The edge fixed geodomination number of a graph

A.P. SANTHAKUMARAN ${ }^{1}$ and P.TITUS ${ }^{2}$

Abstract

For a vertex x in a connected graph $G=(V(G), E(G))$ of order $p \geq 3$, a set $S \subseteq V(G)$ is an x-geodominating set of G if each vertex $v \in V(G)$ lies on an $x-y$ geodesic for some element y in S. The minimum cardinality of an x-geodominating set of G is defined as the x-geodomination number of G, denoted by $g_{x}(G)$. An x-geodominating set of cardinality $g_{x}(G)$ is called a g_{x}-set of G. For an edge $e=x y$ in G, a set $S \subseteq V(G)$ is an e-geodominating set of G if each vertex $v \in V(G)$ lies on either an $x-z$ geodesic or an $y-z$ geodesic for some element z in S. The minimum cardinality of an e-geodominating set of G is defined as the e-geodomination number of G, denoted by $g_{e}(G)$. An e-geodominating set of cardinality $g_{e}(G)$ is called a g_{e}-set of G. Some general properties satisfied by e-geodominating sets are studied. We determine bounds for the e-geodomination number and find the same for some special classes of graphs. For positive integers r, d and $n \geq 2$ with $r<d \leq 2 r$, there exists a connected graph G with $\operatorname{rad} G=r$, diam $G=d$ and $g_{x y}(G)=n$ or $n-1$ for any edge $x y$ in G. If p, d and n are integers such that $3 \leq d \leq p-1,2 \leq n \leq p-2$ and $p-d-n+1 \geq 0$, then there exists a graph G of order p, diameter d and $g_{x y}(G)=n$ or $n-1$ for any edge $x y$ in G.

1 Introduction

By a graph $G=(V, E)$ we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q

[^0]respectively. For basic graph theoretic terminology we refer to Harary [4]. For vertices x and y in a connected graph G, the distance $d(x, y)$ is the length of a shortest $x-y$ path in G. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. A vertex v is said to lie on an $x-y$ geodesic P if v is a vertex of P including the vertices x and y. The diameter diam G of a connected graph G is the length of any longest geodesic. For any vertex u of G, the eccentricity of u is $e(u)=\max \{d(u, v): v \in V\}$. A vertex v of G such that $d(u, v)=e(u)$ is called an eccentric vertex of u. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent with v. A vertex v is a simplicial vertex if the subgraph induced by its neighborhood $N(v)$ is complete.

The closed interval $I[x, y]$ consists of all vertices lying on some $x-y$ geodesic of G, while for $S \subseteq V, I[S]=\bigcup_{x, y \in S} I[x, y]$. A set S of vertices is a geodetic set if $I[S]=V$, and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. A geodetic set of cardinality $g(G)$ is called a g-set. The geodetic number of a graph was introduced in $[1,5]$ and further studied in [2,3]. It was shown in [5] that determining the geodetic number of a graph is an NP-hard problem.

The concept of vertex geodomination number was introduced by Santhakumaran and Titus [7] and further studied in [8,9]. A vertex y in a connected graph G is said to x-geodominate a vertex u if u lies on an $x-y$ geodesic. A set S of vertices of G is an x-geodominating set if each vertex $v \in V(G)$ is x-geodominated by some element of S. The minimum cardinality of an x geodominating set of G is defined as the x-geodomination number of G and is denoted by $g_{x}(G)$. An x-geodominating set of cardinality $g_{x}(G)$ is called a g_{x}-set.

Figure 1.1
Every vertex of an $x-y$ geodesic is x-geodominated by the vertex y. Since, by definition, a g_{x}-set is minimum, the vertex x and also the internal vertices of an $x-y$ geodesic do not belong to a g_{x}-set. For the graph G given in

Figure 1.1, $g_{u}(G)=3, g_{v}(G)=4, g_{w}(G)=2, g_{x}(G)=2$ and $g_{y}(G)=3$ with minimum vertex geodominating sets $\{x, y, w\},\{x, y, u, w\},\{x, u\},\{u, w\}$ and $\{x, u, w\}$ respectively.

It is proved in [7] that for any vertex x in G, g_{x}-set is unique and $1 \leq$ $g_{x}(G) \leq p-1$. An elaborate study of results in vertex geodomination with several interesting applications is given in $[7,8]$. The following theorems will be used in the sequel.

Theorem 1.1 [4] Let v be a vertex of a connected graph G. The following statements are equivalent:
(i) v is a cut vertex of G.
(ii) There exist vertices u and w distinct from v such that v is on every $u-w$ path.
(iii) There exists a partition of the set of vertices $V-\{v\}$ into subsets U and W such that for any vertices $u \in U$ and $w \in W$, the vertex v is on every $u-w$ path.

Theorem 1.2 [8] For any vertex x in a connected graph G of order $p \geq 2$ and diameter $d, g_{x}(G) \leq p-d+1$.

Theorem 1.3 [8] For any vertex x in an even cycle $C, g_{x}(C)=1$.
Throughout this paper G denotes a connected graph with at least three vertices.

2 Edge Fixed Geodomination

Definition 2.1 Let $e=x y$ be any edge of a connected graph G of order at least 3. A set S of vertices of G is an e-geodominating set if every vertex of G lies on either an $x-u$ geodesic or a $y-u$ geodesic in G for some element u in S. The minimum cardinality of an e-geodominating set of G is defined as the e-geodomination number of G and is denoted by $g_{e}(G)$ or $g_{x y}(G)$. An e-geodominating set of cardinality $g_{e}(G)$ is called a g_{e}-set of G.

Example 2.2 For the graph G given in Figure 2.1, the minimum edge geodominating sets and the edge geodomination numbers are given in Table 2.1.

Figure 2.1.

Edge e	Minimum e-geodominating sets	e-geodomination number
$x y$	$\{z, w\}$	2
$y v$	$\{z, w\}$	2
$v w$	$\{z, x\}$	2
$u v$	$\{z, w, y\},\{z, w, x\}$	3
$z u$	$\{y, w\}$	2
$x z$	$\{w\}$	1
$x u$	$\{z, w\}$	2

Table 2.1
It is proved in [7] that for any vertex x in G, g_{x}-set of G with respect to x is unique. However, we observe that in the case of edge geodominating sets, there can be more than one minimum edge geodominating set. For the edge $e=u v$ of the graph G in Figure 2.1, $\{z, w, y\}$ and $\{z, w, x\}$ are two distinct g_{e}-sets of G.

Theorem 2.3 For any edge $x y$ in a connected graph G of order at least 3, the vertices x and y do not belong to any minimum xy-geodominating set of G.

Proof. Suppose that x belongs to a minimum $x y$-geodominating set, say S of G. Since G is a connected graph with at least three vertices and $x y$ is an edge, it follows from the definition of an $x y$-geodominating set that S contains a vertex v different from x and y. Since the vertex x lies on every $x-v$ geodesic
in G, it follows that $T=S-\{x\}$ is an $x y$-geodominating set of G, which is a contradiction to S a minimum $x y$-geodominating set of G. Similarly, y does not belong to any $x y$-geodominating set of G.

Theorem 2.4 Let xy be any edge of a connected graph G of order at least 3. Then
(i) Every simplicial vertex of G other than the vertices x and y (whether x or y is simplicial or not) belongs to every $g_{x y}$-set.
(ii) No cut vertex of G belongs to any $g_{x y}$-set.
(iii) If z is an eccentric vertex of both x and y, then z belongs to every $x y$-geodominating set.

Proof. (i) By Theorem 2.3, the vertices x and y do not belong to any $g_{x y}$-set. So let $u \neq x, y$ be a simplicial vertex of G. Let S be a $g_{x y}$-set of G such that $u \notin S$. Then u is an internal vertex of either an $x-v$ geodesic or a $y-v$ geodesic for some v in S. Without loss of generality, let P be an $x-v$ geodesic with u an internal vertex. Then both the neighbors of u on P are not adjacent and hence u is not a simplicial vertex, which is a contradiction.
(ii) Let v be a cut vertex of G. Then by Theorem 1.1, there exists a partition of the set of vertices $V-\{v\}$ into subsets U and W such that for any vertex $u \in U$ and $w \in W$, the vertex v lies on every $u-w$ path. Let S be any $g_{x y}$-set of G. We consider three cases.
Case 1. Both x and y belong to U. Suppose that $S \cap W=\emptyset$. Let $w_{1} \in W$. Since S is an $x y$-geodominating set, there exists an element z in S such that w_{1} lies on either an $x-z$ geodesic or a $y-z$ geodesic in G. Suppose that w_{1} lies in an $x-z$ geodesic $P: x=z_{0}, z_{1}, \ldots, w_{1}, \ldots, z_{n}=z$ in G. Then the $x-w_{1}$ subpath of P and $w_{1}-z$ subpath of P both contain v so that P is not a path in G, which is a contradiction. Hence $S \cap W \neq \emptyset$. Let $w_{2} \in S \cap W$. Then v is an internal vertex of any $x-w_{2}$ geodesic and v is also an internal vertex of any $y-w_{2}$ geodesic. If $v \in S$, then, let $S^{\prime}=S-\{v\}$. It is clear that every vertex that lies on an $x-v$ geodesic also lies on an $x-w_{2}$ geodesic, and every vertex that lies on an $y-v$ geodesic also lies on an $y-w_{2}$ geodesic. Hence it follows that S^{\prime} is an $x y$-geodominating set of G, which is a contradiction to S a minimum $x y$-geodominating set of G. Thus v does not belong to any minimum $x y$-geodominating set of G.
Case 2. Both x and y belong to W. It is similar to Case 1 .
Case 3. Either $x=v$ or $y=v$. By Theorem 2.3, v does not belong to any $g_{x y}$-set.
(iii) Let z be an eccentric vertex of both x and y so that $d(x, z)=e(x)$ and $d(y, z)=e(y)$. Suppose that z does not belong to a $g_{x y}$-set, say S. Then there exists a vertex w in S such that z is an internal vertex of either an $x-w$ geodesic or a $y-w$ geodesic. Therefore, either $d(x, z)<d(x, w)$ or
$d(y, z)<d(y, w)$ and hence either $e(x)<d(x, w)$ or $e(y)<d(y, w)$, which is a contradiction.

Note 2.5 If z is an eccentric vertex of either x or y but not both, then z need not belong to every $g_{x y}$-set of G. For the cycle $C_{4}: x, y, z, w, x$, it is clear that $S_{1}=\{z\}$ and $S_{2}=\{w\}$ are the two $g_{x y}$-sets of C_{4}. Also z is the eccentric vertex of x and not of y. However, z does not belong to S_{2}.

Corollary 2.6 Let T be a tree with number of end vertices k. Then $g_{x y}(T)=$ $k-1$ or k according as $x y$ is an end edge or cut edge.

Proof. This follows from Theorem 2.4.
Corollary 2.7 Let $K_{1, n}(n \geq 2)$ be a star. Then $g_{x y}\left(K_{1, n}\right)=n-1$ for any edge xy in $K_{1, n}$.

Corollary 2.8 Let G be the complete graph $K_{p}(p \geq 3)$. Then $g_{x y}(G)=p-2$ for any edge $x y$ in G.

Proposition 2.9 For any edge $x y$ in a connected graph G of order $p \geq 3$, $1 \leq g_{x y}(G) \leq p-2$.

Proof. It is clear from the definition of $g_{x y}$-set that $g_{x y}(G) \geq 1$. Also, since the vertices x and y do not belong to any $g_{x y}$-set, it follows that $g_{x y}(G) \leq p-2$.

Remark 2.10 The bounds for $g_{x y}(G)$ in Proposition 2.9 are sharp. If G is any cycle, then $g_{x y}(G)=1$ for any edge $x y$ in G. For any edge $x y$ in a path $P_{n}(n \geq 3)$, $g_{x y}\left(P_{n}\right)=1$. For any edge $x y$ in the complete graph $K_{p}(p \geq 3)$, $g_{x y}\left(K_{p}\right)=p-2$.

Now we proceed to characterize graphs for which the lower bound in Proposition 2.9 is attained.

Theorem 2.11 Let G be a connected graph. For an edge xy in $G, g_{x y}(G)=1$ if and only if there exists a vertex z in G such that every vertex of G lies on either a diametral path joining x and z or a diametral path joining y and z.

Proof. Let $x y$ be any edge of G. Let z be a vertex in G such that every vertex of G lies on either a diametral path joining x and z or a diametral path joining y and z. Then $S=\{z\}$ is a $g_{x y}$-set of G and so $g_{x y}(G)=1$.

Conversely, let $g_{x y}(G)=1$ and $S=\{z\}$ be a $g_{x y}$-set of G. Then every vertex of G lies on either an $x-z$ geodesic or a $y-z$ geodesic. Now we consider three cases.
Case 1. Every vertex of G lies on an $x-z$ geodesic. Let d denote the diameter
of G. If $d(x, z)<d$, then there exist vertices u and v on distinct geodesics joining x and z such that $d(u, v)=d$. Thus $d(x, z)<d(u, v)$. Hence we see that

$$
\begin{array}{ll}
& d(x, z)=d(x, u)+d(u, z) \\
\text { and } & d(x, z)=d(x, v)+d(v, z) \tag{2}
\end{array}
$$

By triangle inequality,

$$
\begin{equation*}
d(u, v) \leq d(u, x)+d(x, v) \text { and } d(u, v) \leq d(u, z)+d(z, v) \tag{3}
\end{equation*}
$$

From (1) and (3), $d(u, z)=d(x, z)-d(x, u)$

$$
\begin{aligned}
& <d(u, v)-d(x, u) \\
& \leq d(x, v) .
\end{aligned}
$$

Thus $d(u, z)<d(x, v)$.
Now from (2), (3) and (4), we see that $d(u, v)<d(x, v)+d(z, v)$

$$
\begin{aligned}
& =d(x, v)+d(v, z) \\
& =d(x, z)
\end{aligned}
$$

Thus $d(u, v)<d(x, z)$, which is a contradiction. Hence $d(x, z)=d$ and each vertex of G lies on a diametral path joining x and y.
Case 2. Every vertex of G lies on a $y-z$ geodesic. It is similar to Case 1.
Case 3. There exist vertices u and v such that u lies on an $x-z$ geodesic but not in any $y-z$ geodesic and v lies on a $y-z$ geodesic but not in any $x-z$ geodesic.

We show that both the $x-z$ geodesic and the $y-z$ geodesic are diametral paths. Suppose that $x-z$ geodesic is not a diametral path. Then $d(x, z)<$ $d=d\left(u^{\prime}, v^{\prime}\right)$ for some vertices u^{\prime} and v^{\prime} in G.
Case 3a. Suppose that $u^{\prime}, v^{\prime} \in I[x, z]$. If u^{\prime} and v^{\prime} lie on the same $x-z$ geodesic, then it is clear that $d\left(u^{\prime}, v^{\prime}\right)<d(x, z)$, which is a contradiction. If u^{\prime} and v^{\prime} lie on distinct $x-z$ geodesics, then as in Case 1, $d\left(u^{\prime}, v^{\prime}\right)<d(x, z)$, which is a contradiction.
Case 3b. Suppose that $u^{\prime}, v^{\prime} \in I[y, z]$.
Subcase $\mathbf{3} \mathbf{b}_{1}$. Suppose that u^{\prime}, v^{\prime} lie on the same $y-z$ geodesic. Then $d\left(u^{\prime}, v^{\prime}\right)=d(y, z)$ and so $d(x, z)<d(y, z)$. Then it is clear that $d(x, z)=$ $d(y, z)-1$. It follows that every vertex of an $x-z$ geodesic lies on a $y-z$ geodesic and so u lies on a $y-z$ geodesic, which is a contradiction.
Subcase $\mathbf{3} \mathbf{b}_{2}$. Suppose that u^{\prime}, v^{\prime} lie on distinct $y-z$ geodesics. If the $y-z$ geodesics are not diametral paths, then as in Case 3a, we have a contradiction. If the $y-z$ geodesics are diametral paths, then $d(x, z)=d(y, z)-1$ and it follows that every vertex of an $x-z$ path lies on a $y-z$ geodesic and so u lies on a $y-z$ geodesic, which is a contradiction.
Case 3c. Suppose that $u^{\prime} \in I[x, z]$ and $u^{\prime} \notin I[y, z]$, and $v^{\prime} \in I[y, z]$ and $v^{\prime} \notin I[x, z]$. It is clear that

$$
\begin{equation*}
d(x, z)=d\left(x, u^{\prime}\right)+d\left(u^{\prime}, z\right) \tag{5}
\end{equation*}
$$

and $\quad d(y, z)=d\left(y, v^{\prime}\right)+d\left(v^{\prime}, z\right)$

By triangle inequality, $d\left(u^{\prime}, v^{\prime}\right) \leq d\left(u^{\prime}, z\right)+d\left(z, v^{\prime}\right)$ and $d\left(u^{\prime}, v^{\prime}\right) \leq d\left(u^{\prime}, x\right)+$ $d\left(x, v^{\prime}\right)$ and $d\left(u^{\prime}, v^{\prime}\right) \leq d\left(u^{\prime}, y\right)+d\left(y, v^{\prime}\right)$
From (5) and (7), $d\left(u^{\prime}, z\right)=d(x, z)-d\left(x, u^{\prime}\right)$

$$
\begin{equation*}
<d\left(u^{\prime}, v^{\prime}\right)-d\left(x, u^{\prime}\right) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\leq d\left(x, v^{\prime}\right) \tag{8}
\end{equation*}
$$

Thus $d\left(u^{\prime}, z\right)<d\left(x, v^{\prime}\right)$
Now from (6), (7) and (8), we see that $d\left(u^{\prime}, v^{\prime}\right)<d\left(x, v^{\prime}\right)+d\left(z, v^{\prime}\right)$

$$
\begin{aligned}
& =d\left(x, v^{\prime}\right)+d\left(v^{\prime}, z\right) \\
& \leq 1+d\left(y, v^{\prime}\right)+d\left(v^{\prime}, z\right) \\
& =1+d(y, z) .
\end{aligned}
$$

Thus $d\left(u^{\prime}, v^{\prime}\right)<1+d(y, z)$ and so $d\left(u^{\prime}, v^{\prime}\right) \leq d(y, z)$. Since $d\left(u^{\prime}, v^{\prime}\right)=d$, we have $d\left(u^{\prime}, v^{\prime}\right)=d(y, z)$. Then as in Subcase $3 \mathrm{~b}_{1}$ of Case $3 \mathrm{~b}, u$ lies on a $y-z$ geodesic, which is a contradiction.

Hence the $x-z$ geodesic is a diametral path. Similarly, the $y-z$ geodesic is a diametral path. Thus the proof is complete.

Theorem 2.12 For any edge $x y$ in the cube $Q_{n}(n \geq 3), g_{x y}\left(Q_{n}\right)=1$.
Proof. Let $e=x y$ be an edge in Q_{n} and let $x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where $a_{i} \in\{0,1\}$. Let $x^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ be another vertex of Q_{n} such that a_{i}^{\prime} is the complement of a_{i}. Let u be any vertex in Q_{n}. For convenience, let $u=\left(a_{1}, a_{2}^{\prime}, a_{3}, \ldots, a_{n}\right)$. Then u lies on the $x-x^{\prime}$ geodesic
$P: x=\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(a_{1}, a_{2}^{\prime}, a_{3}, \ldots, a_{n}\right),\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}, \ldots, a_{n}\right),\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n}\right), \ldots$, $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n-1}^{\prime}, a_{n}\right),\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)=x^{\prime}$, which is of length n so that it is a diametral path joining x and x^{\prime}. Hence the result follows from Theorem 2.11.

Theorem 2.13 (i) For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 6), g_{x y}\left(W_{n}\right)=n-5$ or $n-4$ according as $x y$ is an edge of C_{n-1} or not.
(ii) For any edge $x y$ in the complete bipartite graph $K_{m, n}(m \leq n)$,
$g_{x y}\left(K_{m, n}\right)= \begin{cases}n-1 & \text { if } m=1 \\ 1 & \text { if } m=2 \\ 2 & \text { if } m \geq 3 .\end{cases}$
Proof. (i) Let $C_{n-1}: u_{1}, u_{2}, u_{3}, \ldots, u_{n-1}, u_{1}$ be the cycle of W_{n} and let z be the vertex K_{1}. Let $x y$ be any edge in C_{n-1}, say $x y=u_{1} u_{2}$. Since $\left\{u_{3}, u_{4}, \ldots, u_{n-2\}}\right.$ and $\left\{u_{4}, u_{5}, \ldots, u_{n-1}\right\}$ are the sets of eccentric vertices of u_{1} and u_{2} respectively, we have $S=\left\{u_{4}, u_{5}, \ldots, u_{n-2}\right\}$ is the set of common eccentric vertices of both u_{1} and u_{2}. It is clear that the vertices u_{3}, z and u_{n-1} lie on the geodesics $P: u_{2}, u_{3}, u_{4} ; Q: u_{1}, z, u_{4}$; and $R: u_{1}, u_{n-1}, u_{n-2}$ respectively. Hence by Theorem 2.4(iii), S is the unique $g_{x y}$-set of W_{n} so that $g_{x y}\left(W_{n}\right)=n-5$. Let $x y$ be any edge not in C_{n-1}. Take $x y=u_{1} z$. Then $\left\{u_{3}, u_{4}, \ldots, u_{n-2}\right\}$ is the set of eccentric vertices of u_{1} and $V\left(C_{n-1}\right)$ is the set
of eccentric vertices of z so that $S^{\prime}=\left\{u_{3}, u_{4}, \ldots, u_{n-2}\right\}$ is the set of common eccentric vertices of both u_{1} and z. Now, by an argument similar to the above, it is easily seen that $g_{x y}\left(W_{n}\right)=n-4$.
(ii) Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be the partite sets of G, where $m \leq n$. If $m=1$, then by Corollary $2.7, g_{x y}\left(K_{1, n)}=n-1\right.$ for any edge $x y$ in $K_{1, n}$. If $m=2$, it follows from Theorem 2.11 that $g_{e}(G)=1$ for any edge $e=u_{i} w_{j}(1 \leq i \leq 2 ; 1 \leq j \leq n)$. If $m \geq 3$, then it is clear that no singleton subset of V is an $x y$-geodominating set of G and so $g_{x y}(G) \geq 2$. Without loss of generality, take $e=u_{1} w_{1}$. Let $S=\left\{u_{2}, w_{2}\right\}$. Then every vertex of U lies on a $w_{1}-w_{2}$ geodesic and every vertex of W lies on a $u_{1}-u_{2}$ geodesic. It follows that S is an $x y$-geodominating set of G and so $g_{e}(G)=2$.

Remark 2.14 Since $W_{4}=K_{4}$, we have $g_{x y}\left(W_{4}\right)=2$ for any edge $x y$ in W_{4}. Also, it is easily seen that $g_{x y}\left(W_{5}\right)=1$ for any edge $x y$ in W_{5}. Thus Theorem 2.13(i) is not true for $n=4,5$.

Theorem 2.15 For any edge xy in a connected graph G, every x-geodominating set of G is an xy-geodominating set of G.

Proof. Let S be an x-geodominating set of G. Then every vertex of G lies on an $x-z$ geodesic for some z in S. It follows that S is an $x y$-geodominating set of G.

Corollary 2.16 For any edge $e=x y$ in a connected graph $G, g_{x y}(G) \leq$ $\min \left\{g_{x}(G), g_{y}(G)\right\}$.

Theorem 2.17 For every pair a, b of integers with $1 \leq a \leq b$, there is a connected graph G with $g_{x y}(G)=a$ and $g_{x}(G)=b$ for some edge $x y$ in G.

Proof. We prove this theorem by considering three cases.
Case 1. Suppose that $a=b=1$. Then, for any edge $x y$ in an even cycle G, we have $g_{x y}(G)=1$ (See Remark 2.10) and $g_{x}(G)=1$, by Theorem 1.3.
Case 2. Suppose that $a=b \geq 2$. Let $C_{4}: x, y, z, u, x$ be a cycle of order 4. Add $a-1$ new vertices $v_{1}, v_{2}, \ldots, v_{a-1}$ to C_{4} and join them to x, thereby producing the graph G of Figure 2.2. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\}$ be the set of all simplicial vertices of G.

First, we show that $g_{x y}(G)=a$ for the edge $x y$ in G. Since S is not an $x y$-geodominating set, it follows from Theorem 2.4(i) that $g_{x y}(G) \geq a$. On the other hand, $S^{\prime}=S \cup\{z\}$ is an $x y$-geodominating set of G and so $g_{x y}(G)=\left|S^{\prime}\right|=a$.

Next, we show that $g_{x}(G)=b$. By Corollary 2.16, we have $g_{x}(G) \geq a$. It is clear that S^{\prime} is an x-geodominating set of G and so $g_{x}(G)=a$.
Case 3. Suoppose that $a<b$. Let $C_{5}: x, y, z, u, v, x$ be a cycle of order

Figure 2.2
5. Add $b-2$ new vertices $v_{1}, v_{2}, \ldots, v_{a-1}, w_{1}, w_{2}, \ldots, w_{b-a-1}$ to C_{5} and join $v_{i}(1 \leq i \leq a-1)$ to x and join $w_{j}(1 \leq j \leq b-a-1)$ to both y and u, thereby producing the graph G of Figure 2.3. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\}$ be the set of all simplicial vertices of G.

Figure 2.3
First, we show that $g_{x y}(G)=a$ for the edge $x y$ in G. Since S is not an $x y$-geodominating set, it follows from Theorem 2.4(i) that $g_{x y}(G) \geq a$. On the other hand, $S^{\prime}=S \bigcup\{u\}$ is an $x y$-geodominating set of G and so $g_{x y}(G)=\left|S^{\prime}\right|=a$.

Next, we show that $g_{x}(G)=b$. It is clear that the vertices $v_{1}, v_{2}, \ldots, v_{a-1}, z$, $w_{1}, w_{2}, \ldots, w_{b-a-1}$ must belong to every x-geodominating set and these vertices do not form an x-geodominating set. Hence $g_{x}(G) \geq b$. On the other hand, the set $S_{1}=\left\{v_{1}, v_{2}, \ldots, v_{a-1}, z, w_{1}, w_{2}, \ldots, w_{b-a-1}, u\right\}$ is an x-geodominating set of G and so $g_{x}(G)=b$.

We leave the following problem as an open question.
Problem 2.18 Characterize graphs G of order $p \geq 3$ for which $g_{x y}(G)=$ $p-2$, where $x y$ is an edge of G.

3 The Edge Geodomination Number and Diameter of a Graph

We have seen that if G is a connected graph of order $p \geq 3$, then $1 \leq g_{x y}(G) \leq$ $p-2$ for any edge $x y$ in G. Also we have for an edge $x y$ in $G, g_{x y}(G)=1$ if and only if there exists a vertex z such that every vertex of G lies on either a diametral path joining x and z or a diametral path joining y and z. In the following theorem we give an improved upper bound for the edge fixed geodomination number of a graph in terms of its order and diameter.

Theorem 3.1 If G is a connected graph of order p and diameter d, then $g_{x y}(G) \leq p-d+1$ for any edge $x y$ in G.

Proof. This follows from Theorem 1.2 and Corollary 2.16.
Theorem 3.2 For for any edge $x y$ in a non-trivial tree $T, g_{x y}(T)=p-d$ or $p-d+1$ if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let $P: u=v_{0}, v_{1}, \ldots, v_{d}=v$ be a diametral path. Let k be the number of end vertices of T and l be the number of internal vertices of T other than $v_{1}, v_{2}, \ldots, v_{d-1}$. Then $d-1+l+k=p$. By Corollary 2.6, $g_{x y}(T)=k$ or $k-1$ for any edge $x y$ in T and so $g_{x y}(T)=$ $p-d-l+1$ or $p-d-l$ for any edge $x y$ in T. Hence $g_{x y}(T)=p-d+1$ or $p-d$ for any edge $x y$ in T if and only if $l=0$, if and only if all the internal vertices of T lie on the diametral path P, if and only if T is a caterpillar.

For every connected graph G, $\operatorname{rad} G \leq \operatorname{diam} G \leq 2 \operatorname{rad} G$. Ostrand [6] showed that every two positive integers a and b with $a \leq b \leq 2 a$ are realizable as the radius and diameter, respectively, of some connected graph. Ostrand's theorem can be extended so that the edge fixed geodomination number can be prescribed when $r<d \leq 2 r$.

Theorem 3.3 For positive integers r, d and $n \geq 2$ with $r<d \leq 2 r$, there exists a connected graph G with rad $G=r$, diam $G=d$ and $g_{x y}(G)=n$ or $n-1$ for any edge $x y$ in G.

Proof. Let $C_{2 r}: v_{1}, v_{2}, \ldots, v_{2 r}, v_{1}$ be a cycle of order $2 r$ and let P_{d-r+1} : $u_{0}, u_{1}, \ldots, u_{d-r}$ be a path of order $d-r+1$. Let H be a graph obtained from $C_{2 r}$ and P_{d-r+1} by identifying v_{1} in $C_{2 r}$ and u_{0} in P_{d-r+1}. If $n=2$, then let $G=H$. Then $\operatorname{rad} G=r$ and diam $G=d$. Clearly, $g_{x y}(G)=1$ or 2 according as $x y \in\left\{v_{r} v_{r+1}, v_{r+1} v_{r+2}, u_{d-r-1} u_{d-r}\right\}$ or
$x y \in\left\{v_{1} u_{1}, u_{1} u_{2}, \ldots, u_{d-r-2} u_{d-r-1}, v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{r-1} v_{r}, v_{r+2} v_{r+3}, \ldots, v_{2 r} v_{1}\right\}$. Thus $g_{x y}(G)=1$ or 2 for any edge $x y$ in G. If $n \geq 3$, then add $n-2$ new vertices $w_{1}, w_{2}, \ldots, w_{n-2}$ to H and join each vertex $w_{i}(1 \leq i \leq n-2)$ to the vertex u_{d-r-1} and obtain the graph G of Figure 3.1.

Figure 3.1
Now $\operatorname{rad} G=r, \operatorname{diam} G=d$ and G has $n-1$ end vertices. Clearly, $g_{x}(G)=n$ or $n-1$ according as
$x y \in\left\{v_{1} u_{1}, u_{1} u_{2}, \ldots, u_{d-r-2} u_{d-r-1}, v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{r-1} v_{r}, v_{r+2} v_{r+3}, \ldots, v_{2 r} v_{1}\right\}$ or $x y \in\left\{v_{r} v_{r+1}, v_{r+1} v_{r+2}, u_{d-r-1} u_{d-r}, u_{d-r} w_{1}, u_{d-r} w_{2}, \ldots, u_{d-r} w_{n-2}\right\}$. Thus $g_{x y}(G)=n$ or $n-1$ for any edge $x y$ in G.

In the following, we construct a graph of prescribed order, diameter and edge fixed geodomination number under suitable conditions.

Theorem 3.4 If p, d and n are integers such that $3 \leq d \leq p-1,2 \leq n \leq p-2$ and $p-d-n+1 \geq 0$, then there exists a graph G of order p, diameter d and $g_{x y}(G)=n$ or $n-1$ for any edge $x y$ in G.

Proof. If $n=2$, let $P_{d+1}: u_{0}, u_{1}, u_{2}, \ldots, u_{d}$ be a path of length d. Add $p-d-1$ new vertices $w_{1}, w_{2}, \ldots, w_{p-d-1}$ to P_{d+1} and join each vertex to both u_{0} and u_{2}, thereby producing the graph G of Figure 3.2. Then G has order p and diameter d. Clearly, $g_{x y}(G)=1$ or 2 according as $x y \in$ $\left\{u_{0} u_{1}, u_{0} w_{1}, u_{0} w_{2}, \ldots, u_{0} w_{p-d-1}, u_{d-1} u_{d}\right\}$ or $x y \in\left\{u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{d-2} u_{d-1}, u_{2} w_{1}\right.$, $\left.u_{2} w_{2}, \ldots u_{2} w_{p-d-1}\right\}$.

If $3 \leq n \leq p-2$, then add $p-d-n+1$ new vertices $w_{1}, w_{2}, \ldots, w_{p-d-n+1}$ to the path $P_{d+1}: u_{0}, u_{1}, u_{2}, \ldots, u_{d}$ of length d and join each vertex to both u_{0} and u_{2}, thereby producing the graph H. Then add $n-2$ new vertices $v_{1}, v_{2}, \ldots, v_{n-2}$ to H and join each vertex $v_{i}(1 \leq i \leq n-2)$ to the vertex u_{d-1} and obtain the graph G of Figure 3.3. Then G has order

Figure 3.2

Figure 3.3
p and diameter d. It is easily verified that $g_{x y}(G)=n$ or $n-1$ according as $x y \in\left\{u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{d-2} u_{d-1}, u_{2} w_{1}, u_{2} w_{2}, \ldots, u_{2} w_{p-d-n+1}\right\}$ or $x y \in$ $\left\{u_{0} u_{1}, u_{0} w_{1}, u_{0} w_{2}, \ldots, u_{0} w_{p-d-n+1}, u_{d-1} u_{d}, u_{d-1} v_{1}, u_{d-1} v_{2}, \ldots, u_{d-1} v_{n-2}\right\}$. Then $g_{x y}(G)=n$ or $n-1$ for any edge $x y$ in G.

In view of Theorem 3.4, we leave the following problem as an open question.
Problem 3.5 If p, d and n are integers such that $3 \leq d \leq p-1,2 \leq n \leq p-2$ and $p-d-n+1 \geq 0$, then there exists a graph G of order p, diameter d and $g_{x y}(G)=n$ for every edge $x y$ in G.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[2] G. Chartrand F. Harary, and P. Zang, On the geodetic number of a graph, Networks. 39(2002) 1-6.
[3] G. Chartrand F. Harary, H. Swart, and P. Zang, Geodomination in graphs, Bull. Inst. Appl. 31(2001), 51-59.
[4] F. Harary, Graph Theory, Addison-Wesley, 1969.
[5] F. Harary, E. Loukakis, C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling, 17(11)(1993), 87-95.
[6] P.A. Ostrand, Graphs with specified radius and diameter, Discrete Math. 4(1973),7175.
[7] A.P. Santhakumaran, P. Titus, Vertex Geodomination in Graphs, Bulletin of Kerala Mathematics Association 2 (No.2) (2005), 45-57.
[8] A.P. Santhakumaran, P. Titus, On the Vertex Geodomination Number of a Graph, Ars Combinatoria (To appear).
[9] A.P. Santhakumaran, P. Titus, The Geo-number of a Graph, Ars Combinatoria (To appear).
${ }^{1}$ Department of Mathematics
St.Xavier's College (Autonomous)
Palayamkottai - 627002, Tamil Nadu, India.
e-mail : apskumar1953@yahoo.co.in
${ }^{2}$ Department of Mathematics
Anna University Tirunelveli
Tirunelveli - 627 007, Tamil Nadu, India.
e-mail: titusvino@yahoo.com

[^0]: Key Words: Geodesic; Vertex geodomination number; Edge fixed geodomination number. Mathematics Subject Classification: 05C12
 Received: October, 2008
 Accepted: April, 2009

