hence
it follows that S′ is an xy-geodominating set of G, which is a contradiction
to S a minimum xy-geodominating set of G. Thus v does not belong to any
minimum xy-geodominating set of G.
Case 2. Both x and y belong to W. It is similar to Case 1.
Case 3. Either x = v or y = v. By Theorem 2.3, v does not belong to any
gxy-set.

(iii) Let z be an eccentric vertex of both x and y so that d(x, z) = e(x)
and d(y, z) = e(y). Suppose that z does not belong to a gxy-set, say S. Then
there exists a vertex w in S such that z is an internal vertex of either an
x − w geodesic or a y − w geodesic. Therefore, either d(x, z) < d(x,w) or
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d(y, z) < d(y, w) and hence either e(x) < d(x,w) or e(y) < d(y, w), which is a
contradiction.

Note 2.5 If z is an eccentric vertex of either x or y but not both, then z need
not belong to every gxy-set of G. For the cycle C4 : x, y, z, w, x, it is clear that
S1 = {z} and S2 = {w} are the two gxy-sets of C4. Also z is the eccentric
vertex of x and not of y. However, z does not belong to S2.

Corollary 2.6 Let T be a tree with number of end vertices k. Then gxy(T ) =
k − 1 or k according as xy is an end edge or cut edge.

Proof. This follows from Theorem 2.4.

Corollary 2.7 Let K1,n (n ≥ 2) be a star. Then gxy(K1,n) = n − 1 for any
edge xy in K1,n.

Corollary 2.8 Let G be the complete graph Kp (p ≥ 3). Then gxy(G) = p−2
for any edge xy in G.

Proposition 2.9 For any edge xy in a connected graph G of order p ≥ 3,
1 ≤ gxy(G) ≤ p − 2.

Proof. It is clear from the definition of gxy-set that gxy(G) ≥ 1. Also, since
the vertices x and y do not belong to any gxy-set, it follows that gxy(G) ≤ p−2.

Remark 2.10 The bounds for gxy(G) in Proposition 2.9 are sharp. If G is
any cycle, then gxy(G) = 1 for any edge xy in G. For any edge xy in a path
Pn(n ≥ 3), gxy(Pn) = 1. For any edge xy in the complete graph Kp(p ≥ 3),
gxy(Kp) = p − 2.

Now we proceed to characterize graphs for which the lower bound in Propo-
sition 2.9 is attained.

Theorem 2.11 Let G be a connected graph. For an edge xy in G, gxy(G) = 1
if and only if there exists a vertex z in G such that every vertex of G lies on
either a diametral path joining x and z or a diametral path joining y and z.

Proof. Let xy be any edge of G. Let z be a vertex in G such that every vertex
of G lies on either a diametral path joining x and z or a diametral path joining
y and z. Then S = {z} is a gxy-set of G and so gxy(G) = 1.

Conversely, let gxy(G) = 1 and S = {z} be a gxy-set of G. Then every
vertex of G lies on either an x − z geodesic or a y − z geodesic. Now we
consider three cases.
Case 1. Every vertex of G lies on an x−z geodesic. Let d denote the diameter
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of G. If d(x, z) < d, then there exist vertices u and v on distinct geodesics
joining x and z such that d(u, v) = d. Thus d(x, z) < d(u, v). Hence we see
that

d(x, z) = d(x, u)+d(u, z) (1)

and d(x, z) = d(x, v)+d(v, z) (2)

By triangle inequality,

d(u, v) ≤ d(u, x)+d(x, v) and d(u, v) ≤ d(u, z)+d(z, v) (3)

From (1) and (3), d(u, z) = d(x, z) − d(x, u)

< d(u, v) − d(x, u)

≤ d(x, v).

Thus d(u, z) < d(x, v). (4)

Now from (2), (3) and (4), we see that d(u, v) < d(x, v) + d(z, v)

= d(x, v) + d(v, z)

= d(x, z).

Thus d(u, v) < d(x, z), which is a contradiction. Hence d(x, z) = d and
each vertex of G lies on a diametral path joining x and y.
Case 2. Every vertex of G lies on a y − z geodesic. It is similar to Case 1.
Case 3. There exist vertices u and v such that u lies on an x− z geodesic but
not in any y − z geodesic and v lies on a y − z geodesic but not in any x − z
geodesic.

We show that both the x− z geodesic and the y− z geodesic are diametral
paths. Suppose that x − z geodesic is not a diametral path. Then d(x, z) <
d = d(u′, v′) for some vertices u′ and v′ in G.
Case 3a. Suppose that u′, v′ ∈ I[x, z]. If u′ and v′ lie on the same x − z
geodesic, then it is clear that d(u′, v′) < d(x, z), which is a contradiction. If
u′ and v′ lie on distinct x − z geodesics, then as in Case 1, d(u′, v′) < d(x, z),
which is a contradiction.
Case 3b. Suppose that u′, v′ ∈ I[y, z].
Subcase 3b1. Suppose that u′, v′ lie on the same y − z geodesic. Then
d(u′, v′) = d(y, z) and so d(x, z) < d(y, z). Then it is clear that d(x, z) =
d(y, z) − 1. It follows that every vertex of an x − z geodesic lies on a y − z
geodesic and so u lies on a y − z geodesic, which is a contradiction.
Subcase 3b2. Suppose that u′, v′ lie on distinct y − z geodesics. If the y − z
geodesics are not diametral paths, then as in Case 3a, we have a contradiction.
If the y − z geodesics are diametral paths, then d(x, z) = d(y, z) − 1 and it
follows that every vertex of an x− z path lies on a y− z geodesic and so u lies
on a y − z geodesic, which is a contradiction.
Case 3c. Suppose that u′ ∈ I[x, z] and u′ /∈ I[y, z], and v′ ∈ I[y, z] and
v′ /∈ I[x, z]. It is clear that

d(x, z) = d(x, u′)+d(u′, z) (5)
and d(y, z) = d(y, v′)+d(v′, z) (6).
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By triangle inequality, d(u′, v′) ≤ d(u′, z) + d(z, v′) and d(u′, v′) ≤ d(u′, x) +
d(x, v′) and d(u′, v′) ≤ d(u′, y)+d(y, v′) (7).
From (5) and (7), d(u′, z) = d(x, z) − d(x, u′)

< d(u′, v′) − d(x, u′)
≤ d(x, v′).

Thus d(u′, z) < d(x, v′) (8).
Now from (6), (7) and (8), we see that d(u′, v′) < d(x, v′) + d(z, v′)

= d(x, v′) + d(v′, z)
≤ 1 + d(y, v′) + d(v′, z)
= 1 + d(y, z).

Thus d(u′, v′) < 1 + d(y, z) and so d(u′, v′) ≤ d(y, z). Since d(u′, v′) = d, we
have d(u′, v′) = d(y, z). Then as in Subcase 3b1 of Case 3b, u lies on a y − z
geodesic, which is a contradiction.

Hence the x− z geodesic is a diametral path. Similarly, the y − z geodesic
is a diametral path. Thus the proof is complete.

Theorem 2.12 For any edge xy in the cube Qn (n ≥ 3), gxy(Qn) = 1.

Proof. Let e = xy be an edge in Qn and let x = (a1, a2, ..., an), where
ai ∈ {0, 1}. Let x′ = (a′

1, a
′
2, ..., a

′
n) be another vertex of Qn such that a′

i

is the complement of ai. Let u be any vertex in Qn. For convenience, let
u = (a1, a

′
2, a3, ..., an). Then u lies on the x − x′ geodesic

P : x = (a1, a2, ..., an), (a1, a
′
2, a3, ..., an), (a′

1, a
′
2, a3, ..., an), (a′

1, a
′
2, a

′
3, ..., an), ...,

(a′
1, a

′
2, ..., a

′
n−1, an), (a′

1, a
′
2, ..., a

′
n) = x′, which is of length n so that it is a di-

ametral path joining x and x′. Hence the result follows from Theorem 2.11.

Theorem 2.13 (i) For the wheel Wn = K1 +Cn−1 (n ≥ 6), gxy(Wn) = n− 5
or n − 4 according as xy is an edge of Cn−1 or not.

(ii) For any edge xy in the complete bipartite graph Km,n (m ≤ n),

gxy(Km,n) =







n − 1 if m = 1
1 if m = 2
2 if m ≥ 3.

Proof. (i) Let Cn−1 : u1, u2, u3, ..., un−1, u1 be the cycle of Wn and let
z be the vertex K1. Let xy be any edge in Cn−1, say xy = u1u2. Since
{u3, u4, ..., un−2} and {u4, u5, ..., un−1} are the sets of eccentric vertices of u1

and u2 respectively, we have S = {u4, u5, ..., un−2} is the set of common ec-
centric vertices of both u1 and u2. It is clear that the vertices u3, z and un−1

lie on the geodesics P : u2, u3, u4; Q : u1, z, u4; and R : u1, un−1, un−2 re-
spectively. Hence by Theorem 2.4(iii), S is the unique gxy-set of Wn so that
gxy(Wn) = n − 5. Let xy be any edge not in Cn−1. Take xy = u1z. Then
{u3, u4, ..., un−2} is the set of eccentric vertices of u1 and V (Cn−1) is the set
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of eccentric vertices of z so that S′ = {u3, u4, ..., un−2} is the set of common
eccentric vertices of both u1 and z. Now, by an argument similar to the above,
it is easily seen that gxy(Wn) = n − 4.

(ii) Let U = {u1, u2, ..., um} and W = {w1, w2, ..., wn} be the partite sets
of G, where m ≤ n. If m = 1, then by Corollary 2.7, gxy(K1,n) = n − 1 for
any edge xy in K1,n. If m = 2, it follows from Theorem 2.11 that ge(G) = 1
for any edge e = uiwj (1 ≤ i ≤ 2; 1 ≤ j ≤ n). If m ≥ 3, then it is clear that
no singleton subset of V is an xy-geodominating set of G and so gxy(G) ≥ 2.
Without loss of generality, take e = u1w1. Let S = {u2, w2}. Then every
vertex of U lies on a w1 −w2 geodesic and every vertex of W lies on a u1 −u2

geodesic. It follows that S is an xy-geodominating set of G and so ge(G) = 2.

Remark 2.14 Since W4 = K4, we have gxy(W4) = 2 for any edge xy in W4.
Also, it is easily seen that gxy(W5) = 1 for any edge xy in W5. Thus Theorem
2.13(i) is not true for n = 4, 5.

Theorem 2.15 For any edge xy in a connected graph G, every x-geodominating
set of G is an xy-geodominating set of G.

Proof. Let S be an x-geodominating set of G. Then every vertex of G lies
on an x− z geodesic for some z in S. It follows that S is an xy-geodominating
set of G.

Corollary 2.16 For any edge e = xy in a connected graph G, gxy(G) ≤
min{gx(G), gy(G)}.

Theorem 2.17 For every pair a, b of integers with 1 ≤ a ≤ b, there is a
connected graph G with gxy(G) = a and gx(G) = b for some edge xy in G.

Proof. We prove this theorem by considering three cases.
Case 1. Suppose that a = b = 1. Then, for any edge xy in an even cycle G,
we have gxy(G) = 1 (See Remark 2.10) and gx(G) = 1, by Theorem 1.3.
Case 2. Suppose that a = b ≥ 2. Let C4 : x, y, z, u, x be a cycle of order
4. Add a − 1 new vertices v1, v2, ..., va−1 to C4 and join them to x, thereby
producing the graph G of Figure 2.2. Let S = {v1, v2, ..., va−1} be the set of
all simplicial vertices of G.

First, we show that gxy(G) = a for the edge xy in G. Since S is not
an xy-geodominating set, it follows from Theorem 2.4(i) that gxy(G) ≥ a.
On the other hand, S′ = S ∪ {z} is an xy-geodominating set of G and so
gxy(G) = |S′| = a.

Next, we show that gx(G) = b. By Corollary 2.16, we have gx(G) ≥ a. It
is clear that S′ is an x-geodominating set of G and so gx(G) = a.
Case 3. Suoppose that a < b. Let C5 : x, y, z, u, v, x be a cycle of order
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Figure 2.2

5. Add b − 2 new vertices v1, v2, ..., va−1, w1, w2, ..., wb−a−1 to C5 and join
vi(1 ≤ i ≤ a− 1) to x and join wj(1 ≤ j ≤ b− a− 1) to both y and u, thereby
producing the graph G of Figure 2.3. Let S = {v1, v2, ..., va−1} be the set of
all simplicial vertices of G.

Figure 2.3

First, we show that gxy(G) = a for the edge xy in G. Since S is not
an xy-geodominating set, it follows from Theorem 2.4(i) that gxy(G) ≥ a.
On the other hand, S′ = S

⋃

{u} is an xy-geodominating set of G and so
gxy(G) = |S′| = a.
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Next, we show that gx(G) = b. It is clear that the vertices v1, v2, ..., va−1, z,
w1, w2, ..., wb−a−1 must belong to every x-geodominating set and these vertices
do not form an x-geodominating set. Hence gx(G) ≥ b. On the other hand,
the set S1 = {v1, v2, ..., va−1, z, w1, w2, ..., wb−a−1, u} is an x-geodominating
set of G and so gx(G) = b.

We leave the following problem as an open question.

Problem 2.18 Characterize graphs G of order p ≥ 3 for which gxy(G) =
p − 2, where xy is an edge of G.

3 The Edge Geodomination Number and Diameter of a

Graph

We have seen that if G is a connected graph of order p ≥ 3, then 1 ≤ gxy(G) ≤
p − 2 for any edge xy in G. Also we have for an edge xy in G, gxy(G) = 1 if
and only if there exists a vertex z such that every vertex of G lies on either
a diametral path joining x and z or a diametral path joining y and z. In
the following theorem we give an improved upper bound for the edge fixed
geodomination number of a graph in terms of its order and diameter.

Theorem 3.1 If G is a connected graph of order p and diameter d, then
gxy(G) ≤ p − d + 1 for any edge xy in G.

Proof. This follows from Theorem 1.2 and Corollary 2.16.

Theorem 3.2 For for any edge xy in a non-trivial tree T, gxy(T ) = p− d or
p − d + 1 if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let P : u = v0, v1, ..., vd = v be a
diametral path. Let k be the number of end vertices of T and l be the number
of internal vertices of T other than v1, v2, ..., vd−1. Then d − 1 + l + k = p.
By Corollary 2.6, gxy(T ) = k or k − 1 for any edge xy in T and so gxy(T ) =
p − d − l + 1 or p − d − l for any edge xy in T. Hence gxy(T ) = p − d + 1 or
p − d for any edge xy in T if and only if l = 0, if and only if all the internal
vertices of T lie on the diametral path P, if and only if T is a caterpillar.

For every connected graph G, rad G ≤ diam G ≤ 2 rad G. Ostrand [6]
showed that every two positive integers a and b with a ≤ b ≤ 2a are realizable
as the radius and diameter, respectively, of some connected graph. Ostrand’s
theorem can be extended so that the edge fixed geodomination number can
be prescribed when r < d ≤ 2r.

Theorem 3.3 For positive integers r, d and n ≥ 2 with r < d ≤ 2r, there
exists a connected graph G with rad G = r, diam G = d and gxy(G) = n or
n − 1 for any edge xy in G.
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Proof. Let C2r : v1, v2, ..., v2r, v1 be a cycle of order 2r and let Pd−r+1 :
u0, u1, ..., ud−r be a path of order d − r + 1. Let H be a graph obtained from
C2r and Pd−r+1 by identifying v1 in C2r and u0 in Pd−r+1. If n = 2, then let
G = H. Then rad G = r and diam G = d. Clearly, gxy(G) = 1 or 2 according
as xy ∈ {vrvr+1, vr+1vr+2, ud−r−1ud−r} or
xy ∈ {v1u1, u1u2, ..., ud−r−2ud−r−1, v1v2, v2v3, ..., vr−1vr, vr+2vr+3, ..., v2rv1}.
Thus gxy(G) = 1 or 2 for any edge xy in G. If n ≥ 3, then add n − 2 new
vertices w1, w2, ..., wn−2 to H and join each vertex wi(1 ≤ i ≤ n − 2) to the
vertex ud−r−1 and obtain the graph G of Figure 3.1.

Figure 3.1

Now rad G = r, diam G = d and G has n − 1 end vertices. Clearly,
gx(G) = n or n − 1 according as
xy ∈ {v1u1, u1u2, ..., ud−r−2ud−r−1, v1v2, v2v3, ..., vr−1vr, vr+2vr+3, ..., v2rv1}
or xy ∈ {vrvr+1, vr+1vr+2, ud−r−1ud−r, ud−rw1, ud−rw2, ..., ud−rwn−2}. Thus
gxy(G) = n or n − 1 for any edge xy in G.

In the following, we construct a graph of prescribed order, diameter and
edge fixed geodomination number under suitable conditions.

Theorem 3.4 If p, d and n are integers such that 3 ≤ d ≤ p−1, 2 ≤ n ≤ p−2
and p− d− n + 1 ≥ 0, then there exists a graph G of order p, diameter d and
gxy(G) = n or n − 1 for any edge xy in G.

Proof. If n = 2, let Pd+1 : u0, u1, u2, ..., ud be a path of length d. Add
p − d − 1 new vertices w1, w2, ..., wp−d−1 to Pd+1 and join each vertex to
both u0 and u2, thereby producing the graph G of Figure 3.2. Then G
has order p and diameter d. Clearly, gxy(G) = 1 or 2 according as xy ∈
{u0u1, u0w1, u0w2, ..., u0wp−d−1, ud−1ud} or xy ∈ {u1u2, u2u3, ..., ud−2ud−1, u2w1,
u2w2, . . . u2wp−d−1}.

If 3 ≤ n ≤ p− 2, then add p− d−n+1 new vertices w1, w2, . . . , wp−d−n+1

to the path Pd+1 : u0, u1, u2, . . . , ud of length d and join each vertex to
both u0 and u2, thereby producing the graph H. Then add n − 2 new
vertices v1, v2, ..., vn−2 to H and join each vertex vi(1 ≤ i ≤ n − 2) to
the vertex ud−1 and obtain the graph G of Figure 3.3. Then G has order
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Figure 3.2

Figure 3.3
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p and diameter d. It is easily verified that gxy(G) = n or n − 1 accord-
ing as xy ∈ {u1u2, u2u3, ..., ud−2ud−1, u2w1, u2w2, ..., u2wp−d−n+1} or xy ∈
{u0u1, u0w1, u0w2, ..., u0wp−d−n+1, ud−1ud, ud−1v1, ud−1v2, ..., ud−1vn−2}. Then
gxy(G) = n or n − 1 for any edge xy in G.

In view of Theorem 3.4, we leave the following problem as an open question.

Problem 3.5 If p, d and n are integers such that 3 ≤ d ≤ p−1, 2 ≤ n ≤ p−2
and p− d− n + 1 ≥ 0, then there exists a graph G of order p, diameter d and
gxy(G) = n for every edge xy in G.
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