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What can be expected from a Boolean

derivative?

Sergiu Rudeanu

Abstract

Several concepts of a Boolean derivative have been investigated in

the literature. In this paper we find out whether a Boolean operator

can satisfy all of the three basic derivative-like properties: additivity,

homogeneity and the Leibniz rule. In a certain sense, the answer is

negative.

The attempts to establish Boolean analogues of several concepts and re-
sults from Calculus begun in 1917 with a paper by Daniell [6], which sketched
a theory of convergence for sequences and series in a Boolean algebra. Some
forty years later Reed [11], Huffman [9] and Akers Jr. [1] introduced (partial)
derivatives of Boolean functions and pointed out their applicability to switch-
ing theory. Ever since then the theory of Boolean derivatives has developed
tremendously, both in view of applications and for its own algebraic interest;
see e.g. [3], [4], [5], [7], [10], [13], [15], [16], [17], [18], [19].

There are several Boolean analogues of the conventional concept of a deriva-
tive; of course, these Boolean derivatives share some, but not all of the prop-
erties of their conventional model. A paper by Bazsó and Lábos [2] states that
a “good” concept of a derivative should be additive, i.e., (f + g)′ = f ′ + g′,
homogeneous, i.e., (kf)′ = kf ′, and should satisfy the Leibniz identity, i.e.,
(fg)′ = fg′ + gf ′. Bazsó and Lábos are concerned with algebras of Boolean
functions. They remark that the well-known sensitivity function does not
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satisfy the Leibniz identity, but they construct an extension of the original
Boolean algebra and they extend the original sensitivity function to the en-
larged Boolean algebra in such a way that the extended sensitivity function
does satisfy the Leibniz rule.

Having the above in mind, in this paper we address the problem of the ex-
istence of a convenient concept of a derivative in an arbitrary Boolean algebra.
The paper is organized as follows. In Section 1 we recall a few prerequisites
and state precisely the problem of finding the Boolean operators D which sat-
isfy the basic derivative-like properties with respect to two Boolean operations
⊕ and ⊙ which satisfy a few reasonable requirements. In Section 2 we prove
there are four couples of functions ⊕,⊙ satisfying the requirements, namely I)
x⊕y = x+y, x⊙y = xy (ring sum and conjunction), II) x⊕y = x∨y, x⊙y = xy,
and III), IV) their duals. In Sections 3 and 4 we solve the problem in the cases
I) and II), respectively. The last Section is devoted to conclusions.

1 Statement of the problem

We work in a Boolean algebra (B, · ,∨, ′, 0, 1). The meet operation · is also
denoted by concatenation, while + stands for the ring sum x+ y = xy′ ∨ x′y.
The algebraic functions (or Grätzer polynomials) of the algebra B are called
Boolean functions; they are characterized by the existence and uniqueness of
the canonical disjunctive form. Thus e.g. a Boolean function of one variable
can be written in the form f(x) = ax ∨ bx′, where a = f(1), b = f(0), while
the Boolean functions of two variables can be expressed as F (x, y) = αxy ∨
βxy′ ∨ γx′y ∨ δx′y′, where α = F (1, 1), β = F (1, 0), γ = F (0, 1), δ = F (0, 0).
In particular the term functions, which in [12] are called simple Boolean func-

tions, are those Boolean functions for which the coefficients of the canonical
disjunctive form are taken from the set {0, 1} ⊆ B. Every function with
arguments and values in the two-element Boolean algebra {0, 1} is a simple
Boolean function. For more details see [12]. We assume the reader has some
familiarity with computation in a Boolean algebra, which obeys the same rules
as computation with intersection, union and complements of sets, due to the
well-known representation theorem for Boolean algebras.

In this paper B is an arbitrary Boolean algebra. It is well known that the

set B(1) of Boolean functions of one variable f : B −→ B is itself a Boolean
algebra with respect to the operations defined by (f ∨ g)(x) = f(x)∨ g(x), (f ·
g)(x) = f(x) · g(x), (f ′)(x) = (f(x))′. A map D : B(1) −→ B(1) will be called
a Boolean operator provided there exist two Boolean functions ϕ,ψ : B2 −→ B

such that the following identity holds:
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(1) (Df)(x) = D(ax ∨ bx′)(x) = ϕ(a, b)x ∨ ψ(a, b)x′ .

The Boolean operatorD might be called a “good derivative” of the Boolean
algebra B(1) provided there exist two “convenient” operations ⊕,⊙ : B2 −→
B such that the equalities

(2) D(f ⊕ g) = Df ⊕Dg ,

(3) D(k ⊙ f) = k ⊙Df ,

(4) D(f ⊙ g) = (f ⊙Dg) ⊕ (g ⊙Df) ,

hold for every f, g ∈ B(1) and k ∈ B.
More precisely, the following minimal hypothesis on ⊕ and ⊙ seems natural:

(H) ⊕ and ⊙ are two distinct non-constant commutative
simple Boolean functions and ⊙ distributes over ⊕.

The aim of this paper is to determine the tripes (⊕,⊙,D) satisfying (H)
and one or several conditions out of (2), (3), (4).

2 Preliminary results

In this Section we determine all couples (⊕,⊙) satisfying condition (H)
and we express properties (2),(3) (4) in terms of the functions ϕ,ψ.

Proposition 1 Two Boolean operations ⊕.⊙ are commutative and ⊙ dis-

tributes over ⊕ if and only if they are of the form

(5) x⊕ y = Hxy + I(x+ y) +Kx′y′ ,

(6) x⊙ y = Rxy + S(x+ y) + V x′y′ ,

where

(7) (R′ ∨H ′)S ∨ (V ∨K)S′ = 0 .

Proof: We start with the canonical disjunctive forms

x⊕ y = Hxy ∨ Ixy′ ∨ Jx′y ∨Kx′y′ ,

x⊙ y = Rxy ∨ Sxy′ ∨ Tx′y ∨ V x′y′ .

A theorem due to E. Schröder [14] (see e.g. [12], Corollary of Theorem 12.6)
says that ⊙ is left- and right-distributive over ⊕ if and only if

H ′(R ∨ V )(S ∨ T ) ∨K(R′ ∨ V ′)(S′ ∨ T ′)
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∨(HK ∨H ′K ′ ∨ IJ ∨ I ′J ′)(R′S ∨R′T ∨ S′V ∨ T ′V ) = 0 .

On the other hand, it is well known and easy to see that the commutativity
of ⊕ and ⊙ is equivalent to J = I and T = S, hence the above Schröder
condition can be written in the equivalent forms

H ′(R ∨ V )S ∨K(R′ ∨ V ′)S′ ∨R′S ∨ S′V = 0 ,

(H ′R ∨H ′V ∨R′)S ∨ (KR′ ∨KV ′ ∨ V )S′ = 0 ,

and the latter condition coincides with (7). Finally the canonical disjunctive
forms of ⊕ and ⊙ can be written in the forms (5) and (6) because αβ = 0 ⇐⇒
α ∨ β = α+ β. �

Theorem 1 There are four pairs of functions satisfying hypothesis (H), namely

(H0) x⊙ y = xy and x⊕ y ∈ {x+ y, x ∨ y},
and

(H1) x⊙ y = x ∨ y and x⊕ y ∈ {xy, x+ y + 1}.

Proof: In view of Proposition 1, we have to characterize those distinct
functions ⊕,⊙ which satisfy (5), (6), (7), whose coefficients H, I,K,R, S, V
are in {0, 1} and which do not reduce to the constant functions 0 or 1.

There are two cases.
1) S = 0. Then (7) implies V = K = 0, hence (5) and (6) reduce to

x⊕ y = Hxy + I(x+ y) and x⊙ y = Rxy. But ⊙ is not a constant, therefore
R = 1, while the values 0 or 1 of H and I yield x⊕ y ∈ {xy, x∨ y, x+ y+1, 1}.
In view of (H) this reduces to (H0).

2) S = 1. Then (7) implies R = H = 1, hence (5) and (6) reduce to
x⊕ y = xy + I(x+ y) +Kx′y′ and x⊙ y = xy + x+ y + V x′y′. We are going
to use the identities the identities

xy + x′y′ = (x+ y)′ = x+ y + 1 and x ∨ y = x+ y + xy .

We first note that V = 0, otherwise V = 1 would imply x ⊙ y = 1. So
x⊙y = x∨y, while x⊕y ∈ {xy, x∨y, x+y+1, 1}. In view of (H) this reduces
to (H1). �

To express conditions (2)-(4) in terms of the functions ϕ,ψ, we use the
standard notation

(8) f(x) = ax ∨ bx′ = ax+ bx′, g(x) = cx ∨ dx′ = cx+ dx′

for two arbitrary Boolean functions f, g ∈ B(1).
Then the definition of Boolean operations in the Boolean algebra B(1)

yields (f ⊕ g)(1) = f(1) ⊕ g(1) = a⊕ c and (f ⊕ g)(0) = f(0) ⊕ g(0) = b⊕ d,
therefore
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(9) (f ⊕ g)(x) = (a⊕ c)x+ (b⊕ d)x′ ,

and similarly

(10) (k ⊙ f)(x) = (k ⊙ a)x+ (k ⊙ b)x′ ,

(11) (f ⊙ g)(x) = (a⊙ c)x+ (b⊙ d)x′ .

By applying formula (1) to the functions (9), (10) and (11), we obtain

(12) [D(f ⊕ g)](x) = ϕ(a⊕ c, b⊕ d)x+ ψ(a⊕ c, b⊕ d)x′ ,

(13) [D(k ⊙ f)](x) = ϕ(k ⊙ a, k ⊙ b)x+ ψ(k ⊙ a, k ⊙ b)x′ ,

(14) [D(f ⊙ g)](x) = ϕ(a⊙ c, b⊙ d)x+ ψ(a⊙ c, b⊙ d)x′ .

On the other hand, taking into account formula (1) and its companion

(11′) (Dg)(x) = D(cx ∨ dx′)(x) = ϕ(c, d)x ∨ ψ(c, d)x′ ,

we see that formulae (9), (10) and (11) yield

(15) (Df ⊕Dg)(x) = [ϕ(a, b) ⊕ ϕ(c, d)]x+ [ψ(a, b) ⊕ ψ(c, d)]x′ ,

(16) (k ⊙Df)(x) = [k ⊙ ϕ(a, b)]x+ [k ⊙ ψ(c, d)]x′ ,

(17) (f ⊙Dg)(x) = [a⊙ ϕ(c, d)]x+ [b⊙ ψ(c, d)]x′ ,

(18) (g ⊙Df)(x) = [c⊙ ϕ(a, b)]x+ [d⊙ ψ(a, b)]x′ .

It follows from (17) and (18) that

(19)
[(f ⊙Dg) ⊕ (g ⊙Df)](x) =

= [(a⊙ ϕ(c, d)) ⊕ (c⊙ ϕ(a, b))]x+ [(b⊙ ψ(c, d)) ⊕ (d⊙ ψ(a, b))]x′ .

Proposition 2 The following systems (20), (21) and (22) are equivalent to

conditions (2), (3) and (4), respectively.

(20.1) ϕ(a⊕ c, b⊕ d) = ϕ(a, b) ⊕ ϕ(c, d) ,

(20.2) ψ(a⊕ c, b⊕ d) = ψ(a, b) ⊕ ψ(c, d) ,

(21.1) ϕ(k ⊙ a, k ⊙ b) = k ⊙ ϕ(a, b) ,

(21.2) ψ(k ⊙ a, k ⊙ b) = k ⊙ ψ(a, b) ,
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(22.1) ϕ(a⊙ c, b⊙ d) = [a⊙ ϕ(c, d)] ⊕ [c⊙ ϕ(a, b)] ,

(22.2) ψ(a⊙ c, b⊙ d) = [b⊙ ψ(c, d)] ⊕ [d⊙ ψ(a, b)] .

Proof: By (12), (13), (14) and (15), (16), (19). �

To proceed further we introduce the notation

(23) ϕ(x, y) = Axy +Bxy′ + Cx′y + Ex′y′ ,

(24) ψ(x, y) = Mxy +Nxy′ + Px′y +Qx′y′ ,

where the coefficients A, . . . , Q need not be 0,1, but may be any elements of
the Boolean algebra B. We split the discussion into two cases, corresponding
to (H0) and (H1) of Theorem 1.

3 The case x ⊕ y = x + y, x ⊙ y = xy

Conditions (2)-(4) become

(25) D(f + g) = Df +Dg ,

(26) D(kf) = kDf ,

(27) D(fg) = fDg + gDf .

In order to solve in this case the problem stated in Section 1 we use Proposition
2 with the conditions (20)-(22) corresponding to the present case. We describe
an arbitrary Boolean operator D by formulae (1), (23) and (24).

Theorem 2 Let D be a Boolean operator. Then:

I) D satisfies (25) if and only if A+B + C = M +N + P = E = Q = 0.

II) D satisfies (26) if and only if E = Q = 0.

III) The only Boolean operator satisfying (25), (26) and (27) is the constant

operator D = 0.

Proof: I) Taking into account that x′ = x+ 1, formula (23) can be written
in the form

ϕ(x, y) = (A+B + C + E)xy + (B + E)x+ (C + E)y + E ,

therefore in this case condition (20.1) can be written in the equivalent forms

(A+B + C + E)(a+ c)(b+ d) + (B + E)(a+ c) + (C +E)(b+ d) + E
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= (A+B + C + E)ab+ (B + E)a+ (C + E)b+ E+

+(A+B + C +E)cd+ (B + E)c+ (C + E)d+ E ,

(A+B + C + E)(ad+ bc) + E = 0 .

Setting a := b := 0, we see that E = 0, hence (A + B + C)(ad + bc) = 0,
and setting a := d := 1, b := 0, we get A + B + C = 0. Clearly condtions
A + B + C = E = 0 are also sufficient. One proves similarly that (20.2) is
equivalent to M +N + P = Q = 0.

II) Condition (21.1) can be written in the equivalent forms

ϕ(ka, kb) = kϕ(a.b) ,

Akakb+Bka(k′ ∨ b′) + C(k′ ∨ a′)kb+ E(ka+ 1)(kab+ 1)

= kAab+ kBab′ + kCa′b+ kE(a+ 1)(b+ 1) ,

E(kab+ ka+ kb+ 1 + kab+ ka+ kb+ k) = 0 ,

E(1 + k) = 0 ,

which holds for any k iff E = 0. Similarly, the corresponding condition (21.2)
holds iff Q = 0.

III) The trivial operator D = 0 satisfies (25)-(27). Conversely, suppose D
fulfils (25), (26) and (27). Then E = Q = 0 and A+B+C = M +N +P = 0
by I) and II). Besides, ϕ satisfies (22.1), which becomes

(28) ϕ(ac, bd) = aϕ(c, d) + cϕ(a, b) .

Setting a := d := 0, b := c := 1, we obtain ϕ(0, 0) = ϕ(0, 1), i.e., E = C. So
C = 0, which implies A + B = 0, that is, A = B. It follows that ϕ(x, y) =
Axy+Axy′ = Ax. Therefore condition (28) can be written Aac = aAc+ cAa,
that is, Aac = 0, which is equivalent to A = 0. One proves similarly that
M = N = P = 0. �

4 The case x ⊕ y = x ∨ y, x ⊙ y = xy

Conditions (2)-(4) become

(29) D(f ∨ g) = Df ∨Dg ,

(30) D(kf) = kDf ,

(31) D(fg) = fDg ∨ gDf .
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We use Proposition 2 with the conditions (20)-(22) corresponding to the
present case. Again, an arbitrary Boolean operator D is described by for-
mulae (1), (23) and (24).

Theorem 3 Let D be a Boolean operator. Then:

I) D satisfies (30) if and only if E = Q = 0.

II) D satisfies (29) and (30) if and only if E = Q = 0, A = B ∨ C and

M = N ∨ P . These conditions are equivalent to ϕ(x, y) = Bx ∨ Cy and

ψ(x, y) = Nx ∨ Py.

III) D satisfies (29), (30) and (31) if and only if C = E = N = Q = 0
and A = B and M = P . These conditions are equivalent to ϕ(x, y) = Bx and

ψ(x, y) = Py, that is,

(32) (Df)(x) = D(ax ∨ bx′)(x) = Bax ∨ Pbx′ .

Proof: I) By Theorem 2.II), as that result does not depend on the operation
⊕.

II) Suppose D satisfies (29) and (30). Then E = Q = 0 by I), while
condition (20.1) becomes ϕ(a ∨ c, b ∨ d) = ϕ(a, b) ∨ ϕ(c, d). Setting a := d :=
1, b := c := 0, we obtain ϕ(1, 1) = ϕ(1, 0)∨ϕ(0, 1), i.e., A = B ∨C. On proves
similarly that M = N ∨ P .

Conversely, suppose E = Q = 0, A = B ∨ C and M = N ∨ P . Then (30)
holds by I), while

ϕ(x, y) = (B ∨ C)xy ∨Bxy′ ∨ Cx′y = Bx ∨ Cy ,

ϕ(a ∨ c, b ∨ d) = B(a ∨ c) ∨ C(b ∨ d) = ϕ(a, b) ∨ ϕ(c, d) ,

that is, (20.1)holds. One proves similarly (20.2), therefore D satisfies (29).
III) Suppose D satisfies (29), (30) and (31). Then A = B ∨C, M = N ∨P

and E = Q = 0 by II), while (22.1) becomes ϕ(ac, bd) = aϕ(c, d) ∨ cϕ(a, b).
Setting a := d := 0, b := c := 1, we obtain ϕ(0, 0) = ϕ(0, 1), that is, E = C. So
C = 0 and A = B. One proves similarly, using (22.2), that ϕ(0, 0) = ϕ(1, 0),
that is, Q = N , hence N = 0 and M = P . We have thus obtained (32).

Conversely, suppose C = E = N = Q = 0, A = B and M = P , or
equivalently, D is of the form (32). Then one can check directly that D
satisfies (29), (30) and (31). �

Remark 1 The operators (32) satisfy condition (31) in the stronger form
D(fg) = fDg = gDf .

Remark 2 While most Boolean derivatives occurring in the literature are
defined in terms of the ring sum +, Fadini [8] defines Df = f(0) ∨ f(1). The
Fadini derivative falls within case II) of Theorem 3, with B = C = N = P = 1.
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5 Conclusions

Let B(1) be the set of Boolean (i.e., algebraic) functions f : B −→ B

over an arbitrary Boolean algebra (B,∨ , · ,′ , 0, 1). We have investigated the
possibility of the existence of a Boolean operator D : B(1) −→ B(1) satisfying
the properties

(2) D(f ⊕ g) = Df ⊕Dg ,

(3) D(k ⊙ f) = k ⊙Df ,

(4) D(f ⊙ g) = (f ⊙Dg) ⊕ (g ⊙Df) ,

under mild conditions on the term functions ⊕,⊙ : B2 −→ B.
There are four such pairs (⊕,⊙), namely (x + y, xy), (x ∨ y, xy), (x + y +

1, x∨y) and (xy, x∨y), where x+y = xy′∨x′y is the ring sum and x+y+1 =
(x+ y)′ = (x∨y′)(x′∨y). Having in view duality, we have dealt only with the
first two cases. In the first case we hace constructed all the Boolean operators
D which satisfy (2)/ which satisfy (3)/ which satisfy (2), (3) and (4). In the
second case we have obtained characterizations of the Boolean operators D
which satisfy (3)/ which satisfy (2) and (3)/ which satisfy (2), (3) and (4).

Our problem comes from switching theory, where a few concepts of Boolean
derivative have been intensively studied and which are pretty good analogues
of the conventional concept of derivative for the Boolean ring (B,⊕, · , 0, 1),
but fail to satisfy the Leibniz rule (4). This was the starting point of a paper
by Bazsó and Lábos [2].

Our paper implies that there is no “good” Boolean derivative satisfying all

of the properties (2), (3) and (4). For in the above first case
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