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What can be expected from a Boolean
derivative?

Sergiu Rudeanu

Abstract

Several concepts of a Boolean derivative have been investigated in
the literature. In this paper we find out whether a Boolean operator
can satisfy all of the three basic derivative-like properties: additivity,
homogeneity and the Leibniz rule. In a certain sense, the answer is
negative.

The attempts to establish Boolean analogues of several concepts and re-
sults from Calculus begun in 1917 with a paper by Daniell [6], which sketched
a theory of convergence for sequences and series in a Boolean algebra. Some
forty years later Reed [11], Huffman [9] and Akers Jr. [1] introduced (partial)
derivatives of Boolean functions and pointed out their applicability to switch-
ing theory. Ever since then the theory of Boolean derivatives has developed
tremendously, both in view of applications and for its own algebraic interest;
see e.g. [3], [4], [5], [7], [10], [13], [15], [16], [17], [18], [19].

There are several Boolean analogues of the conventional concept of a deriva-
tive; of course, these Boolean derivatives share some, but not all of the prop-
erties of their conventional model. A paper by Bazs6 and Labos [2] states that
a “good” concept of a derivative should be additive, i.e., (f +¢g) = f' + ¢,
homogeneous, i.e., (kf) = kf’, and should satisfy the Leibniz identity, i.e.,
(fg) = fg' + gf'. Bazs6 and Lébos are concerned with algebras of Boolean
functions. They remark that the well-known sensitivity function does not
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satisfy the Leibniz identity, but they construct an extension of the original
Boolean algebra and they extend the original sensitivity function to the en-
larged Boolean algebra in such a way that the extended sensitivity function
does satisfy the Leibniz rule.

Having the above in mind, in this paper we address the problem of the ex-
istence of a convenient concept of a derivative in an arbitrary Boolean algebra.
The paper is organized as follows. In Section 1 we recall a few prerequisites
and state precisely the problem of finding the Boolean operators D which sat-
isfy the basic derivative-like properties with respect to two Boolean operations
@ and © which satisfy a few reasonable requirements. In Section 2 we prove
there are four couples of functions @, ® satisfying the requirements, namely I)
@y = z+y, zOy = zy (ring sum and conjunction), II) 2@y = zVy, 2Oy = zy,
and III), IV) their duals. In Sections 3 and 4 we solve the problem in the cases
I) and II), respectively. The last Section is devoted to conclusions.

1 Statement of the problem

We work in a Boolean algebra (B, -,V, ’,0,1). The meet operation - is also
denoted by concatenation, while + stands for the ring sum z +y = zy’ V 2'y.
The algebraic functions (or Grétzer polynomials) of the algebra B are called
Boolean functions; they are characterized by the existence and uniqueness of
the canonical disjunctive form. Thus e.g. a Boolean function of one variable
can be written in the form f(z) = ax V ba’, where a = f(1), b = f(0), while
the Boolean functions of two variables can be expressed as F(z,y) = azy V
Bxy' V yx'y V dz'y’, where o = F(1,1), 8 = F(1,0), v = F(0,1), § = F(0,0).
In particular the term functions, which in [12] are called simple Boolean func-
tions, are those Boolean functions for which the coefficients of the canonical
disjunctive form are taken from the set {0,1} C B. Every function with
arguments and values in the two-element Boolean algebra {0,1} is a simple
Boolean function. For more details see [12]. We assume the reader has some
familiarity with computation in a Boolean algebra, which obeys the same rules
as computation with intersection, union and complements of sets, due to the
well-known representation theorem for Boolean algebras.

In this paper B is an arbitrary Boolean algebra. It is well known that the
set B(1) of Boolean functions of one variable f : B — B is itself a Boolean
algebra with respect to the operations defined by (f Vv g)(z) = f(z) VvV g(z), (f -
9)(z) = f(2)- g(), (f')(z) = (f(2))'. A map D s B(1) — B(1) will be called
a Boolean operator provided there exist two Boolean functions ¢, : B2 — B
such that the following identity holds:
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(1) (Df)(x) = D(az V bx')(z) = p(a,b)x V Y(a,b)x’ .

The Boolean operator D might be called a “good derivative” of the Boolean
algebra B(1) provided there exist two “convenient” operations @, ® : B> —
B such that the equalities

(2) D(feg)=Df®Dg,
(3) Dko f)=koDf,
(4) D(fog)=(foDg)® (g Df),

hold for every f,g € B(1) and k € B.
More precisely, the following minimal hypothesis on @ and ® seems natural:

(H) @ and © are two distinct non-constant commutative
simple Boolean functions and ® distributes over &.

The aim of this paper is to determine the tripes (®,®, D) satisfying (H)
and one or several conditions out of (2), (3), (4).

2 Preliminary results

In this Section we determine all couples (@, ®) satisfying condition (H)
and we express properties (2),(3) (4) in terms of the functions ¢, .

Proposition 1 Two Boolean operations @©.© are commutative and © dis-
tributes over @ if and only if they are of the form

(5) r®y=Hry+ I(x+vy)+ Kz'y,
(6) x@y=Rzy+ Sx+y)+Vay,
where

(7) (RRVH)SV(VVK)S =0.

PrOOF: We start with the canonical disjunctive forms
@y =HxyVIxy vJz'yv Kz'y

r®y=RxyV Sxy' VTz'yvVzy .

A theorem due to E. Schroder [14] (see e.g. [12], Corollary of Theorem 12.6)
says that © is left- and right-distributive over & if and only if

H'(RVV)(SVT)VKR vV')(SVT)
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VHKVHK' VIIVI'J)YRSVRTVSVVTV)=0.
On the other hand, it is well known and easy to see that the commutativity

of & and ® is equivalent to J = I and T = S, hence the above Schroder
condition can be written in the equivalent forms

H(RVV)SVK(R vVV)S'VR'SvSV =0,
(HHRVH'VVR)SV (KR VKV'VV)S =0,

and the latter condition coincides with (7). Finally the canonical disjunctive
forms of @ and ® can be written in the forms (5) and (6) because a8 = 0 <=
aVp=a+p. O

Theorem 1 There are four pairs of functions satisfying hypothesis (H), namely
(Ho) 20y =2y andz Gy € {z+y,3Vy},

and
(Hy)) z@y=zVyandzdy € {zy,x+y+1}.

PrROOF: In view of Proposition 1, we have to characterize those distinct
functions @, ® which satisfy (5), (6), (7), whose coefficients H,I, K, R, S,V
are in {0, 1} and which do not reduce to the constant functions 0 or 1.

There are two cases.

1) § = 0. Then (7) implies V = K = 0, hence (5) and (6) reduce to
x@®y=Hxy+ I(x+y) and z ©® y = Rzy. But ® is not a constant, therefore
R =1, while the values 0 or 1 of H and I yield t®y € {zy,zVy,z+y+1,1}.
In view of (H) this reduces to (Hp).

2) § = 1. Then (7) implies R = H = 1, hence (5) and (6) reduce to
cdy=ay+I(z+y)+Kz'y andz Oy =zy+z+y+ Va'y. We are going
to use the identities the identities

zy+ay =@+y) =r+y+landeVy=x+y+azy.

We first note that V' = 0, otherwise V' = 1 would imply z ®y = 1. So
x@y=1xVy, while 2@y € {xy,zVy,x+y+1,1}. In view of (H) this reduces
to (Hl) O

To express conditions (2)-(4) in terms of the functions ¢,1, we use the
standard notation
(8) flx) =axVbr' =ax +bx', g(x) =cxVdr' = cx+da

for two arbitrary Boolean functions f,g € B(1).

Then the definition of Boolean operations in the Boolean algebra B(1)
vields (f @ g)(1) = £(1) @ g(1) = a @ c and (f @ g)(0) = £(0) © g(0) = b d,
therefore
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(9) (f@g)(z)=(a®c)r+ (b®d)a’
and similarly

(10) (k® f)(z) = (k©a)z + (k®b)a’'
(11) (fog)(r)=(a0c)z+ (bod)’

By applying formula (1) to the functions (9), (10) and (11), we obtain
(12) [D(f ® g)](z)
(13) [D(k© f)](x)
(14) [D(f © g)](z)

On the other hand, taking into account formula (1) and its companion
(11') (Dg)(z) = D(cz v da')(z) = (e, d)z V ¢(c, d)z’
we see that formulae (9), (10) and (11) yield

plade,bdd)z+YP(a®e,bdd)a’

)
ok ®a,kobz+yk©a kb’
)

ela®e,bod)z+Y(a©e, b d)a’

(15) (Df @ Dg)(z) = [p(a,b) ® ¢(c, d)|z + [(a, b) @ Y(c, d)]a’
(16) (k© Df)(x) = [k © ¢(a,b)]lz + [k © ¢(c, d)la’

(17) (f © Dg)(x) = [a © p(c,d)]x +[b O P(c, d)la’

(18) (9 © Df)(x) = [c© ¢(a,b)]x + [d © P(a, b)lz’

It follows from (17) and (18) that

[(f ®Dg)@ (9 Df)](x) =

19
1 =[(a© ¢(c,d)) & (c© ¢(a, b))z +[(b© Y(c, d)) & (d © ¢P(a,b))]z’

Proposition 2 The following systems (20), (21) and (22) are equivalent to
conditions (2), (3) and (4), respectively.

(20.1) wla®c,b@d) = p(a,b) & p(c,d)
(20.2) Wa®e,b®d) = v(a,b) @ P(c,d)
(21.1) ok ®akob) =k pa,b),
(21.2) Gk ®a,k®b) =k ob(a,b),
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(22.1) pla0ce,bod) =[a® p(c,d)] ®coe(a,b)],

(22.2) Pla®c,bod) =boY(c,d)]®doY(a,b)] .

PrOOF: By (12), (13), (14) and (15), (16), (19). O
To proceed further we introduce the notation

(23) o(z,y) = Azy + Bzy' + Ca'y + Ex'y’

(24) Y(z,y) = May + Nay' + Pa'y + Qz'y’

where the coefficients A, ..., Q need not be 0,1, but may be any elements of

the Boolean algebra B. We split the discussion into two cases, corresponding
to (Hp) and (H;) of Theorem 1.

3 Thecasexby=x+y, xOy=2ay

Conditions (2)-(4) become

(25) D(f+g)=Df+ Dy,
(26) D(kf) = kDf ,
(27) D(fg) = fDg+gDf .

In order to solve in this case the problem stated in Section 1 we use Proposition
2 with the conditions (20)-(22) corresponding to the present case. We describe
an arbitrary Boolean operator D by formulae (1), (23) and (24).
Theorem 2 Let D be a Boolean operator. Then:
I) D satisfies (25) if and only if A+ B+C =M+ N+P=FE=Q=0.
IT) D satisfies (26) if and only if E=Q = 0.
ITIT) The only Boolean operator satisfying (25), (26) and (27) is the constant
operator D = 0.

ProoF: I) Taking into account that 2’ = x + 1, formula (23) can be written
in the form

o, y) =(A+B+C+E)zy+(B+E)z+ (C+E)y+E,
therefore in this case condition (20.1) can be written in the equivalent forms

(A+B+C+E)a+c)b+d)+ (B+E)a+c)+(C+E)b+d) +E
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=(A+B+C+E)ab+ (B+ E)a+ (C+ E)b+ E+
+(A+B+C+E)ed+ (B+E)c+ (C+E)d+E,
(A+ B+C+E)(ad+bc)+E=0.

Setting a := b := 0, we see that F = 0, hence (A + B + C)(ad + bc) = 0,
and setting a :== d := 1,b := 0, we get A+ B+ C = 0. Clearly condtions
A+ B+ C = E = 0 are also sufficient. One proves similarly that (20.2) is
equivalent to M + N+ P =Q = 0.

IT) Condition (21.1) can be written in the equivalent forms

o(ka, kb) = kp(a.b) ,

Akakb+ Bka(k' VV') + C(k' vV a')kb+ E(ka + 1)(kab+ 1)
= kAab+ kBab' + kCa'b+ kE(a+1)(b+ 1),
E(kab+ka+kb+1+kab+ka+kb+k)=0,
E(1+k) =0,

which holds for any k iff £ = 0. Similarly, the corresponding condition (21.2)
holds iff @ = 0.

III) The trivial operator D = 0 satisfies (25)-(27). Conversely, suppose D
fulfils (25), (26) and (27). Then E=Q =0and A+ B+C=M+N+P=0
by I) and II). Besides, ¢ satisfies (22.1), which becomes
(28) v(ac,bd) = ap(c,d) + cp(a,b) .

Setting a := d := 0,b := ¢ := 1, we obtain ¢(0,0) = ¢(0,1), i.e., E = C. So
C = 0, which implies A + B = 0, that is, A = B. It follows that ¢(z,y) =
Azy+ Azy’ = Azx. Therefore condition (28) can be written Aac = aAc+ cAa,
that is, Aac = 0, which is equivalent to A = 0. One proves similarly that
M=N=P=0. ]

4 ThecasezPy=zVy rxOy=2ay
Conditions (2)-(4) become

(29) D(fVg)=DfVDg,

(30) D(kf) =kDf,

(31) D(fg) = fDgV gDf .
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We use Proposition 2 with the conditions (20)-(22) corresponding to the
present case. Again, an arbitrary Boolean operator D is described by for-
mulae (1), (23) and (24).

Theorem 3 Let D be a Boolean operator. Then:

I) D satisfies (30) if and only if E = Q = 0.

IT) D satisfies (29) and (30) if and only if E = Q =0, A = BV C and
M = NV P. These conditions are equivalent to ¢(xz,y) = Bx vV Cy and
Y(z,y) = Nz V Py.

IIT) D satisfies (29), (30) and (31) if and only if C = E =N =Q =0
and A= B and M = P. These conditions are equivalent to p(z,y) = Bx and
Y(z,y) = Py, that is,

(32) (Df)(z) = D(ax V ba')(x) = Bax V Pbx' .

Proor: I) By Theorem 2.1I), as that result does not depend on the operation
D.

IT) Suppose D satisfies (29) and (30). Then F = @ = 0 by I), while
condition (20.1) becomes p(a V ¢,bV d) = p(a,b) V ¢(c,d). Setting a :=d :=
1,b:=¢:=0, we obtain ¢(1,1) = ¢(1,0) V¢(0,1), i.e., A= BV C. On proves
similarly that M = N VvV P.

Conversely, suppose E =Q =0, A= BV C and M = NV P. Then (30)
holds by I), while

o(x,y) = (BV C)xyV Bxy' v C2x'y = Bx Vv Cy

plaVe,bvd)=B(aVe)VCbVd) =pab) Veled),

that is, (20.1)holds. One proves similarly (20.2), therefore D satisfies (29).
IIT) Suppose D satisfies (29), (30) and (31). Then A=BVC, M =NVP
and E = @ = 0 by II), while (22.1) becomes ¢(ac,bd) = ap(c,d) V cp(a,b).
Setting a := d := 0,b := ¢ := 1, we obtain ¢(0,0) = ¢(0, 1), that is, E = C. So
C =0 and A = B. One proves similarly, using (22.2), that ©(0,0) = ¢(1,0),
that is, @ = N, hence N =0 and M = P. We have thus obtained (32).
Conversely, suppose C = E = N =Q =0,A = Band M = P, or
equivalently, D is of the form (32). Then one can check directly that D
satisfies (29), (30) and (31). O

Remark 1 The operators (32) satisfy condition (31) in the stronger form
D(fg) = fDg=gDf.

Remark 2 While most Boolean derivatives occurring in the literature are
defined in terms of the ring sum +, Fadini [8] defines Df = f(0) V f(1). The
Fadini derivative falls within case IT) of Theorem 3, with B=C =N =P = 1.
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5 Conclusions

Let B(1) be the set of Boolean (i.e., algebraic) functions f : B — B
over an arbitrary Boolean algebra (B,V,-,” ,0,1). We have investigated the
possibility of the existence of a Boolean operator D : B(1) — B(1) satisfying
the properties

(2) D(feg)=Df®Dg,
(3) Dko f)=koDf,
(4) D(fog)=(foDg)@(goDf),

under mild conditions on the term functions @, ® : B> — B.

There are four such pairs (®,®), namely (x + y, zy), (x V y,zy), (x + y +
1,zVy) and (xy,zVy), where x +y = zy’ Va'y is the ring sum and z+y+1 =
(x+y) = (zVy') (2’ Vy). Having in view duality, we have dealt only with the
first two cases. In the first case we hace constructed all the Boolean operators
D which satisfy (2)/ which satisfy (3)/ which satisfy (2), (3) and (4). In the
second case we have obtained characterizations of the Boolean operators D
which satisfy (3)/ which satisfy (2) and (3)/ which satisfy (2), (3) and (4).

Our problem comes from switching theory, where a few concepts of Boolean
derivative have been intensively studied and which are pretty good analogues
of the conventional concept of derivative for the Boolean ring (B,®,-,0,1),
but fail to satisfy the Leibniz rule (4). This was the starting point of a paper
by Bazs6 and Labos [2].

Our paper implies that there is no “good” Boolean derivative satisfying all
of the properties (2), (3) and (4). For in the above first case
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