An. Şt. Univ. Ovidius Constanţa

Approximating common fixed points of Presić-Kannan type operators by a multi-step iterative method

Mădălina Păcurar

Abstract

The existence of coincidence points and common fixed points for operators satisfying a Presić-Kannan type contraction condition in a metric spaces setting is proved. A multi-step iterative method for constructing the common fixed points is also provided.

1 Introduction

In 1965 S.B. Presić extended Banach's contraction mapping principle (see [2]) to operators defined on product spaces. It is easy to see that by taking $k=1$, Theorem 1.1 below reduces to Banach's theorem.

Theorem 1.1 (S.B. Presić [12], 1965) Let (X, d) be a complete metric space, k a positive integer, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}_{+}, \sum_{i=1}^{k} \alpha_{i}=\alpha<1$ and $f: X^{k} \rightarrow X$ an operator satisfying

$$
\begin{equation*}
d\left(f\left(x_{0}, \ldots, x_{k-1}\right), f\left(x_{1}, \ldots, x_{k}\right)\right) \leq \alpha_{1} d\left(x_{0}, x_{1}\right)+\cdots+\alpha_{k} d\left(x_{k-1}, x_{k}\right) \tag{P}
\end{equation*}
$$

for all $x_{0}, \ldots, x_{k} \in X$.
Then:

[^0]1) f has a unique fixed point x^{*}, that is, there exists a unique $x^{*} \in X$ such that $f\left(x^{*}, \ldots, x^{*}\right)=x^{*}$;
2) the sequence $\left\{x_{n}\right\}_{n \geq 0}$ defined by

$$
\begin{equation*}
x_{n+1}=f\left(x_{n-k+1}, \ldots, x_{n}\right), \quad n=k-1, k, k+1, \ldots \tag{1.1}
\end{equation*}
$$

converges to x^{*}, for any $x_{0}, \ldots, x_{k-1} \in X$.
On the other hand, in 1968 R. Kannan [9] (see also [3], [4], [5], [15], for some recent extensions of this result) proved a fixed point result for operators $f: X \rightarrow X$ satisfying the following contraction condition:

$$
\begin{equation*}
d(f(x), f(y)) \leq a[d(x, f(x)+d(y, f(y))] \tag{1.2}
\end{equation*}
$$

for any $x, y \in X$, where $a \in\left[0, \frac{1}{2}\right)$ is constant.
In a similar manner to that used by S.B. Presić [12] when extending Banach contractions to product spaces, by I.A. Rus in [13] when doing the same for φ-contractions or by L.Ćirić and S. Presić in the recent [6], we proved a generalization of Kannan's theorem in [10] by showing that an operator $f: X^{k} \rightarrow X$ satisfying

$$
\begin{equation*}
d\left(f\left(x_{0}, \ldots, x_{k-1}\right), f\left(x_{1}, \ldots, x_{k}\right)\right) \leq a \sum_{i=0}^{k} d\left(x_{i}, f\left(x_{i}, \ldots, x_{i}\right)\right) \tag{1.3}
\end{equation*}
$$

for any $x_{0}, \ldots, x_{k} \in X$, where $0 \leq a k(k+1)<1$, has a unique fixed point $x^{*} \in X$. This fixed point can be approximated by means of the k-step iterative method $\left\{x_{n}\right\}_{n \geq 0}$, defined by (1.1), for any $x_{0}, \ldots, x_{k-1} \in X$.

In the very recent paper [1], M. Abbas and G. Jungck extended Kannan's theorem to a common fixed point result in cone metric spaces, considering the concept of weakly compatible mappings introduced by G. Jungck in [8].

In the present paper, by extending the concept of weakly compatible mappings to operators defined on Cartesian product, we obtain some results regarding the existence and uniqueness of coincidence/common fixed points for operators satisfying a Presić- Kannan type condition and also provide an iterative method for obtaining them. A similar approach of the contraction condition introduced in [13], which gives a Presić type extension for φ-contractions, can be found in our recent paper [11].

2 Preliminaries

We begin by recalling some concepts used in [1], [7], [8] and several related papers.

Definition 2.1 ([7]) Let X be nonempty set and $f, g: X \rightarrow X$ two operators.
An element $p \in X$ is called a coincidence point of f and g if

$$
f(p)=g(p)
$$

In this case $s=f(p)=g(p)$ is a coincidence value of f and g.
An element $p \in X$ is called a common fixed point of f and g if

$$
f(p)=g(p)=p
$$

Remark 2.1 We shall denote by

$$
C(f, g)=\{p \in X \mid f(p)=g(p)\}
$$

the set of all coincidence points of f and g.
Obviously, the following hold:
a) $F_{f} \cap F_{g} \subset C(f, g)$;
b) $F_{f} \cap C(f, g)=F_{g} \cap C(f, g)=F_{f} \cap F_{g}$.

Definition 2.2 ([8]) Let X be a nonempty set and $f, g: X \rightarrow X$. The operators f and g are said to be weakly compatible if they commute at their coincidence points, namely if

$$
f(g(p))=g(f(p)),
$$

for any coincidence point p of f and g.
Lemma 2.1 Let X be a nonempty set and $f, g: X \rightarrow X$ two operators. If f and g are weakly compatible, then $C(f, g)$ is invariant for both f and g.

Proof. Let $p \in C(f, g)$. We shall prove that $f(p), g(p) \in C(f, g)$, as well. By definition,

$$
\begin{equation*}
f(p)=g(p)=q \in X \tag{2.1}
\end{equation*}
$$

As f and g are weakly compatible, we have:

$$
f(g(p))=g(f(p))
$$

which by (2.1) yields

$$
f(q)=g(q)
$$

so $q=f(p)=g(p) \in C(f, g)$. Thus, $C(f, g)$ is an invariant set for both f and g.

Using this Lemma, the proof of the following proposition is immediate.
Proposition 2.1 ([1]) Let X be a nonempty set and $f, g: X \rightarrow X$ two weakly compatible operators.

If they have a unique coincidence value $x^{*}=f(p)=g(p)$, for some $p \in X$, then x^{*} is their unique common fixed point.

Remark 2.2 For any operator $f: X^{k} \rightarrow X, k$ a positive integer, we can define its associate operator $F: X \rightarrow X$ by

$$
\begin{equation*}
F(x)=f(x, \ldots, x), x \in X \tag{2.2}
\end{equation*}
$$

Obviously, $x \in X$ is a fixed point of $f: X^{k} \rightarrow X$, i.e., $x=f(x, \ldots, x)$, if and only if it is a fixed point of its associate operator F, in the sense of the classical definition. For details see for example [14].

Based on this remark, we can extend the previous definitions for the case $f: X^{k} \rightarrow X, k$ a positive integer.

Definition 2.3 Let X be a nonempty set, k a positive integer and $f: X^{k} \rightarrow$ $X, g: X \rightarrow X$ two operators.

An element $p \in X$ is called a coincidence point of f and g if it is a coincidence point of F and g, where F is given by (2.2).

Similarly, $s \in X$ is a coincidence value of f and g if it is a coincidence value of F and g.

An element $p \in X$ is a common fixed point of f and g if it is a common fixed point of F and g.

Definition 2.4 Let X be a nonempty set, k a positive integer and $f: X^{k} \rightarrow$ $X, g: X \rightarrow X$. The operators f and g are said to be weakly compatible if F and g are weakly compatible.

The following result is a generalization of Proposition 1.4 in [1], included above as Proposition 2.1.

Proposition 2.2 Let X be a nonempty set, k a positive integer and $f: X^{k} \rightarrow$ $X, g: X \rightarrow X$ two weakly compatible operators.

If f and g have a unique coincidence value $x^{*}=f(p, \ldots, p)=g(p)$, then x^{*} is the unique common fixed point of f and g.

Proof. As f and g are weakly compatible, F and g are also weakly compatible. The proof follows by Proposition 2.1.

In order to prove our main result, we also need the following lemma, due to S. Presić [12].

Lemma 2.2 ([12]) Let k be a positive integer and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}_{+}$such that $\sum_{i=1}^{k} \alpha_{i}=\alpha<1$. If $\left\{\Delta_{n}\right\}_{n \geq 1}$ is a sequence of positive numbers satisfying

$$
\Delta_{n+k} \leq \alpha_{1} \Delta_{n}+\alpha_{2} \Delta_{n+1}+\ldots+\alpha_{k} \Delta_{n+k-1}, n \geq 1
$$

then there exist $L>0$ and $\theta \in(0,1)$ such that

$$
\Delta_{n} \leq L \cdot \theta^{n}, \text { for all } n \geq 1
$$

3 The main result

The main result of this paper is the following theorem.
Theorem 3.1 Let (X, d) be a metric space and k a positive integer. Let $f: X^{k} \rightarrow X, g: X \rightarrow X$ be two operators for which there exists a complete metric subspace $Y \subseteq X$ such that $f\left(X^{k}\right) \subseteq Y \subseteq g(X)$ and

$$
\begin{equation*}
d\left(f\left(x_{0}, \ldots, x_{k-1}\right), f\left(x_{1}, \ldots, x_{k}\right)\right) \leq a \sum_{i=0}^{k} d\left(g\left(x_{i}\right), f\left(x_{i}, \ldots, x_{i}\right)\right) \tag{PK-C}
\end{equation*}
$$

for any $x_{0}, \ldots, x_{k} \in X$, where the real constant a fulfills $0 \leq a k(k+1)<1$. Then:

1) f and g have a unique coincidence value, say x^{*}, in X;
2) the sequence $\left\{g\left(z_{n}\right)\right\}_{n \geq 0}$ defined by $z_{0} \in X$ and

$$
\begin{equation*}
g\left(z_{n}\right)=f\left(z_{n-1}, \ldots, z_{n-1}\right), n \geq 1 \tag{3.1}
\end{equation*}
$$

converges to x^{*};
3) the sequence $\left\{g\left(x_{n}\right)\right\}_{n \geq 0}$ defined by $x_{0}, \ldots, x_{k-1} \in X$ and

$$
\begin{equation*}
g\left(x_{n}\right)=f\left(x_{n-k}, \ldots, x_{n-1}\right), n \geq k, \tag{3.2}
\end{equation*}
$$

converges to x^{*} as well, with a rate estimated by

$$
\begin{equation*}
d\left(g\left(x_{n}\right), x^{*}\right) \leq C \theta^{n}, \tag{3.3}
\end{equation*}
$$

where C is a positive constant and $\theta \in(0,1)$;
4) if in addition f and g are weakly compatible, then x^{*} is their unique common fixed point.

Proof. 1),2) Let $z_{0} \in X$. Then $f\left(z_{0}, \ldots, z_{0}\right) \in f\left(X^{k}\right) \subset g(X)$, so there exists $z_{1} \in X$ such that

$$
f\left(z_{0}, \ldots, z_{0}\right)=g\left(z_{1}\right)
$$

Further on, $f\left(z_{1}, \ldots, z_{1}\right) \in f\left(X^{k}\right) \subset g(X)$, so there exists $z_{2} \in X$ such that

$$
f\left(z_{1}, \ldots, z_{1}\right)=g\left(z_{2}\right)
$$

In this manner we construct a sequence $\left\{g\left(z_{n}\right)\right\}_{n \geq 0}$ with $z_{0} \in X$ and

$$
\begin{equation*}
g\left(z_{n}\right)=f\left(z_{n-1}, \ldots, z_{n-1}\right), n \geq 1 \tag{3.4}
\end{equation*}
$$

Due to the manner $\left\{g\left(z_{n}\right)\right\}_{n \geq 0}$ was constructed, it is easy to remark that

$$
\begin{equation*}
\left\{g\left(z_{n}\right)\right\}_{n \geq 0} \subseteq f\left(X^{k}\right) \subseteq Y \subseteq g(X) \tag{3.5}
\end{equation*}
$$

We can estimate now:

$$
\begin{aligned}
& d\left(g\left(z_{n}\right), g\left(z_{n+1}\right)\right)=d\left(f\left(z_{n-1}, \ldots, z_{n-1}\right), f\left(z_{n}, \ldots, z_{n}\right)\right) \leq \\
& \quad \leq d\left(f\left(z_{n-1}, \ldots, z_{n-1}\right), f\left(z_{n-1}, \ldots, z_{n-1}, z_{n}\right)\right)+ \\
& \quad+\cdots+d\left(f\left(z_{n-1}, z_{n}, \ldots, z_{n}\right), f\left(z_{n}, \ldots, z_{n}\right)\right) .
\end{aligned}
$$

By (PK-C), this implies:

$$
\begin{aligned}
& d\left(g\left(z_{n}\right), g\left(z_{n+1}\right)\right) \leq \\
& \leq a\left[k d\left(g\left(z_{n-1}\right), f\left(z_{n-1}, \ldots, z_{n-1}\right)\right)+d\left(g\left(z_{n}\right), f\left(z_{n}, \ldots, z_{n}\right)\right)\right]+ \\
& \quad+a\left[(k-1) d\left(g\left(z_{n-1}\right), f\left(z_{n-1}, \ldots, z_{n-1}\right)\right)+2 d\left(g\left(z_{n}\right), f\left(z_{n}, \ldots, z_{n}\right)\right)\right]+ \\
& \quad+\cdots+ \\
& \quad+a\left[d\left(g\left(z_{n-1}\right), f\left(z_{n-1}, \ldots, z_{n-1}\right)\right)+k d\left(g\left(z_{n}\right), f\left(z_{n}, \ldots, z_{n}\right)\right)\right]= \\
& =a \frac{k(k+1)}{2}\left[d\left(g\left(z_{n-1}\right), f\left(z_{n-1}, \ldots, z_{n-1}\right)\right)+d\left(g\left(z_{n}\right), f\left(z_{n}, \ldots, z_{n}\right)\right)\right]= \\
& =a \frac{k(k+1)}{2}\left[d\left(g\left(z_{n-1}\right), g\left(z_{n}\right)\right)+d\left(g\left(z_{n}\right), g\left(z_{n+1}\right)\right)\right] .
\end{aligned}
$$

By denoting $A=\frac{a k(k+1)}{2} \in\left[0, \frac{1}{2}\right)$ and $B=\frac{A}{1-A} \in[0,1)$, the previous inequality implies:

$$
\begin{equation*}
d\left(g\left(z_{n}\right), g\left(z_{n+1}\right)\right) \leq B d\left(g\left(z_{n-1}\right), g\left(z_{n}\right)\right), \tag{3.6}
\end{equation*}
$$

which by induction yields

$$
\begin{equation*}
d\left(g\left(z_{n}\right), g\left(z_{n+1}\right)\right) \leq B^{n} d\left(g\left(z_{0}\right), g\left(z_{1}\right)\right), n \geq 0 \tag{3.7}
\end{equation*}
$$

Since the series $\sum_{n=0}^{\infty} B^{n}$ converges, it follows by the well known Weierstrass criterion that $\left\{g\left(z_{n}\right)\right\}_{n \geq 0}$ is a Cauchy sequence included, by (3.5), in the complete subspace Y. Thus, there exists $x^{*} \in Y$ such that $\lim _{n \rightarrow \infty} g\left(z_{n}\right)=x^{*}$ and, since $Y \subseteq g(X)$, there exists $p \in X$ such that

$$
g(p)=x^{*}=\lim _{n \rightarrow \infty} g\left(z_{n}\right)
$$

Next we shall prove that $f(p, \ldots, p)=x^{*}$ as well. In this respect we estimate:

$$
\begin{aligned}
& d\left(g\left(z_{n}\right), f(p, \ldots, p)\right)=d\left(f\left(z_{n-1}, \ldots, z_{n-1}\right), f(p, \ldots, p)\right) \leq \\
& \quad \leq d\left(f\left(z_{n-1}, \ldots, z_{n-1}\right), f\left(z_{n-1}, \ldots, z_{n-1}, p\right)\right)+\cdots+ \\
& \quad+d\left(f\left(z_{n-1}, p, \ldots, p\right), f(p, \ldots, p)\right)
\end{aligned}
$$

By (PK-C) this yields

$$
\begin{aligned}
& d\left(g\left(z_{n}\right), f(p, \ldots, p)\right) \leq \\
& \leq a\left[k d\left(g\left(z_{n-1}\right), f\left(z_{n-1}, \ldots, z_{n-1}\right)\right)+d(g(p), f(p, \ldots, p))\right]+ \\
& \quad+\cdots+ \\
& \quad+a\left[d\left(g\left(z_{n-1}\right), f\left(z_{n-1}, \ldots, z_{n-1}\right)\right)+k d(g(p), f(p, \ldots, p))\right]= \\
& =A\left[d\left(g\left(z_{n-1}\right), g\left(z_{n}\right)\right)+d(g(p), f(p, \ldots, p))\right]
\end{aligned}
$$

which implies

$$
\begin{aligned}
& d\left(g\left(z_{n}\right), f(p, \ldots, p)\right) \leq \\
& \leq A\left[d\left(g\left(z_{n-1}\right), g\left(z_{n}\right)\right)+d\left(g(p), g\left(z_{n}\right)\right)+d\left(g\left(z_{n}\right), f(p, \ldots, p)\right)\right]
\end{aligned}
$$

From here we obtain that

$$
d\left(g\left(z_{n}\right), f(p, \ldots, p)\right) \leq B d\left(g\left(z_{n-1}\right), g\left(z_{n}\right)\right)+B d\left(g(p), g\left(z_{n}\right)\right)
$$

or, by (3.7),

$$
\begin{equation*}
d\left(g\left(z_{n}\right), f(p, \ldots, p)\right) \leq B^{n} d\left(g\left(z_{0}\right), g\left(z_{1}\right)\right)+B d\left(g(p), g\left(z_{n}\right)\right) \tag{3.8}
\end{equation*}
$$

We already know that $B \in[0,1)$ and that $g\left(z_{n}\right) \rightarrow x^{*}=g(p)$ as $n \rightarrow \infty$. Thus, by (3.8) it is immediate that $d\left(g\left(z_{n}\right), f(p, \ldots, p)\right) \rightarrow 0$ as $n \rightarrow \infty$, so indeed

$$
f(p, \ldots, p)=x^{*}=g(p)
$$

that is, p is a coincidence point for f and g, while x^{*} is a coincidence value for them.
In order to prove the uniqueness of x^{*} we suppose there would be some $q \in X$ such that

$$
\begin{equation*}
f(q, \ldots, q)=g(q) \neq x^{*} . \tag{3.9}
\end{equation*}
$$

Then for the coincidence points p and q we have:

$$
\begin{aligned}
& d(g(p), g(q))=d(f(p, \ldots, p), f(q, \ldots, q)) \leq \\
& \quad \leq d(f(p, \ldots, p), f(p, \ldots, p, q))+\cdots+ \\
& \quad+d(f(p, q, \ldots, q), f(q, \ldots, q))
\end{aligned}
$$

which by (PK-C) implies

$$
d(g(p), g(q)) \leq A[d(g(p), f(p, \ldots, p))+d(g(q), f(q, \ldots, q))] .
$$

This obviously leads to $d(g(p), g(q)) \leq 0$, which contradicts (3.9), so x^{*} is the unique coincidence value for f and g and it can be approximated by means of the sequence $\left\{g\left(z_{n}\right)\right\}_{n \geq 0}$ given by (3.1).
3) Now there is still to be proved that the k-step iteration method $\left\{g\left(x_{n}\right)\right\}_{n>0}$ given by (3.2) converges to the unique coincidence value x^{*} as well.
In this respect we estimate

$$
\begin{aligned}
& d\left(g\left(x_{n}\right), g(p)\right)=d\left(f\left(x_{n-k}, \ldots, x_{n-1}\right), f(p, \ldots, p)\right) \leq \\
& \leq d\left(f\left(x_{n-k}, \ldots, x_{n-1}\right), f\left(x_{n-k+1}, \ldots, x_{n-1}, p\right)\right)+\cdots+ \\
& \quad+d\left(f\left(x_{n-1}, p, \ldots, p\right), f(p, \ldots, p)\right)
\end{aligned}
$$

which by (PK-C) and knowing that $d(g(p), f(p, \ldots, p))=0$ yields

$$
\begin{aligned}
& d\left(g\left(x_{n}\right), g(p)\right) \leq \\
& \leq a\left[d\left(g\left(x_{n-k}\right), f\left(x_{n-k}, \ldots, x_{n-k}\right)\right)+\right. \\
& \left.\quad+\cdots+d\left(g\left(x_{n-1}\right), f\left(x_{n-1}, \ldots, x_{n-1}\right)\right)+0\right]+ \\
& \quad+a\left[d\left(g\left(x_{n-k+1}\right), f\left(x_{n-k+1}, \ldots, x_{n-k+1}\right)\right)+\right. \\
& \left.\quad+\cdots+d\left(g\left(x_{n-1}\right), f\left(x_{n-1}, \ldots, x_{n-1}\right)\right)+0+0\right]+ \\
& \quad+\cdots+ \\
& \quad+a[d\left(g\left(x_{n-1}\right), f\left(x_{n-1}, \ldots, x_{n-1}\right)\right)+\underbrace{0+\cdots+0}_{k \text { times }} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& d\left(g\left(x_{n}\right), g(p)\right) \leq a d\left(g\left(x_{n-k}\right), f\left(x_{n-k}, \ldots, x_{n-k}\right)\right)+ \\
& \quad+2 a \cdot d\left(g\left(x_{n-k+1}\right), f\left(x_{n-k+1}, \ldots, x_{n-k+1}\right)\right)+\cdots+ \\
& \quad+k a \cdot d\left(g\left(x_{n-1}\right), f\left(x_{n-1}, \ldots, x_{n-1}\right)\right) . \tag{3.10}
\end{align*}
$$

As $g(p)=f(p, \ldots, p)=x^{*}$, for each $j \in \mathbb{N}$ we have that

$$
\begin{equation*}
d\left(g\left(x_{j}\right), f\left(x_{j}, \ldots, x_{j}\right)\right) \leq d\left(g\left(x_{j}\right), g(p)\right)+d\left(f(p, \ldots, p), f\left(x_{j}, \ldots, x_{j}\right)\right) . \tag{3.11}
\end{equation*}
$$

Now using the same technique as several times before in this proof, we get that for each $j \in \mathbb{N}$

$$
\begin{aligned}
& d\left(f(p, \ldots, p), f\left(x_{j}, \ldots, x_{j}\right)\right) \leq \\
& \quad \leq A\left[d(g(p), f(p, \ldots, p))+d\left(g\left(x_{j}\right), f\left(x_{j}, \ldots, x_{j}\right)\right)\right]
\end{aligned}
$$

that is,

$$
d\left(f(p, \ldots, p), f\left(x_{j}, \ldots, x_{j}\right)\right) \leq \operatorname{Ad}\left(g\left(x_{j}\right), f\left(x_{j}, \ldots, x_{j}\right)\right)
$$

so (3.11) becomes

$$
\begin{equation*}
d\left(g\left(x_{j}\right), f\left(x_{j}, \ldots, x_{j}\right)\right) \leq \frac{1}{1-A} d\left(g\left(x_{j}\right), g(p)\right), j \in \mathbb{N} \tag{3.12}
\end{equation*}
$$

Getting back to the above relation (3.10), by (3.12) it is immediate that:

$$
\begin{align*}
& d\left(g\left(x_{n}\right), g(p)\right) \leq \frac{a}{1-A} d\left(g\left(x_{n-k}\right), g(p)\right)+\frac{2 a}{1-A} d\left(g\left(x_{n-k+1}\right), g(p)\right)+ \\
& \quad+\cdots+\frac{k a}{1-A} d\left(g\left(x_{n-1}\right), g(p)\right) \tag{3.13}
\end{align*}
$$

Denoting $\Delta_{n}=d\left(g\left(x_{n}\right), x^{*}\right)$, the sequence $\left\{\Delta_{n}\right\}_{n \geq 0}$ will satisfy the conditions in Lemma 2.2 due to Presić:

$$
\Delta_{n} \leq \frac{a}{1-A} \Delta_{n-k}+\frac{2 a}{1-A} \Delta_{n-k+1}+\cdots+\frac{k a}{1-A} \Delta_{n-1}, n \geq 1
$$

as well as

$$
\sum_{i=1}^{k} \frac{i a}{1-A}=\frac{A}{1-A}<1
$$

Then by the aforementioned lemma there exist $L>0$ and $\theta \in(0,1)$ such that $\Delta_{n} \leq L \theta^{n}, n \geq 0$, which actually means that

$$
\begin{equation*}
d\left(g\left(x_{n}\right), g(p)\right) \leq L \theta^{n}, n \geq 0 . \tag{3.14}
\end{equation*}
$$

It is now immediate that

$$
d\left(g\left(x_{n}\right), x^{*}\right) \rightarrow 0, \text { as } n \rightarrow \infty .
$$

This proves the convergence of the k-step iterative method $\left\{g\left(x_{n}\right)\right\}_{n \geq 0}$ given by (3.2) to the unique coincidence value x^{*} of the operators f and g. Its rate
of convergence is given by the estimation (3.3) which can be easily deduced from relation (3.13) by repeatedly using (3.14), where $C=\frac{a L}{1-A} \sum_{i=1}^{k} i \theta^{i-k}$.
4) Supposing f and g are weakly compatible, by Proposition 2.2 it follows that they have a unique common fixed point, which is exactly their unique coincidence value x^{*}.

Now the proof is complete.

Remark 3.1 For $k=1, g=1_{X}$ and $Y=X$, Theorem 3.1 reduces to the result of Kannan [9]. For $g=1_{X}$ and $Y=X$ our result in [10] is obtained.

Remark 3.2 The particular case for metric spaces of Theorem 2.2 due to M. Abbas and G. Jungck [1], originally proved in cone metric spaces, can be obtained from the above Theorem 3.1 if $k=1$ and $Y=g(X)$.

We mention that in [1] $g(X)$ is required to be a complete metric space, a condition which turns to be too restrictive in applications. We replaced it by the more practical and slightly relaxed "there exists a complete metric subspace $Y \subseteq X$ such that $f\left(X^{k}\right) \subseteq Y \subseteq g(X)$ ", which also implies that $f\left(X^{k}\right) \subseteq g(X)$ as in [1].

In the following we present a very simple example of a pair f and g that satisfies the conditions in Theorem 3.1 above, while f does not satisfy condition (P) due to S . Presić.

Example 3.1 Let $X=[0,1]$ with the usual metric, $k=2$ and the operators $f:[0,1] \times[0,1] \rightarrow[0,1]$ and $g:[0,1] \rightarrow[0,1]$ defined by

$$
f(x, y)=\left\{\begin{array}{lll}
\frac{1}{6}, & x<\frac{4}{5}, & y \in[0,1] \\
\frac{1}{20}, & x \geq \frac{4}{5}, & y \in[0,1]
\end{array}\right.
$$

and

$$
g(x)= \begin{cases}x, & x<\frac{4}{5} \\ 1, & x \geq \frac{4}{5}\end{cases}
$$

respectively. Then:

1) f and g satisfy the conditions in Theorem 3.1;
2) f does not satisfy condition (P) from Theorem 1.1.

Proof. 1) Let us check first that f and g satisfy condition (PK-C) from the above Theorem 3.1. In our particular case $k=2$, so the above condition (PK-C) becomes

$$
\begin{align*}
& \left|f\left(x_{0}, x_{1}\right)-f\left(x_{1}, x_{2}\right)\right| \leq a\left[\left|g\left(x_{0}\right)-f\left(x_{0}, x_{0}\right)\right|+\right. \tag{3.15}\\
& \left.\quad+\left|g\left(x_{1}\right)-f\left(x_{1}, x_{1}\right)\right|+\left|g\left(x_{2}\right)-f\left(x_{2}, x_{2}\right)\right|\right]
\end{align*}
$$

for any $x_{0}, x_{1}, x_{2} \in[0,1]$, where $a \in\left(0, \frac{1}{6}\right)$ is constant.
Theoretically we should analyze 8 cases, as each of x_{0}, x_{1} and x_{2} can be either $<\frac{4}{5}$ or $\geq \frac{4}{5}$, but considering the definitions of f and g we only have to discuss:
I. $x_{0}, x_{1}<\frac{4}{5}$ or $x_{0}, x_{1} \geq \frac{4}{5}$, while $x_{2} \in[0,1]$.

In this case $f\left(x_{0}, x_{1}\right)=f\left(x_{1}, x_{2}\right)$ and the left hand side of (3.15) will be equal to 0 , so (3.15) holds for any $a \in\left(0, \frac{1}{6}\right)$.
II. $x_{0}<\frac{4}{5}, x_{1} \geq \frac{4}{5}$ and $x_{2}<\frac{4}{5}$.

Then $f\left(x_{0}, x_{1}\right)=\frac{1}{6}, f\left(x_{1}, x_{2}\right)=\frac{1}{20}, f\left(x_{0}, x_{0}\right)=\frac{1}{6}, f\left(x_{1}, x_{1}\right)=\frac{1}{20}$, $f\left(x_{2}, x_{2}\right)=\frac{1}{6}, g\left(x_{0}\right)=x_{0}, g\left(x_{1}\right)=1$ and $g\left(x_{2}\right)=x_{2}$, and (3.15) becomes

$$
\begin{equation*}
\left|\frac{1}{6}-\frac{1}{20}\right| \leq a\left[\left|x_{0}-\frac{1}{6}\right|+\left|1-\frac{1}{20}\right|+\left|x_{2}-\frac{1}{6}\right|\right] . \tag{3.16}
\end{equation*}
$$

As $\left|x_{0}-\frac{1}{6}\right| \geq 0$ and $\left|x_{2}-\frac{1}{6}\right| \geq 0$, the minimum value of the right hand side in (3.16) will be $a \frac{19}{20}$. Therefore a necessary condition for (3.16) to hold is $\frac{7}{60} \leq a \frac{19}{20}$, which finally yields $a \geq \frac{7}{57}$.
III. $x_{0} \geq \frac{4}{5}, x_{1}, x_{2}<\frac{4}{5}$.

Similarly to case II it follows that $a \geq \frac{7}{57}$.
IV. $x_{0} \geq \frac{4}{5}, x_{1}<\frac{4}{5}$ and $x_{2} \geq \frac{4}{5}$.

Then $f\left(x_{0}, x_{1}\right)=\frac{1}{20}, f\left(x_{1}, x_{2}\right)=\frac{1}{6}, f\left(x_{0}, x_{0}\right)=\frac{1}{20}, f\left(x_{1}, x_{1}\right)=\frac{1}{6}$, $f\left(x_{2}, x_{2}\right)=\frac{1}{20}, g\left(x_{0}\right)=1, g\left(x_{1}\right)=x_{1}$ and $g\left(x_{2}\right)=1$, and (3.15) becomes

$$
\begin{equation*}
\left|\frac{1}{20}-\frac{1}{6}\right| \leq a\left[\left|1-\frac{1}{20}\right|+\left|x_{1}-\frac{1}{6}\right|+\left|1-\frac{1}{20}\right|\right] . \tag{3.17}
\end{equation*}
$$

As $\left|x_{1}-\frac{1}{6}\right| \geq 0$, the minimum value of the right hand side in (3.17) will be $a \frac{19}{10}$. Therefore a necessary condition for (3.17) to hold is $\frac{7}{60} \leq a \frac{19}{10}$, which finally yields $a \geq \frac{7}{114}$.

$$
\begin{aligned}
& \text { V. } x_{0}<\frac{4}{5}, x_{1}, x_{2} \geq \frac{4}{5} . \\
& \quad \text { Similarly to case IV it follows that } a \geq \frac{7}{114} .
\end{aligned}
$$

Finally we conclude that neccessarily $a \in\left[\frac{7}{57}, \frac{1}{6}\right)$, so f and g satisfy condition (PK-C), for example with constant $a=\frac{7}{57} \in\left(0, \frac{1}{6}\right)$.

Since $f([0,1] \times[0,1])=\left\{\frac{1}{20} ; \frac{1}{6}\right\}$ and $g([0,1])=[0,1]$, there exists for example the complete metric subspace $Y=\left[0, \frac{1}{2}\right] \subset[0,1]$ such that $f([0,1] \times$ $[0,1]) \subset Y \subset g([0,1])$.

Then according to Theorem $3.1 f$ and g have a unique coincidence value in $[0,1]$, which can be approximated either by means of the sequence $\left\{g\left(z_{n}\right)\right\}_{n \geq 0}$ defined by

$$
g\left(z_{n}\right)=f\left(z_{n-1}, z_{n-1}\right), n \geq 1,
$$

starting from any $z_{0} \in[0,1]$, or by means of the 2 -step iterative method $\left\{g\left(x_{n}\right)\right\}_{n \geq 0}$ defined by

$$
g\left(x_{n}\right)=f\left(x_{n-2}, x_{n-1}\right), n \geq 2
$$

for any initial values $x_{0}, x_{1} \in[0,1]$.
Indeed, as one can easily check, $F_{f}=\left\{\frac{1}{6}\right\}, F_{g}=\left[0, \frac{4}{5}\right) \cup\{1\}$ and the set of coincidence values is given by $C(f, g)=\left\{\frac{1}{6}\right\}$.

Moreover, f and g are weakly compatible, as $f\left(g\left(\frac{1}{6}\right)\right)=g\left(f\left(\frac{1}{6}\right)\right)=\frac{1}{6}$, so, by Theorem 3.1, $\frac{1}{6}$ is also their unique common fixed point. Indeed, it is easy to see that $F_{f} \cap F_{g}=\left\{\frac{1}{6}\right\}$.
2) Now we shall prove that f is not a Presić operator. In our particular case inequality (P) becomes:

$$
\begin{equation*}
\left|f\left(x_{0}, x_{1}\right)-f\left(x_{1}, x_{2}\right)\right| \leq \alpha_{1}\left|x_{0}-x_{1}\right|+\alpha_{2}\left|x_{1}-x_{2}\right|, \tag{3.18}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2} \in \mathbb{R}_{+}, \alpha_{1}+\alpha_{2}<1$.
We will show that for certain points in $[0,1]$ inequality (3.18) is not satisfied. For example, let $x_{0}=\frac{4}{5}$ and $x_{1}=x_{2}=\frac{2}{5}$. Then $f\left(x_{0}, x_{1}\right)=\frac{1}{20}$, while
$f\left(x_{1}, x_{2}\right)=\frac{1}{6}$. Inequality (3.18) becomes:

$$
\left|\frac{1}{20}-\frac{1}{6}\right| \leq \alpha_{1}\left|\frac{4}{5}-\frac{2}{5}\right|+\alpha_{2}\left|\frac{2}{5}-\frac{2}{5}\right|
$$

which is equivalent to

$$
\begin{equation*}
\frac{7}{60} \leq \alpha_{1} \frac{2}{5} \tag{3.19}
\end{equation*}
$$

But $\alpha_{1}<1$, so it is obvious that (3.19) will never hold. Thus, f is not a Presić operator, so our Theorem 3.1 effectively extends Theorem 1.1 of S. Presić.

4 An extension of the main result

Theorem 3.1 offers information about coincidence and common fixed points of two operators, one of them defined on the Cartesian product $X^{k}, f: X^{k} \rightarrow X$, where k is a positive integer, and the second one a self-operator on $X, g: X \rightarrow$ X. As the great majority of the common fixed point results in literature deal with the case when both f and g are self-operators on X, our aim in this section is to establish a common fixed point theorem for the more general case $f: X^{k} \rightarrow X$ and $g: X^{l} \rightarrow X$, with k and l positive integers. In this respect we shall begin with some definitions which extend the corresponding ones in the previous section, and which can also be found in our recent paper [11].

Definition 4.1 Let X be a metric space, k, l positive integers and $f: X^{k} \rightarrow$ $X, g: X^{l} \rightarrow X$ two operators.

An element $p \in X$ is called a coincidence point of f and g if it is a coincidence point of F and G, where $F, G: X \rightarrow X$ are the associate operators of f and g, respectively, see Remark 2.2.

An element $s \in X$ is called a coincidence value of f and g if it is a coincidence value of F and G.

An element $p \in X$ is called a common fixed point of f and g if it is a common fixed point of F and G.

Definition 4.2 Let (X, d) be a metric space, k, l positive integers and f : $X^{k} \rightarrow X, g: X^{l} \rightarrow X$. The operators f and g are said to be weakly compatible if F and G are weakly compatible.

In these terms we state now the following result, which extends the above Theorem 3.1.

Theorem 4.1 Let (X, d) be a metric space, k and l positive integers, f : $X^{k} \rightarrow X$ and $g: X^{l} \rightarrow X$ two operators such that f and G fulfill the conditions in Theorem 3.1, where $G: X \rightarrow X$ is the associated operator of g.

Then:

1) f and g have a unique coincidence value, say x^{*}, in X;
2) the sequence $\left\{G\left(z_{n}\right)\right\}_{n \geq 0}$ defined by $z_{0} \in X$ and

$$
\begin{equation*}
G\left(z_{n}\right)=f\left(z_{n-1}, \ldots, z_{n-1}\right), n \geq 1 \tag{4.1}
\end{equation*}
$$

converges to x^{*};
3) the sequence $\left\{G\left(x_{n}\right)\right\}_{n \geq 0}$ defined by $x_{0}, \ldots, x_{k-1} \in X$ and

$$
\begin{equation*}
G\left(x_{n}\right)=f\left(x_{n-k}, \ldots, x_{n-1}\right), n \geq k \tag{4.2}
\end{equation*}
$$

converges to x^{*} as well, with a rate estimated by

$$
\begin{equation*}
d\left(G\left(x_{n}\right), x^{*}\right) \leq C \theta^{n}, \tag{4.3}
\end{equation*}
$$

where C is a positive constant and $\theta \in(0,1)$;
4) if in addition f and g are weakly compatible, then x^{*} is their unique common fixed point.

Proof. Having in view the definitions given in this section, all the conclusions follow by applying Theorem 3.1 for $f: X^{k} \rightarrow X$ and $G: X \rightarrow X$.

Remark 4.1 If we take $l=1$, then by Theorem 4.1 we get Theorem 3.1 in this paper, while for $l=1, g=1_{X}$ and $Y=X$ the fixed point theorem in [10] is obtained. Moreover, if we take $k=1, l=1, g=1_{X}$ and $Y=X$, by Theorem 4.1 we obtain the well known Kannan fixed point theorem [9], which could be similarly stated in a cone metric space setting, as in [1].

We shall end with the following example which illustrates Theorem 4.1.
Example 4.1 Let $X=[0,1], k=2, l=3, f:[0,1] \times[0,1] \rightarrow[0,1]$ as in Example 3.1 and $h:[0,1] \times[0,1] \times[0,1] \rightarrow[0,1]$ defined by:

$$
h(x, y, z)= \begin{cases}\frac{1}{2}(y+z), & (x, y, z) \in D_{1} \\ x y z, & (x, y, z) \in D_{2} \\ 1-(x-y)^{2}, & (x, y, z) \in D_{3}\end{cases}
$$

where

$$
\begin{aligned}
D_{1} & =[0,1] \times\left[0, \frac{4}{5}\right) \times\left[0, \frac{4}{5}\right), \\
D_{2} & =\left[0, \frac{4}{5}\right) \times\left[\frac{4}{5}, 1\right] \times\left[\frac{4}{5}, 1\right] \cup[0,1] \times\left[\frac{4}{5}, 1\right] \times\left[0, \frac{4}{5}\right) \cup[0,1] \times\left[0, \frac{4}{5}\right) \times\left[\frac{4}{5}, 1\right], \\
D_{3} & =\left[\frac{4}{5}, 1\right] \times\left[\frac{4}{5}, 1\right] \times\left[\frac{4}{5}, 1\right] .
\end{aligned}
$$

Then f and h have a unique common fixed point in $[0,1]$.
Proof. We remark that the associated operator of h is $H:[0,1] \rightarrow[0,1]$ defined by:

$$
H(x)=h(x, x, x)= \begin{cases}x, & x<\frac{4}{5} \\ 1, & x \geq \frac{4}{5}\end{cases}
$$

By Example 3.1, f and H fulfill the conditions in Theorem 3.1, and the rest follows by Theorem 4.1 above.

Aknowledgements

I want to thank the editors and the referee for the valuable suggestions and remarks which contributed to the improvement of the manuscript.

References

[1] Abbas, M., Jungck, G., Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416-420.
[2] Banach, S., Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3(1922), 133-181.
[3] Berinde, V., On the approximation of fixed points of weak contractive mappings, Carpathian J. Math. 19 (2003), No. 1, 7-22.
[4] Berinde, V., Approximating fixed points of weak contractions using Picard iteration, Nonlinear Analysis Forum 9 (2004), No. 1, 43-53.
[5] Berinde, V., Iterative Approximation of Fixed Points, Springer-Verlag, Berlin Heidelberg, 2007.
[6] Cirić, L.B., Presić, S.B., On Presić type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenianae, 76 (2007), No. 2, 143-147.
[7] Jungck, G., Commuting maps and fixed points, Amer. Math. Monthly 83 (1976), 261263.
[8] Jungck, G., Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci. 4 (1996), 199-215.
[9] Kannan, R., Some results on fixed points, Bull. Calcutta Math. Soc. 10 (1968) 71-76.
[10] Păcurar, M., A Kannan-Presić type fixed point theorem (submitted).
[11] Păcurar, M., A multi-step iterative method for approximating common fixed points of Presić-Rus type operators on metric spaces (submitted).
[12] Presić, S.B., Sur une classe d' inéquations aux différences finite et sur la convergence de certaines suites, Publ. Inst. Math. (Beograd)(N.S.), 5(19) (1965), 75-78.
[13] Rus, I.A., An iterative method for the solution of the equation $x=f(x, \ldots, x)$, Rev. Anal. Numer. Theor. Approx., 10 (1981), No.1, 95-100.
[14] Rus, I.A., An abstract point of view in the nonlinear difference equations, Editura Carpatica, Cluj-Napoca, 1999, 272-276.
[15] Rus, I.A., Generalized Contractions and Applications, Cluj University Press, ClujNapoca, 2001.

Department of Statistics, Forecast and Mathematics
Faculty of Economics and Bussiness Administration
"Babes-Bolyai" University of Cluj-Napoca
58-60 T. Mihali St., 400591 Cluj-Napoca
Romania
e-mail: madalina.pacurar@econ.ubbcluj.ro, madalina_pacurar@yahoo.com

[^0]: Key Words: Coincidence point, common fixed point approximation, multi-step iteration procedure, Presić-Kannan-type operator.

 Mathematics Subject Classification: $54 \mathrm{H} 25,47 \mathrm{H} 10$.
 Received: February, 2009
 Accepted: April, 2009

