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A computational method to find an

approximate analytical solution for fuzzy

differential equations

T. Allahviranloo, A. Panahi and H. Rouhparvar

Abstract

In this paper, we introduce a computational method to find an ap-
proximate analytical solution for fuzzy differential equations. At first,
variational iteration method (VIM) is used to solve the crisp problem
then with the extension principle we find the fuzzy approximation so-
lution. Examples are given , including linear and nonlinear fuzzy first-
order differential equations.

1 Introduction

In this paper, we will consider the first-order ordinary differential equation

dy

dt
= f(t, y, k), y(0) = c (1)

where k = (k1, . . . , kn) is a vector of constants, and t is in some interval (closed
and bounded) I which contains zero. We assume that f satisfies conditions
[4, 13] so that Eq. (1) has an unique solution y = g(t, k, c), for t ∈ I ,
k ∈ K ⊂ ℜn, c ∈ C ⊂ ℜ. Let I1, be an interval for the y-values and set
R = I × I1, a region in ℜ2. Well-known sufficient conditions for Eq. (1) to
have a unique solution are, given any k ∈ K and c ∈ C: (1) (0, c) is in R, (2)
f is continuous in R (k is held fixed), and (3) ∂f

∂y
is continuous in R. If these
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conditions are satisfied, then there is a unique solution y = g(t, k, c) for t ∈ I∗.
Since zero will belong to I∗ we will assume that I∗ = I. We will also assume
that g is continuous on I × K × C. The values of the ki and c are uncertain
and we will model this uncertainty by substituting triangular fuzzy numbers
for the ki and c in Eq. (1). Then, we wish to solve for y which will now be a
fuzzy function. The approximate analytical solution for fuzzy y is the topic of
this paper.

The paper is organized as follows. In Section 2, we presents the basic
notations. The VIM is defined in Section 3. The fourth section presents
Buckly-Feuring solution and Sikkala derivative. In section 5, VIM is applied
for two nonlinear fuzzy initial value problem in crisp case.

2 Notations and preliminaries

We place a bar over a capital letter to denote a fuzzy subset of ℜn. So, Ȳ

, K̄, C̄, etc. all represent fuzzy subsets of ℜn for some n. We write µĀ(x),
a number in [0, 1], for the membership function of Ā evaluated at x ∈ ℜn.
Define Ā ≤ B̄ when µĀ(x) ≤ µB̄(x) for all x. An γ-cut of Ā, written Ā(γ), is
defined as {x|µĀ(x) ≥ γ}, for 0 < γ ≤ 1. We separately specify Ā(0) as the
closure of the union of all the Ā(γ) for 0 < γ ≤ 1.

We adopt the general definition of a fuzzy number given in [5]. A triangular
fuzzy number N̄ is defined by three numbers a1 < a2 < a3 where the graph
of µN̄ (x) is a triangle with base on the interval [a1, a3] and vertex at x = a2.
We specify N̄ as (a1, a2, a3). We will write: (1) N̄ > 0 if a1 > 0, (2) N̄ ≥ 0
if a1 ≥ 0, (3) N̄ < 0 if a3 < 0; and (4) N̄ ≤ 0 if a3 ≤ 0. The γ-cut of any
fuzzy number is always a closed and bounded interval. Let K̄ = (K̄1, . . . , K̄n)
be a vector of triangular fuzzy numbers and let C̄ be another triangular fuzzy
number. Substitute K̄ for k and C̄ for c in Eq. (1) and we get

dȲ

dt
= f(t, Ȳ , K̄), Ȳ (0) = C̄ (2)

assuming we have adopted some definition for the derivative of the unknown
fuzzy function Ȳ (t). We wish to find an approximate Eq. (2) for Ȳ (t) and

have Ȳ (t) a fuzzy number for each t in I . In general, we use the notation dȲ
dt

for the derivative of a fuzzy function Ȳ , although we have not yet defined this
derivative.

Definition 2.1 We represent an arbitrary fuzzy number by an ordered pair
of functions N̄(γ) = [N1(γ), N2(γ)], 0 ≤ γ ≤ 1, which satisfy the following
requirements [11]:

(a) N1(γ) is a bounded left continuous nondecreasing function over [0, 1],
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(b) N2(γ) is a bounded left continuous nonincreasing function over [0, 1],

(c) N1(γ) ≤ N2(γ), 0 ≤ γ ≤ 1.

Definition 2.2 For arbitrary fuzzy numbers N̄(γ) = [N1(γ), N2(γ)] and Z̄(γ) =
[Z1(γ), Z2(γ)] the quantity

D(N̄ , Z̄) = max{ sup
0≤γ≤1

|N1(γ) − Z1(γ)|, sup
0≤γ≤1

|N2(γ) − Z2(γ)|}

is the distance between N̄ and Z̄.

3 Variational iteration method

The VIM [6, 7, 8], which is a modified general lagrange multiplier method
[9], has been shown to solve effectively, easily and accurately, a large class
of nonlinear problem with approximations which converge rapidly to accurate
solutions.

We consider the following general differential equation

Ly(t) + Ny(t) = g(t)

where L is a linear operator, N is a nonlinear operator and g(x) is an inhomo-
geneous or forcing term. According to the VIM, we can construct a correction
functional as follows:

yn+1(t) = yn(t) +

∫ t

0

λ{Lyn(τ) + Nỹn(τ) − g(τ)}dτ

where λ is a general Lagrange multiplier, which can be identified optimally
via the variational theory, y0(t) is an initial approximation with possible un-
knowns, and ỹn is considered as restricted variation [9], i.e. δỹn = 0.

For first-order initial value problem (1), by the above method its correction
functional can be written down as follows

yn+1(t) = yn(t) +

∫ t

0

λ{
dyn(τ)

dτ
− f(ỹn(τ), τ, k)}dτ.

Making the above correction functional stationary, notice that δy(0) = 0,

δyn+1(t) = δyn(t) + δ
∫ t

0
λ{y′

n(τ) − f(ỹn(τ), τ, k)}dτ

= δyn(t) + λ(τ)δyn(τ)|τ=t +
∫ t

0
λ′(τ)δyn(τ) dτ = 0

thus, we obtain the following stationary conditions
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{

δyn : 1 + λ(τ)|τ=t = 0

δyn : λ′(τ)|τ=t = 0.

The lagrange multiplier, therefore, can be readily identified λ = −1 and
the following iteration formula can be obtained

yn+1(t) = yn(t) −
∫ t

0
{y′

n(τ) − f(yn(τ), τ, k)}dτ

y0(0) = c.
(3)

Notice that it is not necessary to take yn(τ) as restricted in f(yn(τ), τ, k).
For obtaining better λ in different IVPs one can use the methods introduced
in [6, 7, 8].

3.1 Buckly-Feuring solution and Seikkala derivative

Let K̄(γ) = K1(γ) × · · · × Kn(γ) and Φ(γ) = K̄(γ) × C̄(γ), for 0 ≤ γ ≤ 1.
Assume that Φ(0) ⊂ K̄ × C̄ so that g will be continuous on I × Φ(γ) for
all γ. Buckly-Feuring first fuzzify the crisp solution y = g(t, k, c) to obtain
Ȳ (t) = g(t, K̄, C̄) using the extension principle [1]. Alternatively, they get
γ-cuts as follows [2, 3]:

Ȳ (t, γ) = [y1(t, γ), y2(t, γ)] (4)

with

y1(t, γ) = min{g(t, k, c)|k ∈ K̄(γ), c ∈ C̄(γ)} (5)

and

y2(t, γ) = max{g(t, k, c)|k ∈ K̄(γ), c ∈ C̄(γ)} (6)

for t ∈ I and γ ∈ [0, 1]. Still another equivalent procedure to determine Ȳ (t)
is to first specify, for 0 ≤ γ ≤ 1, and t ∈ I

Ω(γ) = {g(t, k, c)|(k, c) ∈ Φ(γ)}

and then define the membership function of Ȳ (t) as follows

µȲ (t)(x) = sup{γ|x ∈ Ω(γ)}.

Theorem 3.1 1. Ȳ (t, γ) = Ω(γ) for all γ ∈ [0, 1], t ∈ I,

2. Ȳ (t) is a fuzzy number for all t ∈ I [1].
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Assume that yi(t, γ) is differentiable with respect to t ∈ I for each γ ∈ [0, 1],
i = 1, 2. Denote the partial of yi(t, γ) with respect to t as y′

i(t, γ), i = 1, 2.
Let

Γ(t, γ) = (y′
1(t, γ), y′

2(t, γ)) (7)

for all t ∈ I, γ ∈ [0, 1]. If Γ(γ) defines the γ-cuts of a fuzzy number for each
t ∈ I then Ȳ (t) is differentiable and write

dȲ (t, γ)

dt
= Γ(t, γ) = (y′

1(t, γ), y′
2(t, γ)) (8)

for all t ∈ I, γ ∈ [0, 1]. Notice, that Eq. (8) is just the derivative (with respect

to t) of Eq. (4). So, Eq. (8) could be written dȲ (t,γ)
dt

. Sufficient conditions for
Γ(t, γ) to define the γ-cuts of a fuzzy number are [5, 10]

(i) y′
1(t, γ) and y′

2(t, γ) are continuous on I × [0, 1],

(ii) y′
1(t, γ) is an increasing function of γ for each t ∈ I,

(iii) y′
2(t, γ) is an decreasing function of γ for each t ∈ I,

(iv) y′
1(t, 1) ≤ y′

2(t, 1) for all t ∈ I.

Now, for Ȳ (t) to be a solution to the FIVP it is needed that dȲ (t)
dt

exists but
also Eq. (2) must hold. To check Eq. (2) one must first compute f(t, Ȳ , K̄).
γ-cuts of f(t, Ȳ , K̄) can be found as follows

f(t, Ȳ , K̄, γ) = [f1(t, γ), f2(t, γ)]

with
f1(t, γ) = min{f(t, y, k)|y ∈ Ȳ (t, γ), k ∈ K̄(γ)}
f2(t, γ) = max{f(t, y, k)|y ∈ Ȳ (t, γ), k ∈ K̄(γ)}

for t ∈ I , γ ∈ [0, 1]. We will say that Ȳ is a solution to Eq. (2) if dȲ (t)
dt

exists
and

y′
1(t, γ) = f1(t, γ) (9)

y′
2(t, γ) = f2(t, γ) (10)

y′
1(0, γ) = c1(γ) (11)

y′
2(0, γ) = c2(γ) (12)

where C̄(γ) = (c1(γ), c2(γ)).
Let X̄(t) is a fuzzy number for each t ∈ I. Also, let X̄(t, γ) = [x1(t, γ), x2(t, γ)]

and write x′
i(t, γ) with respect to t, i = 1, 2. Assume these partial always exist

in this section. The Seikkala derivative of X̄(t), written SDX̄(t), was defined
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in [12]. This definition is as follows: if [x′
1(t, γ), x′

2(t, γ)] are γ-cuts of a fuzzy
number for each t ∈ I, then SDX̄(t) exists and SDX̄(t, γ) = [x′

1(t, γ), x′
2(t, γ)].

Notice that this is the definition of the derivative of a fuzzy function that it

used in this section. That is, if dȲ (t,γ)
dt

exists, then SDX̄(t, γ) = dȲ (t,γ)
dt

. Also,
SDX̄(t) is a fuzzy number for all t ∈ I. The Buckley-Feuring solution, writ-
ten BFS, to the FIVP, was defined in this section. To review those results let
BFS = Ȳ (t). Then (i) Ȳ (t) = g(t, K̄, C̄) (Eqs. (4)-(6)), (ii) SDȲ (t) exists
(Eq. (7) defines a fuzzy number for all t) and (iii) SDȲ (t) = f(t, Ȳ (t), K̄)
and Ȳ (0) = C̄ (Eqs. (9-12)). Therefore obtain the following results regarding
BFS = Ȳ (t).

Theorem 3.2 Assume SDȲ (t) exists for t ∈ I. Then BFS = Ȳ (t) if

∂f

∂y
> 0,

∂g

∂c
> 0 (13)

and

(
∂f

∂ki

)(
∂g

∂ki

) > 0 (14)

i = 1, . . . , n. If Eq. (13) does not hold or Eq. (14) dose not hold for some i,
then Ȳ (t) dose not solve the FIVP [1].

4 Examples

Throughout this section y′
i(t, γ), i = 1, 2, are continuous and we will assume

that I = [0,M ], for some M > 0. We use the following strategy: (i) find
yn(t, k, c) with VIM, It is an approximation of y(t) = g(t, k, c), the solution
of Eq. (1), then fuzzify it to Ȳ (t) = yn(t, K̄, C̄) by extension principle; (ii)
checking conditions (13) and (14) for yn(t, k, c); (iii) is Ȳ (t) a fuzzy num-
ber? (conditions (i)-(iv) in Section 4); (iv) fuzzify f(t, y, k) to a fuzzy function
f(t, Ȳ , K̄) by extension principle, where Ȳ (t) = yn(t, K̄, C̄). Since we approx-
imate g(t, k, c) by yn(t, k, c), when y(t) = yn(t, k, c) is extended to fuzzy case
(Ȳ (t) = yn(t, K̄, C̄)), then Ȳ (t) = yn(t, K̄, C̄) usually dose not satisfy in Eqs.
(9)-(12). We calculate distance between f(t, Ȳ , K̄) and SDȲ (t) with metric
D.

Example 4.1 Consider the initial value problem

y′(t) = k1y
2(t) + k2, y(0) = 0, t ∈ I = [0, 0.5] (15)

where ki > 0 for i = 1, 2.
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The approximation solution by VIM (3) with y0(0) = 0 is

g(t, k, 0) ≈ y3(t, k, 0) = k2t +
1

3
k1k

2
2t

3 +
2

15
k2
1k

3
2t

5 +
1

63
k3
1k

4
2t

7.

Calculating ∂f
∂y

, ∂f
∂k1

, ∂f
∂k2

, ∂y3

∂k1

and ∂y3

∂k2

, we can see that the conditions (13)

and (14) are satisfied so we have a BFS. Now we consider the corresponding
FIVP with K̄i > 0, i = 1, 2. Using ∂y3

∂ki

≥ 0 we obtain Ȳ (t) = y3(t, K̄, 0), so

the γ-cuts corresponding to Ȳ (t) are

y1(t, γ) = k21(γ)t + 1
3k11(γ)(k21(γ))2t3 + 2

15 (k11(γ))2(k21(γ))3t5 + 1
63 (k11(γ))3(k21(γ))4t7

y2(t, γ) = k22(γ)t + 1
3k12(γ)(k22(γ))2t3 + 2

15 (k12(γ))2(k22(γ))3t5 + 1
63 (k12(γ))3(k22(γ))4t7

where K̄i(γ) = [ki1(γ), ki2(γ)], for i = 1, 2, 0 ≤ γ ≤ 1. The γ-cuts of SDȲ (t),
for 0 ≤ γ ≤ 1 are (differential respect to t)

y′
1(t, γ) = k21(γ) + k11(γ)(k21(γ))2t2 + 2

3 (k11(γ))2(k21(γ))3t4 + 1
9 (k11(γ))3(k21(γ))4t6

y′
2(t, γ) = k22(γ) + k12(γ)(k22(γ))2t2 + 2

3 (k12(γ))2(k22(γ))3t4 + 1
9 (k12(γ))3(k22(γ))4t6.

Due to dki1(γ)
dγ

> 0 and dki2(γ)
dγ

< 0, i = 1, 2, 0 ≤ γ ≤ 1, therefore y′
1(t, γ) is

increasing and y′
2(t, γ) is decreasing, for t ∈ I. On the other hand, it is clear

that y′
1(t, 1) ≤ y′

2(t, 1), for t ∈ I i.e. [y′
1(t, γ), y′

2(t, γ)] are γ-cuts of a fuzzy
number.

For practical results we set K̄1(γ) = K̄2(γ) = [γ,−γ + 2], 0 < γ ≤ 1. First
we obtain f(t, Ȳ , K̄) by extension principle where Ȳ (t) = y3(t, K̄, 0), then we
compare SDȲ (t) with f(t, Ȳ , K̄) by metric D. Results are presented in Table
1.

Table 1
t D(SDȲ (t), y3(t, K̄, 0)) D(SDȲ (t), y10(t, K̄, 0))
0 0 0
0.1 0.0000347 6.6613 × 10−16

0.2 0.0023487 1.3389 × 10−12

0.3 0.0292973 2.8442 × 10−9

0.4 0.1869826 8.8726 × 10−7

0.5 0.8402922 0.000115
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Figure 1. y3(t, K̄, 0)

Example 4.2 Let c > 0 and consider the following initial value problem

dy

dt
= t6y3(t) + t3y(t) + t2, y(0) = c, t ∈ I = [0, 0.5] (16)

The approximation solution by VIM (3) with y0(0) = c is

g(t, c) ≈ y1(t, c) = c +
1

3
t3 +

1

4
ct4 +

1

7
c3t7.

Since ∂f
∂y

> 0 and ∂y1

∂c
> 0 then condition (13) and (14) are satisfy then we

have a BFS. We consider the corresponding FIVP, using ∂y1

∂c
> 0 we obtain

Ȳ (t) = y1(t, C̄) and γ-cut corresponding to Ȳ (t)

y1(t, γ) = c1(γ) + 1
3 t3 + 1

4c1(γ)t4 + 1
7c3

1(γ)t7

y2(t, γ) = c2(γ) + 1
3 t3 + 1

4c2(γ)t4 + 1
7c3

2(γ)t7

where C̄(γ) = (c1(γ), c2(γ)). Then γ-cuts of SDȲ (t) are

y′
1(t, γ) = t2 + c1(γ)t3 + c3

1(γ)t6

y′
2(t, γ) = t2 + c2(γ)t3 + c3

2(γ)t6.

Similar Example 1, since dc1(γ)
dγ

> 0 and dc2(γ)
dγ

< 0, 0 ≤ γ ≤ 1, therefore

y′
1(t, γ) is increasing and y′

2(t, γ) is decreasing, for t ∈ I. On the other hand,
it is clear that y′

1(t, 1) ≤ y′
2(t, 1), for t ∈ I i.e. [y′

1(t, γ), y′
2(t, γ)] are γ-cuts of

a fuzzy number.
For practical results we set C̄(γ) = [γ,−γ + 2]. First we obtain f(t, Ȳ , 0)

by extension principle where Ȳ (t) = y1(t, C̄), then we compare SDȲ (t) with
f(t, Ȳ , 0) by metric D. Results are presented in Table 2.
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Figure 2. y3(t, C̄)

Table 2
t D(SDȲ (t), y1(t, C̄)) D(SDȲ (t), y2(t, C̄))
0 0 0
0.1 3.88049 × 10−7 5.4986 × 10−12

0.2 0.0000305 7.2271 × 10−9

0.3 0.0004762 6.4883 × 10−7

0.4 0.0041061 0.000022
0.5 0.0262132 0.0004614

5 Conclusion

In this paper, we present an analytical approximate solution to FIVP. Using
VIM we solve the crisp problem then with the extension principle we find the
fuzzy approximation solution.
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