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Approximating common fixed points of
Presi¢-Kannan type operators by a multi-step
iterative method

Madalina Pacurar

Abstract

The existence of coincidence points and common fixed points for op-
erators satisfying a Presi¢-Kannan type contraction condition in a metric
spaces setting is proved. A multi-step iterative method for constructing
the common fixed points is also provided.

1 Introduction

In 1965 S.B. Presié¢ extended Banach’s contraction mapping principle (see [2])
to operators defined on product spaces. It is easy to see that by taking k = 1,
Theorem 1.1 below reduces to Banach’s theorem.

Theorem 1.1 (S.B. Presié [12], 1965) Let (X, d) be a complete metric space,
k

k a positive integer, ay,az,...,ar €ERy, Sa;=a <1 and f: XF — X an
i=1

operator satisfying

d(f(zo,...,xp=1), f(x1,...,2)) < aad(zo, x1) + - - + apd(zr—1,28), (P)

for all xg,...,x, € X.
Then:
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1) f has a unique fized point x*, that is, there exists a unique z* € X such
that f(z*,...,a*) = z*;

2) the sequence {xy, }n>0 defined by
Tnt1 = [(Tn—kt1,---,2Tn), n=k—1kEk+1,... (1.1)
converges to x*, for any xg,...,rp_1 € X.

On the other hand, in 1968 R. Kannan [9] (see also [3], [4], [5], [15], for
some recent extensions of this result) proved a fixed point result for operators
f: X — X satisfying the following contraction condition:

d(f(x), f(y)) < ald(z, f(x) +d(y, f ()], (1.2)

for any x,y € X, where a € [0, %) is constant.

In a similar manner to that used by S.B. Presi¢ [12] when extending
Banach contractions to product spaces, by I.A. Rus in [13] when doing the
same for p—contractions or by L.Ciri¢ and S. Presié in the recent [6], we proved
a generalization of Kannan’s theorem in [10] by showing that an operator
f: XF — X satisfying

k

d(f(xo, .. xx-1), fl@r,. . 2n)) < @y _d(ws, flai,...3:), (1.3)

=0

for any xg,...,xx € X, where 0 < ak(k + 1) < 1, has a unique fixed point
z* € X. This fixed point can be approximated by means of the k—step
iterative method {z, }n>0, defined by (1.1), for any xo,...,z5—1 € X.

In the very recent paper [1], M. Abbas and G. Jungck extended Kannan’s
theorem to a common fixed point result in cone metric spaces, considering the
concept of weakly compatible mappings introduced by G. Jungck in [8].

In the present paper, by extending the concept of weakly compatible
mappings to operators defined on Cartesian product, we obtain some results
regarding the existence and uniqueness of coincidence/common fixed points for
operators satisfying a Presi¢- Kannan type condition and also provide an iter-
ative method for obtaining them. A similar approach of the contraction condi-
tion introduced in [13], which gives a Presi¢ type extension for ¢-contractions,
can be found in our recent paper [11].

2 Preliminaries

We begin by recalling some concepts used in [1], [7], [8] and several related
papers.
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Definition 2.1 ([7]) Let X be nonempty set and f,g9: X — X two operators.
An element p € X is called a coincidence point of f and g if

f(p) = g(p).

In this case s = f(p) = g(p) is a coincidence value of f and g.
An element p € X is called a common fized point of f and g if

Remark 2.1 We shall denote by

C(f,9)={peX|f(p) =9}

the set of all coincidence points of f and g.
Obviously, the following hold:

a) FyNF, CC(f,9);
b) FrNC(f.9) = F,NC(fg) = Fy O F,.
Definition 2.2 ([8]) Let X be a nonempty set and f,g : X — X. The

operators [ and g are said to be weakly compatible if they commute at their
coincidence points, namely if

for any coincidence point p of f and g.

Lemma 2.1 Let X be a nonempty set and f,g: X — X two operators. If f
and g are weakly compatible, then C(f,g) is invariant for both f and g.

Proof. Let p € C(f,g). We shall prove that f(p),g(p) € C(f,g), as well.
By definition,
fp)=9(p) =qeX. (2.1)

As f and g are weakly compatible, we have:

which by (2.1) yields
f(a) = g(q),

so ¢ = f(p) = g(p) € C(f,g). Thus, C(f,g) is an invariant set for both f and
g.
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|
Using this Lemma, the proof of the following proposition is immediate.

Proposition 2.1 ([1]) Let X be a nonempty set and f,g: X — X two weakly
compatible operators.

If they have a unique coincidence value x* = f(p) = g(p), for somep € X,
then x* is their unique common fized point.

Remark 2.2 For any operator f : X* — X, k a positive integer, we can
define its associate operator F' : X — X by

F(z) = f(z,...,z),z € X. (2.2)

Obviously, € X is a fixed point of f : X* — X, ie., v = f(z,...,), if
and only if it is a fixed point of its associate operator F', in the sense of the
classical definition. For details see for example [14].

Based on this remark, we can extend the previous definitions for the case
f:X* = X, k a positive integer.

Definition 2.3 Let X be a nonempty set, k a positive integer and f : X* —
X, g: X — X two operators.

An element p € X is called a coincidence point of f and g if it is a
coincidence point of F' and g, where F is given by (2.2).

Similarly, s € X is a coincidence value of f and g if it is a coincidence
value of F and g.

An element p € X is a common fixed point of f and g if it is a common
fized point of F' and g.

Definition 2.4 Let X be a nonempty set, k a positive integer and f : X* —
X, g: X — X. The operators f and g are said to be weakly compatible if
F and g are weakly compatible.

The following result is a generalization of Proposition 1.4 in [1], included
above as Proposition 2.1.

Proposition 2.2 Let X be a nonempty set, k a positive integer and f : X* —
X, g: X — X two weakly compatible operators.

If f and g have a unique coincidence value ©* = f(p,...,p) = g(p), then
x* is the unique common fixed point of f and g.

Proof. As f and g are weakly compatible, F' and ¢ are also weakly com-
patible. The proof follows by Proposition 2.1.
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O

In order to prove our main result, we also need the following lemma, due
to S. Presié [12].

Lemma 2.2 ([12]) Let k be a positive integer and a1, aq,...,ar € Ry such

k
that Y o; = a < 1. If {An}n>1 is a sequence of positive numbers satisfying
i=1

Appr S a1Ap + a2l + oo+ arlpyr—1, n>1,
then there exist L > 0 and 6 € (0,1) such that
A, <L-60" foralln>1.

3 The main result

The main result of this paper is the following theorem.

Theorem 3.1 Let (X,d) be a metric space and k a positive integer. Let
f:XF = X, g:X — X be two operators for which there exists a complete
metric subspace Y C X such that f(X*¥) CY C g(X) and

k

d(f(zoy. .., Tk—1), f(x1,...,2)) < aZd(g(xi), fzi,...,z)), (PK-C)

=0

for any xo, ...,z € X, where the real constant a fulfills 0 < ak(k +1) < 1.
Then:

1) f and g have a unique coincidence value, say x*, in X;
2) the sequence {g(zy)}n>0 defined by zo € X and
9(zn) = f(zn—1,-- s 2n—1),n > 1, (3.1)
converges to x*;

3) the sequence {g(zy)}n>0 defined by xo,...,z5_1 € X and

g(xn) = f(xn—ka---axn—l),n >k, (3.2)
converges to x* as well, with a rate estimated by
d(g(xn),z") < CO", (3.3)

where C' is a positive constant and 0 € (0,1);
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4) if in addition f and g are weakly compatible, then x* is their unique
common fized point.

Proof. 1),2) Let 29 € X. Then f(zo,...,2) € f(X*) C g(X), so there
exists z1 € X such that

f(zo,--,20) = g(21).
Further on, f(21,...,21) € f(X*) C g(X), so there exists zo € X such that
f(z1,...,21) = g(29).
In this manner we construct a sequence {g(z,)}n>0 With zp € X and
9(zn) = f(zn—1, -+ 2n-1),n > L. (3.4)
Due to the manner {g(zy)},>0 was constructed, it is easy to remark that
{9(zn)}nz0 C f(X*) CY C g(X). (3.5)

We can estimate now:

d(g(zn)’g(zn—i-l)) = d(f(zn—la e ;Zn—l); f(Zrm e 721’7,)) <
<d(f(za-1y--y2n-1)s f(Zn-1,--+y2n-1,2n)) +
+oeet d(f(zn—lazna s azn>7f(zna s >Zn))

By (PK-C), this implies:

d(g(zn)vg(zn-‘rl)) S
<alkd(g(zn-1), [(Zn-1,-- -, 2n-1)) +d(9(zn), f(2n,-- .. 20))] +
+a[(k —1)d(9(zn-1), f(zn-1,-- s 2n-1)) +2d(g(2n), f(Zn, .., 20))] +

+ e +
+a [d(g(zn—l)a f(Zn—la R Zn—l)) + kd(g(zn)v f(va R Zﬂ))] =
= oD g ), St z) ), S )] =
= ™D by 1), gz0)) + o), o))
By denoting A = w €1[0,%) and B = T j_4A € [0,1), the previous

inequality implies:

d(9(zn), 9(zn+1)) < Bd(g(zn-1),9(zn)), (3.6)
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which by induction yields
d(g(zn),g(zn+1)) < B"d(g(zo),g(zl)),n > 0. (37)

oo
Since the series > B™ converges, it follows by the well known Weierstrass
n=0
criterion that {g(zy)}n>0 is a Cauchy sequence included, by (3.5), in the com-
plete subspace Y. Thus, there exists * € Y such that lim g(z,) = z* and,
n—oo

since Y C g(X), there exists p € X such that

g(p) = 2" = lim g(2,).

n—oo

Next we shall prove that f(p,...,p) = z* as well. In this respect we estimate:

d(g(zﬂ)?f(p7 v 7p)) = d(f(zn—ly .. -azn—l)af(p7 v ap)) S
S d(f(znflw . ~azn71)7f(zn717 .. -72n717p)) + -+
+d(f(zn—1,p7 s 7p)af(pa s ap))

By (PK-C) this yields

d(g(zn), f(p;---,p)) <

< alkd(g(zn-1), f(Zn-1,---2n-1)) +d(g(®), f(p,...,p))] +
+...
Fald(g(zn-1), f(zn-1,-- ., 2n-1)) + kd(g(p), f(p, ... P))] =
= Ald(9(zn-1),9(z0)) + d(g(p), f (P, - -, P))],

_i'_/—\

—

which implies

d(g(zn), f(p,...,p)) <
< Ald(g(2n-1),9(2n)) +d(g(p), 9(2n)) + d(g(zn), f(Ps---,p))]-

From here we obtain that

d(g(zn), f (D, ---,p)) < Bd(g(2n-1),9(2n)) + Bd(g(p), 9(zn))
or, by (3.7),
d(g(zn), f(p:---,p)) < B"d(9(20),9(21)) + Bd(g(p), 9(2n))- (3-8)

We already know that B € [0,1) and that g(z,) — 2* = g(p) as n — oc.
Thus, by (3.8) it is immediate that d(g(z,), f(p,...,p)) — 0 as n — oo, so
indeed
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that is, p is a coincidence point for f and g, while z* is a coincidence value
for them.
In order to prove the uniqueness of z* we suppose there would be some ¢ € X
such that

flg,...,q) = glq) # 2" (3.9)

Then for the coincidence points p and ¢ we have:

d(g(p),9(q)) = d(f(p,---,p), f(g;---,q) <
<d(f®s--sp), f(Ps--spq) + -+
+d(f(psq;---, ), (g, 9)),
which by (PK-C) implies

d(g(p),g(q)) < Ald(g(p), f(p,--..p)) +d(g(q), f(q---.q))]-

This obviously leads to d(g(p), g(q)) < 0, which contradicts (3.9), so «* is the
unique coincidence value for f and g and it can be approximated by means of
the sequence {g(zy)}n>0 given by (3.1).

3) Now there is still to be proved that the k—step iteration method
{g9(xn)}n>0 given by (3.2) converges to the unique coincidence value x* as
well.

In this respect we estimate

d(g(xn), g(p)) = d(f(Tn—ts-- s Tn1), f(ps---,p)) <
<d(f(Tn—ts - s Tn-1)s f(@n—kt15- s Tn1,p)) + - +
+d(f(xn-1,p:--,p), f(p, .-, D)),
which by (PK-C) and knowing that d(g(p), f(p,...,p)) = 0 yields

d(g(zn), 9(p)) <
<ald(g(@n—ri), f(@n—ty- s Tn_k))+

+--+dg(xn-1), f(xn-1, - Tn-1)) + 0] +

tald(g(@n—r+1), [ (@n—t+1,- -, Tnkt1))+
+-+d(g(xn-1), f(@n-1,-- - Tn-1)) + 0+ 0] +

+ P +

+ald(g(xn_1), f(@n_1,-- Tn_1)) +0+---+0].

k times

Therefore

d(g(xn)vg(p)) < ad(g(zn—k)7 f(xn—lm cee 7xn—k)) +
+2a - d(g(Tn—rs1), f(Tn—ps1s- o Tnpy1)) + o+
+ka - d(g(zn-1), f(@n_1,-..,Tpn-1))- (3.10)
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As g(p) = f(p,...,p) = a*, for each j € N we have that

d(g(zy), f(xj,. .., 25)) < d(g(xs),9(p) +d(f(p,...,p), f(zj,. .. 25)). (3.11)

Now using the same technique as several times before in this proof, we get
that for each j € N

d(f(pv'",p)vf(xj""’xj)) S
< Ald(g(p), f(p;--..p)) +d(g(x;), f(xj, ... 25))],

that is,
d(f(p,...,p), f(xj, ... 2;)) < Ad(g(x;), f (), .., x;)),

so (3.11) becomes

Ag(ey), f(ws,. 1)) € 2 d(gley),g(p) G EN. (312)

Getting back to the above relation (3.10), by (3.12) it is immediate that:

a 2a
- A 1-A

1
d(9(xn-1),9(p)). (3.13)

d(g(wn),9(p)) < d(g(xn—1),9(p)) + d(g(Tn-k+1),9(p)) +

ka
1-A

Denoting A,, = d(g(zn), x*), the sequence {A,, },,>0 will satisfy the conditions
in Lemma 2.2 due to Presi¢:

a 2a ka
A, < —A, _ —A,_ ek ——A,_ >1
n_l_A nk:+1_A nk+1+ +1_An1an_7
as well as
zk: a A <1
ile—A_l—A '

Then by the aforementioned lemma there exist L > 0 and 6 € (0,1) such that
A, < LO™ n > 0, which actually means that

d(g(zn), g(p)) < L™, n > 0. (3.14)
It is now immediate that
d(g(x,),z*) — 0, as n — oo.

This proves the convergence of the k—step iterative method {g(x,)}n>0 given
by (3.2) to the unique coincidence value z* of the operators f and g. Its rate
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of convergence is given by the estimation (3.3) which can be easily deduced
al E . .
T A,;w .
4) Supposing f and g are weakly compatible, by Proposition 2.2 it follows
that they have a unique common fixed point, which is exactly their unique
coincidence value x*.
Now the proof is complete.

from relation (3.13) by repeatedly using (3.14), where C' =

O

Remark 3.1 For k=1, g = 1x and Y = X, Theorem 3.1 reduces to the
result of Kannan [9]. For g = 1y and Y = X our result in [10] is obtained.

Remark 3.2 The particular case for metric spaces of Theorem 2.2 due to
M. Abbas and G. Jungck [1], originally proved in cone metric spaces, can be
obtained from the above Theorem 3.1 if £ =1 and Y = g(X).

We mention that in [1] g(X) is required to be a complete metric space,
a condition which turns to be too restrictive in applications. We replaced
it by the more practical and slightly relaxed ”there exists a complete metric
subspace Y C X such that f(X*) C Y C g(X)”, which also implies that
F(X¥) C g(X) as in [1]

In the following we present a very simple example of a pair f and g
that satisfies the conditions in Theorem 3.1 above, while f does not satisfy
condition (P) due to S. Presié.

Example 3.1 Let X = [0,1] with the usual metric, k = 2 and the operators
f:[0,1] x [0,1] — [0,1] and g : [0,1] — [0, 1] defined by

! <4 € [0,1]
- T < =
67 57 y )
f(z,y) =
Lo d e
20’ x— 57 y b
and
x ;E<é
’ 5
g(z) = A
1a xziv
5

respectively. Then:

1) f and g satisfy the conditions in Theorem 3.1;
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2) f does not satisfy condition (P) from Theorem 1.1.

Proof. 1) Let us check first that f and g satisfy condition (PK-C) from
the above Theorem 3.1. In our particular case k = 2, so the above condition
(PK-C) becomes

|f(xo,21) = f(z1,22)| < a[lg(zo) — f(z0,20)| + (3.15)
+ [g(z1) = f(x1,21)] + |g(@2) — fwe, 22)]],

for any xg, z1, 22 € [0, 1], where a € (0, %) is constant.

Theoretically we should analyze 8 cases, as each of zy, 1 and z2 can be either
< % or > %, but considering the definitions of f and g we only have to discuss:
I zg, 21 < % or xg, T > %, while x5 € [0, 1].
In this case f(zo,21) = f(x1,22) and the left hand side of (3.15) will be
equal to 0, so (3.15) holds for any a € (0, ).

II. xo<%,x12%andz2<%.

Then f(zo,71) = %v (r1,22) = %7 f(xo,z0) = %7 flxy,21) = %,

flxa,x2) = %, g(z0) = xo, g(x1) = 1 and g(z2) = z2, and (3.15) becomes
L E + 1 L + ! (3.16)
6 20 =" 6 20| " [ 6| '

As |x0 — %} >0 and ‘332 — %’ > 0, the minimum value of the right hand
side in (3.16) will be a2, Therefore a necessary condition for (3.16) to

7
hold is % < a%, which finally yields a > 57
III. 2y > %, T1,Ty < %
7
Similarly to case II it follows that a > 5

1V. x02§7x1<%anda:22%.

Then f(zo,x1) = 35, f(z1,22) = §, f(zo,20) = 55, f(z1,21) = §,

f(@2,22) = 55, g(x0) = 1, g(x1) = z1 and g(x2) = 1, and (3.15) becomes
1 1 1 1 1
——Zl<alfi-= S 1
20 6'_(1{ 20| "™ 6'+‘ 20} (3.17)

As |zy — §| > 0, the minimum value of the right hand side in (3.17) will

be a%. Therefore a necessary condition for (3.17) to hold is 6—70 < a%,

7
. . N .
which finally yields a > 114
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4 4
V. g < 5> L1,T2 > 5-

|~

Similarly to case IV it follows that a >

'y

11

[~

Finally we conclude that neccessarily a € [ =) %), so f and g satisfy con-
1

dition (PK-C), for example with constant a = 5—77 € (0, 6)

11

Since f([0,1] x [0,1]) = {20; 6} and ¢([0,1]) = [0,1], there exists for
example the complete metric subspace Y = [0, 3] C [0,1] such that f([0,1] x
[0,1]) €Y < g([0,1)).

Then according to Theorem 3.1 f and g have a unique coincidence value in
[0,1], which can be approximated either by means of the sequence {g(z,,)}n>0
defined by

g(zn) = f(zn—hzn—l),n > 1,
starting from any zo € [0,1], or by means of the 2-step iterative method
{g(xn)}nzo defined by

9(xn) = f(Tn_2,2n-1),n > 2,

for any initial values o, z; € [0, 1].
1 4
Indeed, as one can easily check, Fy = {6}’ F, = [07 5) U {1} and the set of
1
coincidence values is given by C(f,g) = {6}
Moreover, f and g are weakly compatible, as f(g(%)) = g(f(é)) = %7 S0,

1
by Theorem 3.1, — is also their unique common fixed point. Indeed, it is easy

1
to see that Fy N Fy = {6}

2) Now we shall prove that f is not a Presi¢ operator. In our particular
case inequality (P) becomes:

|f(zo,x1) — fz1,22)| < an |xo — 21| + a2 |21 — 22, (3.18)

where aj, a0 € Ry, o + g < 1.
We will show that for certain points in [0, 1] inequality (3.18) is not satisfied.

4 1
For example, let zg = £ and x1 = 25 = R Then f(zg,z1) = 20 while
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1
flz1,22) = 3 Inequality (3.18) becomes:

1 1 < 4 2 n
< lz=Zlra, 22
20 6/~ |5 5| ° 5|7
which is equivalent to
l< 2 (3.19)
60_&15. .

But o < 1, so it is obvious that (3.19) will never hold. Thus, f is not a Presié¢
operator, so our Theorem 3.1 effectively extends Theorem 1.1 of S. Presi¢.

O

4 An extension of the main result

Theorem 3.1 offers information about coincidence and common fixed points of
two operators, one of them defined on the Cartesian product X*, f : X* — X
where k is a positive integer, and the second one a self-operator on X, g : X —
X. As the great majority of the common fixed point results in literature deal
with the case when both f and g are self-operators on X, our aim in this
section is to establish a common fixed point theorem for the more general case
f:X* - X and ¢g: X! — X, with k and [ positive integers. In this respect
we shall begin with some definitions which extend the corresponding ones in
the previous section, and which can also be found in our recent paper [11].

Definition 4.1 Let X be a metric space, k.l positive integers and f : X* —
X, g: X' — X two operators.

An element p € X is called a coincidence point of f and g if it is a
coincidence point of F' and G, where F,G : X — X are the associate operators
of f and g, respectively, see Remark 2.2.

An element s € X is called a coincidence value of f and g if it is a
coincidence value of F and G.

An element p € X is called a common fixzed point of f and g if it is a
common fized point of F and G.

Definition 4.2 Let (X,d) be a metric space, k,l positive integers and f :
X" - X, g: X' = X. The operators f and g are said to be weakly com-
patible if F' and G are weakly compatible.

In these terms we state now the following result, which extends the above
Theorem 3.1.
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Theorem 4.1 Let (X,d) be a metric space, k and | positive integers, f :
X* = X and g : X! — X two operators such that f and G fulfill the conditions
in Theorem 3.1, where G : X — X 1is the associated operator of g.

Then:

1) f and g have a unique coincidence value, say x*, in X;
2) the sequence {G(zp)}n>o0 defined by zp € X and
G(zn) = f(#n-1,-- -y 2n-1),n > 1, (4.1)
converges to x*;
3) the sequence {G(x,)}n>0 defined by zg,...,xx—1 € X and
G(zp) = f(®p—ty.. . Tpn-1),n >k, (4.2)
converges to x* as well, with a rate estimated by
d(G(zp),x™) < CO™, (4.3)
where C is a positive constant and 0 € (0,1);

4) if in addition f and g are weakly compatible, then x* is their unique
common fixed point.

Proof. Having in view the definitions given in this section, all the conclu-
sions follow by applying Theorem 3.1 for f: X* — X and G : X — X.

O

Remark 4.1 If we take [ = 1, then by Theorem 4.1 we get Theorem 3.1 in
this paper, while for [ = 1, g = 1x and Y = X the fixed point theorem in
[10] is obtained. Moreover, if we take k = 1,1 =1, g=1x and Y = X, by
Theorem 4.1 we obtain the well known Kannan fixed point theorem [9], which
could be similarly stated in a cone metric space setting, as in [1].

We shall end with the following example which illustrates Theorem 4.1.

Example 4.1 Let X =[0,1], k =2,1 =3, f:[0,1] x[0,1] — [0,1] as in
Example 3.1 and h : [0,1] x [0, 1] x [0,1] — [0, 1] defined by:

%(y—FZ), (x7yvz)€D1
h(xaywz) = Yz, (fL’,y,Z) € Dy

1—($—y)27 (.TII,y,Z)EDg,,
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where
D1 = [0,1] x [0,%) y [o,g),
Dy [o,%) « [%,1] « [%,1] U0, 1] [%,1] x [o,%)u [0,1] [o,g) x [g,l],
Ds = [%,1] y [%,1} « [%,1].

Then f and h have a unique common fixed point in [0, 1].

Proof. We remark that the associated operator of h is H : [0,1] — [0, 1]
defined by:

4
z, < 5
H(z) =h(z,z,z) =
4
1, z>-—-.
)

By Example 3.1, f and H fulfill the conditions in Theorem 3.1, and the rest
follows by Theorem 4.1 above.
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