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The edge fixed geodomination number of a
graph

A.P. SANTHAKUMARAN! and P.TITUS?

Abstract

For a vertex z in a connected graph G = (V(G), E(G)) of order
p > 3, aset S C V(G) is an z-geodominating set of G if each ver-
tex v € V(G) lies on an z-y geodesic for some element y in S. The
minimum cardinality of an z-geodominating set of G is defined as the
z-geodomination number of G, denoted by ¢, (G). An z-geodominating
set of cardinality g.(G) is called a g-set of G. For an edge e = zy
in G, aset S C V(G) is an e-geodominating set of G if each vertex
v € V(G) lies on either an x — z geodesic or an y — z geodesic for some
element z in S. The minimum cardinality of an e-geodominating set of
G is defined as the e-geodomination number of G, denoted by g.(G). An
e-geodominating set of cardinality g.(G) is called a ge-set of G. Some
general properties satisfied by e-geodominating sets are studied. We de-
termine bounds for the e-geodomination number and find the same for
some special classes of graphs. For positive integers r,d and n > 2 with
r < d < 2r, there exists a connected graph G with rad G = r, diam
G =d and ¢.y(G) =n or n — 1 for any edge zy in G. If p,d and n are
integers such that 3<d<p—-1,2<n<p—2andp—-d—n+12>0,
then there exists a graph G of order p, diameter d and ¢.,(G) = n or
n — 1 for any edge zy in G.

1 Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and ¢
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188 A.P. SANTHAKUMARAN anDp P.TITUS

respectively. For basic graph theoretic terminology we refer to Harary [4]. For
vertices z and y in a connected graph G, the distance d(z,y) is the length of
a shortest x — y path in G. An x — y path of length d(z,y) is called an = — y
geodesic. A vertex v is said to lie on an x — y geodesic P if v is a vertex of P
including the vertices « and y. The diameter diam G of a connected graph G
is the length of any longest geodesic. For any vertex u of G, the eccentricity of
u is e(u) = maz {d(u,v) : v € V}. A vertex v of G such that d(u,v) = e(u) is
called an eccentric vertex of u. The neighborhood of a vertex v is the set N(v)
consisting of all vertices u which are adjacent with v. A vertex v is a simplicial
vertex if the subgraph induced by its neighborhood N (v) is complete.

The closed interval I[z, y] consists of all vertices lying on some z—y geodesic
of G, while for S C V| I[S] = | I[z,y]. A set S of vertices is a geodetic

T, yeS
set if I[S] =V, and the minimum cardinality of a geodetic set is the geodetic
number g(G). A geodetic set of cardinality g(G) is called a g-set. The geodetic
number of a graph was introduced in [1,5] and further studied in [2,3]. It was
shown in [5] that determining the geodetic number of a graph is an NP-hard
problem.

The concept of vertex geodomination number was introduced by Santhaku-
maran and Titus [7] and further studied in [8,9]. A vertex y in a connected
graph G is said to x-geodominate a vertex u if u lies on an x — y geodesic.
A set S of vertices of G is an z-geodominating set if each vertex v € V(G)
is z-geodominated by some element of S. The minimum cardinality of an z-
geodominating set of G is defined as the z-geodomination number of G' and
is denoted by ¢, (G). An z-geodominating set of cardinality ¢,(G) is called a
gq-set.

Figure 1.1

Every vertex of an x —y geodesic is x-geodominated by the vertex y. Since,
by definition, a g,-set is minimum, the vertex x and also the internal vertices
of an x — y geodesic do not belong to a g,-set. For the graph G given in
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Figure 1.1, g4(G) = 3, 94(G) = 4, 9,(G) =2, g.(G) = 2 and g,(G) = 3 with
minimum vertex geodominating sets {x,y,w}, {z,y,u, w}, {z,u}, {u,w} and
{z,u, w} respectively.

It is proved in [7] that for any vertex x in G, g,-set is unique and 1 <
9:(G) < p — 1. An elaborate study of results in vertex geodomination with
several interesting applications is given in [7,8]. The following theorems will
be used in the sequel.

Theorem 1.1 [4] Let v be a vertex of a connected graph G. The following
statements are equivalent:

(i) v is a cut vertex of G.

(i) There exist vertices u and w distinct from v such that v is on every
u — w path.

(1ii) There ezists a partition of the set of vertices V. — {v} into subsets U
and W such that for any vertices w € U and w € W, the vertex v is on every
u — w path.

Theorem 1.2 [8] For any vertex x in a connected graph G of order p > 2
and diameter d, g,(G) <p—d+ 1.

Theorem 1.3 [8] For any vertex = in an even cycle C, ¢g,(C) = 1.

Throughout this paper G denotes a connected graph with at least three
vertices.

2 Edge Fixed Geodomination

Definition 2.1 Let e = zy be any edge of a connected graph G of order at
least 3. A set S of vertices of G is an e-geodominating set if every verter of
G lies on either an x — u geodesic or a y — u geodesic in G for some element
u in S. The minimum cardinality of an e-geodominating set of G is defined
as the e-geodomination number of G and is denoted by g.(G) or g,(G). An
e-geodominating set of cardinality g.(G) is called a g.-set of G.

Example 2.2 For the graph G given in Figure 2.1, the minimum edge geodom-
inating sets and the edge geodomination numbers are given in Table 2.1.
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Figure 2.1.

Edge e | Minimum e-geodominating sets | e-geodomination number
xy {z,w} 2
Yo {z,w} 2
vw {z,x} 2
uv {z,w,y},{z,w,z} 3
zu {y, w} 2
xz {w} 1
Tu {z,w} 2

Table 2.1

It is proved in [7] that for any vertex x in G, g,-set of G with respect to z
is unique. However, we observe that in the case of edge geodominating sets,
there can be more than one minimum edge geodominating set. For the edge
e = wv of the graph G in Figure 2.1, {z,w,y} and {z,w,x} are two distinct
ge-sets of G.

Theorem 2.3 For any edge xy in a connected graph G of order at least 3,
the vertices x and y do not belong to any minimum xy-geodominating set of

G.

Proof. Suppose that z belongs to a minimum zy-geodominating set, say
S of G. Since G is a connected graph with at least three vertices and zy is an
edge, it follows from the definition of an zy-geodominating set that S contains
a vertex v different from x and y. Since the vertex z lies on every x —v geodesic
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in G, it follows that T =S — {z} is an xy-geodominating set of G, which is
a contradiction to S a minimum zy-geodominating set of G. Similarly, y does
not belong to any zy-geodominating set of G.

Theorem 2.4 Let xy be any edge of a connected graph G of order at least 3.
Then

(1) Every simplicial vertex of G other than the vertices x and y (whether x
ory is simplicial or not) belongs to every g, -set.

(it) No cut vertex of G belongs to any gu-set.

(131) If z is an eccentric vertex of both x and y, then z belongs to every
zy-geodominating set.

Proof. (i) By Theorem 2.3, the vertices x and y do not belong to any
gay-set. So let u # x,y be a simplicial vertex of G. Let S be a gy-set of G
such that u ¢ S. Then w is an internal vertex of either an z — v geodesic or a
y — v geodesic for some v in S. Without loss of generality, let P be an z — v
geodesic with u an internal vertex. Then both the neighbors of uw on P are
not adjacent and hence u is not a simplicial vertex, which is a contradiction.

(ii) Let v be a cut vertex of G. Then by Theorem 1.1, there exists a partition
of the set of vertices V' — {v} into subsets U and W such that for any vertex
u € U and w € W, the vertex v lies on every v —w path. Let S be any g,,-set
of G. We consider three cases.

Case 1. Both x and y belong to U. Suppose that SNW = (). Let w; € W.
Since S is an xy-geodominating set, there exists an element z in S such that
wy lies on either an x — z geodesic or a y — z geodesic in G. Suppose that w;
lies in an x — z geodesic P : x = 2y, 21, ..., W1, ..., 2n, = 2z in G. Then the x —w,
subpath of P and w; — z subpath of P both contain v so that P is not a path
in G, which is a contradiction. Hence S NW # 0. Let wo € SN W. Then v is
an internal vertex of any x — wy geodesic and v is also an internal vertex of
any y — wo geodesic. If v € S, then, let S’ = S — {v}. It is clear that every
vertex that lies on an x — v geodesic also lies on an & — wy geodesic, and every
vertex that lies on an y — v geodesic also lies on an y — ws geodesic. Hence
it follows that S’ is an xy-geodominating set of G, which is a contradiction
to S a minimum zy-geodominating set of G. Thus v does not belong to any
minimum zy-geodominating set of G.

Case 2. Both z and y belong to W. It is similar to Case 1.

Case 3. Either z = v or y = v. By Theorem 2.3, v does not belong to any
Gay-set.

(iii) Let z be an eccentric vertex of both z and y so that d(z,2) = e(x)
and d(y, z) = e(y). Suppose that z does not belong to a gg,-set, say S. Then
there exists a vertex w in S such that z is an internal vertex of either an
x — w geodesic or a y — w geodesic. Therefore, either d(z,z) < d(z,w) or
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d(y, z) < d(y,w) and hence either e(z) < d(z,w) or e(y) < d(y,w), which is a
contradiction.

Note 2.5 If z is an eccentric vertex of either © or y but not both, then z need
not belong to every g,-set of G. For the cycle Cy : x,y, 2z, w, z, it is clear that
S1 = {z} and Sy = {w} are the two g, -sets of Cy. Also z is the eccentric
verter of x and not of y. However, z does not belong to Ss.

Corollary 2.6 Let T be a tree with number of end vertices k. Then g, (T') =
k —1 or k according as xy is an end edge or cut edge.

Proof. This follows from Theorem 2.4.

Corollary 2.7 Let Ky, (n > 2) be a star. Then gqy(Ki1,) =n—1 for any
edge zy in Ky .

Corollary 2.8 Let G be the complete graph K, (p > 3). Then g,,(G) =p—2
for any edge xy in G.

Proposition 2.9 For any edge xy in a connected graph G of order p > 3,
1 Sgacy(G) <p-2

Proof. It is clear from the definition of g,,-set that g,,(G) > 1. Also, since
the vertices « and y do not belong to any g,,-set, it follows that g,,(G) < p—2.

Remark 2.10 The bounds for g,,(G) in Proposition 2.9 are sharp. If G is
any cycle, then g,4(G) =1 for any edge xy in G. For any edge xy in a path
Pp(n > 3), goy(Pn) = 1. For any edge xy in the complete graph K,(p > 3),
Gay(Kp) =p — 2.

Now we proceed to characterize graphs for which the lower bound in Propo-
sition 2.9 is attained.

Theorem 2.11 Let G be a connected graph. For an edge xy in G, g,(G) =1
if and only if there exists a vertex z in G such that every vertex of G lies on
either a diametral path joining x and z or a diametral path joining y and z.

Proof. Let xy be any edge of G. Let z be a vertex in G such that every vertex
of G lies on either a diametral path joining x and z or a diametral path joining
y and z. Then S = {z} is a gyy-set of G and so g,(G) = 1.

Conversely, let g, (G) = 1 and S = {z} be a ggy-set of G. Then every
vertex of G lies on either an x — z geodesic or a y — z geodesic. Now we
consider three cases.

Case 1. Every vertex of G lies on an  —z geodesic. Let d denote the diameter
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of G. If d(z,z) < d, then there exist vertices v and v on distinct geodesics
joining  and z such that d(u,v) = d. Thus d(z, z) < d(u,v). Hence we see
that

d(x,z) = d(z,u)+d(u, 2) (1)
and d(z, z) = d(z,v)+d(v, 2) (2)
By triangle inequality,
d(u,v) < d(u,z)+d(x,v) and d(u,v) < d(u, 2)+d(z,v) (3)
From (1) and (3), d(u, z) = d(x, z) — d(z, u)

< d(u,v) — d(z,u)

< d(z,v).
Thus d(u, z) < d(z,v). (4)
Now from (2), (3) and (4), we see that d(u,v) < d(z,v) + d(z,v)
=d(z,v) +d(v, z)
=d(z, z).

Thus d(u,v) < d(z,z), which is a contradiction. Hence d(x,z) = d and
each vertex of G lies on a diametral path joining x and .

Case 2. Every vertex of G lies on a y — z geodesic. It is similar to Case 1.
Case 3. There exist vertices u and v such that u lies on an x — z geodesic but
not in any y — z geodesic and v lies on a y — z geodesic but not in any x — z
geodesic.

We show that both the x — z geodesic and the y — 2z geodesic are diametral
paths. Suppose that & — z geodesic is not a diametral path. Then d(z, z) <
d = d(u,v") for some vertices v’ and v’ in G.

Case 3a. Suppose that v',v" € I[x,z]. If v/ and v’ lie on the same x — z
geodesic, then it is clear that d(u’,v") < d(z,z), which is a contradiction. If
u’ and v’ lie on distinct « — 2z geodesics, then as in Case 1, d(v/,v") < d(z, 2),
which is a contradiction.
Case 3b. Suppose that u',v’ € I[y, z].
Subcase 3b;. Suppose that u’,v’ lie on the same y — z geodesic. Then
d(u',v") = d(y,z) and so d(z,z) < d(y,z). Then it is clear that d(z,z) =
d(y,z) — 1. Tt follows that every vertex of an x — z geodesic lies on a y — 2z
geodesic and so u lies on a y — z geodesic, which is a contradiction.
Subcase 3bs. Suppose that u’, v’ lie on distinct y — z geodesics. If the y — 2
geodesics are not diametral paths, then as in Case 3a, we have a contradiction.
If the y — z geodesics are diametral paths, then d(z,z) = d(y,z) — 1 and it
follows that every vertex of an x — z path lies on a y — z geodesic and so u lies
on a y — z geodesic, which is a contradiction.
Case 3c. Suppose that v’ € I[z,z] and v ¢ I[y,z], and v' € I[y,z] and
v ¢ Iz, z]. Tt is clear that

d(z,z) = d(z,u')+d(v, 2) (5)
and d(y,z) = d(y,v")+d(V', z) (6).
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By triangle inequality, d(u/,v’) < d(u/, z) + d(z,v") and d(v/,v") < d(v/,z) +
d(z,v") and d(v/,v") < d(v,y)+d(y,v") (7).
From (5) and (7), d(u/, 2) = d(z, 2) — d(z,u")
<d(u,v") —d(z,u)
<d(z,v).
Thus d(v/, z) < d(z,v") (8).
Now from (6), (7) and (8), we see that d(u',v") < d(z,v") + d(z,v")
=d(z,v") +d(W, z)
< 14d(y,v") +d,z)
=1+d(y,2).
Thus d(u',v") < 1+ d(y, z) and so d(u/,v") < d(y, z). Since d(v/,v") = d, we
have d(u',v") = d(y, z). Then as in Subcase 3b; of Case 3b, u lies on a y — z
geodesic, which is a contradiction.
Hence the = — z geodesic is a diametral path. Similarly, the y — z geodesic
is a diametral path. Thus the proof is complete.

Theorem 2.12 For any edge xy in the cube Q, (n > 3), guy(Qn) = 1.

Proof. Let e = zy be an edge in @, and let © = (a1, a3, ..., a,), where
a; € {0,1}. Let ' = (a},a},...,al,) be another vertex of @, such that a]
is the complement of a;. Let u be any vertex in @,. For convenience, let
u = (ay,ah,as, ...,a,). Then u lies on the x — z’ geodesic
P:x=(a1,a2,...,an), (a1,ah, a3, ...,an), (a}, ab, as, ..., an), (@}, ah, al, ...yan), ...,
(a},ab,...,a,_q1,a,),(al,db,...,al) = 2’, which is of length n so that it is a di-

ey Ay

ametral path joining x and z’. Hence the result follows from Theorem 2.11.

Theorem 2.13 (i) For the wheel W,, = K1 +Cr—1 (n > 6), gay(Wy,) =n—5
orn — 4 according as xy is an edge of Cp,_1 or not.
(#3) For any edge zy in the complete bipartite graph K, , (m <n),
n—1 ifm=1
2 if m > 3.

Proof. (i) Let Cp—1 : uj,ug,us, ..., un—1,u1 be the cycle of W,, and let
z be the vertex K;. Let xzy be any edge in C,_1, say xy = wujug. Since
{us, ua, ..., up oy and {uy,us, ...,un_1} are the sets of eccentric vertices of u;
and ug respectively, we have S = {uy, us, ..., un—2} is the set of common ec-
centric vertices of both uy and us. It is clear that the vertices us, z and u,,_1
lie on the geodesics P : ug,us,uq; @ : uy,z,uq; and R @ Uy, Up_1,Up_o Te-
spectively. Hence by Theorem 2.4(iii), S is the unique gg,-set of W,, so that
9oy(Wy) = n — 5. Let 2y be any edge not in C,,_;. Take 2y = u;z. Then
{us, g, ..., un—o} is the set of eccentric vertices of u; and V(Cp_1) is the set
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of eccentric vertices of z so that S" = {us,uy,...,un_2} is the set of common
eccentric vertices of both u; and z. Now, by an argument similar to the above,
it is easily seen that g,,(W,) =n —4.

(ii) Let U = {u1,u2, ..., up } and W = {wq, wa, ...,w,} be the partite sets
of G, where m < n. If m = 1, then by Corollary 2.7, g,,(K; ,) = n — 1 for
any edge xy in K . If m = 2, it follows from Theorem 2.11 that g.(G) =1
for any edge e = u;w; (1 <i<2;1 <5< n). If m > 3, then it is clear that
no singleton subset of V' is an xy-geodominating set of G and so g,,(G) > 2.
Without loss of generality, take e = ujw;. Let S = {ug,ws}. Then every
vertex of U lies on a w; — wy geodesic and every vertex of W lies on a u; — usg
geodesic. It follows that S is an zy-geodominating set of G and so g.(G) = 2.

Remark 2.14 Since Wy = K4, we have g, (Wa) = 2 for any edge xy in Wiy.
Also, it is easily seen that g,,(Ws) = 1 for any edge xy in Ws. Thus Theorem
2.13(i) is not true for n =4,5.

Theorem 2.15 For any edge xy in a connected graph G, every x-geodominating
set of G is an xy-geodominating set of G.

Proof. Let S be an z-geodominating set of G. Then every vertex of G lies
on an x — z geodesic for some z in S. It follows that S is an xy-geodominating
set of G.

Corollary 2.16 For any edge e = zy in a connected graph G, g4(G) <
min{g. (&), g,(G)}-

Theorem 2.17 For every pair a,b of integers with 1 < a < b, there is a
connected graph G with gz(G) = a and g,(G) = b for some edge zy in G.

Proof. We prove this theorem by considering three cases.

Case 1. Suppose that a = b = 1. Then, for any edge xy in an even cycle G,
we have g5, (G) =1 (See Remark 2.10) and ¢,(G) = 1, by Theorem 1.3.
Case 2. Suppose that a = b > 2. Let Cy : z,y,z,u,x be a cycle of order
4. Add a — 1 new vertices vy, v, ...,v4_1 to C4 and join them to z, thereby
producing the graph G of Figure 2.2. Let S = {v1,va,...,v,—1} be the set of
all simplicial vertices of G.

First, we show that g,,(G) = a for the edge zy in G. Since S is not
an zy-geodominating set, it follows from Theorem 2.4(i) that g,,(G) > a.
On the other hand, S’ = S U {z} is an ay-geodominating set of G and so
9ay(G) = |5 = a.

Next, we show that ¢,(G) = b. By Corollary 2.16, we have ¢,(G) > a. It
is clear that S’ is an a-geodominating set of G and so g,(G) = a.

Case 3. Suoppose that a < b. Let C5 : x,y,z,u,v,z be a cycle of order
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o

. Va—1

Figure 2.2

5. Add b — 2 new vertices vy, v, ..., Vg—1, W1, W3, ..., Wp—q—1 t0 C5 and join
v;(1 <i<a-—1)tozand join w;(1 <j<b—a—1)toboth y and u, thereby
producing the graph G of Figure 2.3. Let S = {v1,va,...,vs—1} be the set of
all simplicial vertices of G.

. Va1

Figure 2.3

First, we show that g,,(G) = a for the edge zy in G. Since S is not
an zy-geodominating set, it follows from Theorem 2.4(i) that g,,(G) > a.
On the other hand, S = S|J{u} is an zy-geodominating set of G and so
9ay(G) = |5'| = a.
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Next, we show that g,(G) = b. It is clear that the vertices vy, va, ..., Va—1, 2,
w1, W3, ..., Wp—q—1 Must belong to every x-geodominating set and these vertices
do not form an z-geodominating set. Hence ¢,(G) > b. On the other hand,
the set S1 = {v1,v2, ..., Va—1, 2, W1, W2y ..., Wp—q—1,U} IS an z-geodominating
set of G and so g,(G) = b.

We leave the following problem as an open question.

Problem 2.18 Characterize graphs G of order p > 3 for which .y (G) =
p — 2, where xy is an edge of G.

3 The Edge Geodomination Number and Diameter of a
Graph

We have seen that if G is a connected graph of order p > 3, then 1 < g, (G) <
p — 2 for any edge zy in G. Also we have for an edge zy in G, ¢.(G) = 1 if
and only if there exists a vertex z such that every vertex of G lies on either
a diametral path joining x and z or a diametral path joining y and z. In
the following theorem we give an improved upper bound for the edge fixed
geodomination number of a graph in terms of its order and diameter.

Theorem 3.1 If G is a connected graph of order p and diameter d, then
9y (G) < p—d+1 for any edge zy in G.

Proof. This follows from Theorem 1.2 and Corollary 2.16.

Theorem 3.2 For for any edge zy in a non-trivial tree T, g, (T) =p—d or
p—d+1if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let P : u = vg,v1,...,vq = v be a
diametral path. Let k be the number of end vertices of T and [ be the number
of internal vertices of 1" other than vy, vs,...,v4_1. Then d — 1 + 14+ k = p.
By Corollary 2.6, g,y(T) = k or k — 1 for any edge zy in T and so g,y (T) =
p—d—1+1orp—d—1for any edge zy in T. Hence g,,(T) =p—d+1 or
p — d for any edge xy in T if and only if [ = 0, if and only if all the internal
vertices of T lie on the diametral path P, if and only if T is a caterpillar.

For every connected graph G, rad G < diam G < 2 rad G. Ostrand [6]
showed that every two positive integers a and b with a < b < 2a are realizable
as the radius and diameter, respectively, of some connected graph. Ostrand’s
theorem can be extended so that the edge fixed geodomination number can
be prescribed when r < d < 27.

Theorem 3.3 For positive integers r,d and n > 2 with r < d < 2r, there
exists a connected graph G with rad G = r, diam G = d and g,,(G) = n or
n — 1 for any edge zy in G.
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Proof. Let Cy, : v1,vs,...,v9,-,v1 be a cycle of order 2r and let Py, 41 :
Uug, U, --., Uqg—r be a path of order d — r + 1. Let H be a graph obtained from
Co and Py_,41 by identifying v1 in Cy, and ug in Py_,4+1. If n =2, then let
G = H. Then rad G = r and diam G = d. Clearly, ¢g,,(G) =1 or 2 according
as oY € {VpVp41, Vp41Vry2, Ug—p—1Ud—r } OF
zy € {viur, WU, ..., Ug—r—2Ud—r—1,V1V2, V23, ..., Up—1 U, Upt2Up 43, .., V2, U1 }.
Thus g,4(G) = 1 or 2 for any edge xzy in G. If n > 3, then add n — 2 new
vertices wy, wa, ..., wn—2 to H and join each vertex w;(1 < i < n —2) to the
vertex uq—,—1 and obtain the graph G of Figure 3.1.

. vy uy o U Ugpy  Ug_p
i1

wa

Figure 3.1

Now rad G = r, diam G = d and G has n — 1 end vertices. Clearly,
9:(G) = n or n — 1 according as
Yy € {U1U1, U1U, ooy Ud—p—2Ud—p—1, V1V2, V2V, oy Vp— 1V, Up2Up 43, ooy U2p U1 }
or Y € {VpVpg1; Vrg1Vr g2, Ud—r—1Ud—r, Ud—p W1, Ud—yp W2, ..oy Ug—pWp—2 }. Thus
9zy(G) =n or n — 1 for any edge zy in G.

In the following, we construct a graph of prescribed order, diameter and
edge fixed geodomination number under suitable conditions.

Theorem 3.4 Ifp,d and n are integers such that3 <d <p—1,2<n <p-—2
andp—d—n+12>0, then there exists a graph G of order p, diameter d and
9zy(G) =n orn—1 for any edge zy in G.

Proof. If n = 2, let Py41 @ wg,uq,us,...,uq be a path of length d. Add
p —d — 1 new vertices wy,wa,...,Wp—q—1 to Pgy1 and join each vertex to
both up and wg, thereby producing the graph G of Figure 3.2. Then G
has order p and diameter d. Clearly, g,,(G) = 1 or 2 according as zy €
{uwour, wowr, wowa, ..., UpWp—_g—1, Ug—1uq} or xY € {urug, ugus, ..., Ug—2Ud—1, U2W1,
UW2, . . . u2wp,d,1}.

If 3 <n <p—2, then add p—d—n+1 new vertices wy, wa, ..., Wp—_d—n+1
to the path Pgy1 : wg,u1,us,...,uq of length d and join each vertex to
both ug and wug, thereby producing the graph H. Then add n — 2 new
vertices v1,vs,...,Un—2 to H and join each vertex v;(1 < ¢ < m — 2) to
the vertex ug_1 and obtain the graph G of Figure 3.3. Then G has order
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Uy 151 Uag g tly Ud—1 g
- - + - ——————————
Wp_d—1
Figure 3.2

Up {5 Uo g {an g1 g

Wp—d—n+1

Figure 3.3
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p and diameter d. It is easily verified that g,,(G) = n or n — 1 accord-
ing as Ty € {U1UQ, U2U3y «vey Ud—2UJ—1, U2WT, U2W2, ...,Upr_d_n+1} or ry €
{UQU1, UoW1, UoW2, -+, U0Wp—d—n+1, Ud—1Ud, Ud—1V1, Ud—1V2, .-+, Ud_l'Un_Q}. Then
9zy(G) =n or n — 1 for any edge zy in G.

In view of Theorem 3.4, we leave the following problem as an open question.

Problem 3.5 Ifp,d and n are integers such that 3 < d<p—1,2<n<p-—2
and p—d—n+12>0, then there exists a graph G of order p, diameter d and
9y (G) = n for every edge zy in G.
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