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Approximating common fixed points of

Presić-Kannan type operators by a multi-step

iterative method

Mădălina Păcurar

Abstract

The existence of coincidence points and common fixed points for op-

erators satisfying a Presić-Kannan type contraction condition in a metric

spaces setting is proved. A multi-step iterative method for constructing

the common fixed points is also provided.

1 Introduction

In 1965 S.B. Presić extended Banach’s contraction mapping principle (see [2])
to operators defined on product spaces. It is easy to see that by taking k = 1,
Theorem 1.1 below reduces to Banach’s theorem.

Theorem 1.1 (S.B. Presić [12], 1965) Let (X, d) be a complete metric space,

k a positive integer, α1, α2, . . . , αk ∈ R+,
k∑

i=1

αi = α < 1 and f : Xk → X an

operator satisfying

d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ α1d(x0, x1) + · · · + αkd(xk−1, xk), (P)

for all x0, . . . , xk ∈ X.
Then:
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tion procedure, Presić-Kannan-type operator.

Mathematics Subject Classification: 54H25, 47H10.
Received: February, 2009
Accepted: April, 2009

153
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1) f has a unique fixed point x∗, that is, there exists a unique x∗ ∈ X such
that f(x∗, . . . , x∗) = x∗;

2) the sequence {xn}n≥0 defined by

xn+1 = f(xn−k+1, . . . , xn) , n = k − 1, k, k + 1, . . . (1.1)

converges to x∗, for any x0, . . . , xk−1 ∈ X.

On the other hand, in 1968 R. Kannan [9] (see also [3], [4], [5], [15], for
some recent extensions of this result) proved a fixed point result for operators
f : X → X satisfying the following contraction condition:

d(f(x), f(y)) ≤ a [d(x, f(x) + d(y, f(y))] , (1.2)

for any x, y ∈ X, where a ∈ [0, 1
2 ) is constant.

In a similar manner to that used by S.B. Presić [12] when extending
Banach contractions to product spaces, by I.A. Rus in [13] when doing the
same for ϕ−contractions or by L.Ćirić and S. Presić in the recent [6], we proved
a generalization of Kannan’s theorem in [10] by showing that an operator
f : Xk → X satisfying

d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ a

k∑

i=0

d(xi, f(xi, . . . , xi)), (1.3)

for any x0, . . . , xk ∈ X, where 0 ≤ ak(k + 1) < 1, has a unique fixed point
x∗ ∈ X. This fixed point can be approximated by means of the k−step
iterative method {xn}n≥0, defined by (1.1), for any x0, . . . , xk−1 ∈ X.

In the very recent paper [1], M. Abbas and G. Jungck extended Kannan’s
theorem to a common fixed point result in cone metric spaces, considering the
concept of weakly compatible mappings introduced by G. Jungck in [8].

In the present paper, by extending the concept of weakly compatible
mappings to operators defined on Cartesian product, we obtain some results
regarding the existence and uniqueness of coincidence/common fixed points for
operators satisfying a Presić- Kannan type condition and also provide an iter-
ative method for obtaining them. A similar approach of the contraction condi-
tion introduced in [13], which gives a Presić type extension for ϕ-contractions,
can be found in our recent paper [11].

2 Preliminaries

We begin by recalling some concepts used in [1], [7], [8] and several related
papers.
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Definition 2.1 ([7]) Let X be nonempty set and f, g : X → X two operators.
An element p ∈ X is called a coincidence point of f and g if

f(p) = g(p).

In this case s = f(p) = g(p) is a coincidence value of f and g.
An element p ∈ X is called a common fixed point of f and g if

f(p) = g(p) = p.

Remark 2.1 We shall denote by

C(f, g) = {p ∈ X |f(p) = g(p)}

the set of all coincidence points of f and g.
Obviously, the following hold:

a) Ff ∩ Fg ⊂ C(f, g);

b) Ff ∩ C(f, g) = Fg ∩ C(f, g) = Ff ∩ Fg.

Definition 2.2 ([8]) Let X be a nonempty set and f, g : X → X. The
operators f and g are said to be weakly compatible if they commute at their
coincidence points, namely if

f(g(p)) = g(f(p)),

for any coincidence point p of f and g.

Lemma 2.1 Let X be a nonempty set and f, g : X → X two operators. If f

and g are weakly compatible, then C(f, g) is invariant for both f and g.

Proof. Let p ∈ C(f, g). We shall prove that f(p), g(p) ∈ C(f, g), as well.
By definition,

f(p) = g(p) = q ∈ X. (2.1)

As f and g are weakly compatible, we have:

f(g(p)) = g(f(p)),

which by (2.1) yields
f(q) = g(q),

so q = f(p) = g(p) ∈ C(f, g). Thus, C(f, g) is an invariant set for both f and
g.
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�

Using this Lemma, the proof of the following proposition is immediate.

Proposition 2.1 ([1]) Let X be a nonempty set and f, g : X → X two weakly
compatible operators.

If they have a unique coincidence value x∗ = f(p) = g(p), for some p ∈ X,
then x∗ is their unique common fixed point.

Remark 2.2 For any operator f : Xk → X, k a positive integer, we can
define its associate operator F : X → X by

F (x) = f(x, . . . , x), x ∈ X. (2.2)

Obviously, x ∈ X is a fixed point of f : Xk → X, i.e., x = f(x, . . . , x), if
and only if it is a fixed point of its associate operator F , in the sense of the
classical definition. For details see for example [14].

Based on this remark, we can extend the previous definitions for the case
f : Xk → X, k a positive integer.

Definition 2.3 Let X be a nonempty set, k a positive integer and f : Xk →
X, g : X → X two operators.

An element p ∈ X is called a coincidence point of f and g if it is a
coincidence point of F and g, where F is given by (2.2).

Similarly, s ∈ X is a coincidence value of f and g if it is a coincidence
value of F and g.

An element p ∈ X is a common fixed point of f and g if it is a common
fixed point of F and g.

Definition 2.4 Let X be a nonempty set, k a positive integer and f : Xk →
X, g : X → X. The operators f and g are said to be weakly compatible if
F and g are weakly compatible.

The following result is a generalization of Proposition 1.4 in [1], included
above as Proposition 2.1.

Proposition 2.2 Let X be a nonempty set, k a positive integer and f : Xk →
X, g : X → X two weakly compatible operators.

If f and g have a unique coincidence value x∗ = f(p, . . . , p) = g(p), then
x∗ is the unique common fixed point of f and g.

Proof. As f and g are weakly compatible, F and g are also weakly com-
patible. The proof follows by Proposition 2.1.
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In order to prove our main result, we also need the following lemma, due
to S. Presić [12].

Lemma 2.2 ([12]) Let k be a positive integer and α1, α2, . . . , αk ∈ R+ such

that
k∑

i=1

αi = α < 1. If {∆n}n≥1 is a sequence of positive numbers satisfying

∆n+k ≤ α1∆n + α2∆n+1 + . . . + αk∆n+k−1, n ≥ 1,

then there exist L > 0 and θ ∈ (0, 1) such that

∆n ≤ L · θn, for all n ≥ 1.

3 The main result

The main result of this paper is the following theorem.

Theorem 3.1 Let (X, d) be a metric space and k a positive integer. Let
f : Xk → X, g : X → X be two operators for which there exists a complete
metric subspace Y ⊆ X such that f(Xk) ⊆ Y ⊆ g(X) and

d(f(x0, . . . , xk−1), f(x1, . . . , xk)) ≤ a

k∑

i=0

d(g(xi), f(xi, . . . , xi)), (PK-C)

for any x0, . . . , xk ∈ X, where the real constant a fulfills 0 ≤ ak(k + 1) < 1.
Then:

1) f and g have a unique coincidence value, say x∗, in X;

2) the sequence {g(zn)}n≥0 defined by z0 ∈ X and

g(zn) = f(zn−1, . . . , zn−1), n ≥ 1, (3.1)

converges to x∗;

3) the sequence {g(xn)}n≥0 defined by x0, . . . , xk−1 ∈ X and

g(xn) = f(xn−k, . . . , xn−1), n ≥ k, (3.2)

converges to x∗ as well, with a rate estimated by

d(g(xn), x∗) ≤ Cθn, (3.3)

where C is a positive constant and θ ∈ (0, 1);
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4) if in addition f and g are weakly compatible, then x∗ is their unique
common fixed point.

Proof. 1),2) Let z0 ∈ X. Then f(z0, . . . , z0) ∈ f(Xk) ⊂ g(X), so there
exists z1 ∈ X such that

f(z0, . . . , z0) = g(z1).

Further on, f(z1, . . . , z1) ∈ f(Xk) ⊂ g(X), so there exists z2 ∈ X such that

f(z1, . . . , z1) = g(z2).

In this manner we construct a sequence {g(zn)}n≥0 with z0 ∈ X and

g(zn) = f(zn−1, . . . , zn−1), n ≥ 1. (3.4)

Due to the manner {g(zn)}n≥0 was constructed, it is easy to remark that

{g(zn)}n≥0 ⊆ f(Xk) ⊆ Y ⊆ g(X). (3.5)

We can estimate now:

d(g(zn), g(zn+1)) = d(f(zn−1, . . . , zn−1), f(zn, . . . , zn)) ≤

≤ d(f(zn−1, . . . , zn−1), f(zn−1, . . . , zn−1, zn)) +

+ · · · + d(f(zn−1, zn, . . . , zn), f(zn, . . . , zn)).

By (PK-C), this implies:

d(g(zn), g(zn+1)) ≤

≤ a [kd(g(zn−1), f(zn−1, . . . , zn−1)) + d(g(zn), f(zn, . . . , zn))] +

+a [(k − 1)d(g(zn−1), f(zn−1, . . . , zn−1)) + 2d(g(zn), f(zn, . . . , zn))] +

+ · · · +

+a [d(g(zn−1), f(zn−1, . . . , zn−1)) + kd(g(zn), f(zn, . . . , zn))] =

= a
k(k + 1)

2
[d(g(zn−1), f(zn−1, . . . , zn−1)) + d(g(zn), f(zn, . . . , zn))] =

= a
k(k + 1)

2
[d(g(zn−1), g(zn)) + d(g(zn), g(zn+1))] .

By denoting A =
ak(k + 1)

2
∈ [0, 1

2 ) and B =
A

1 − A
∈ [0, 1), the previous

inequality implies:

d(g(zn), g(zn+1)) ≤ Bd(g(zn−1), g(zn)), (3.6)
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which by induction yields

d(g(zn), g(zn+1)) ≤ Bnd(g(z0), g(z1)), n ≥ 0. (3.7)

Since the series
∞∑

n=0
Bn converges, it follows by the well known Weierstrass

criterion that {g(zn)}n≥0 is a Cauchy sequence included, by (3.5), in the com-
plete subspace Y . Thus, there exists x∗ ∈ Y such that lim

n→∞
g(zn) = x∗ and,

since Y ⊆ g(X), there exists p ∈ X such that

g(p) = x∗ = lim
n→∞

g(zn).

Next we shall prove that f(p, . . . , p) = x∗ as well. In this respect we estimate:

d(g(zn), f(p, . . . , p)) = d(f(zn−1, . . . , zn−1), f(p, . . . , p)) ≤

≤ d(f(zn−1, . . . , zn−1), f(zn−1, . . . , zn−1, p)) + · · · +

+d(f(zn−1, p, . . . , p), f(p, . . . , p)).

By (PK-C) this yields

d(g(zn), f(p, . . . , p)) ≤

≤ a [kd(g(zn−1), f(zn−1, . . . , zn−1)) + d(g(p), f(p, . . . , p))] +

+ · · · +

+a [d(g(zn−1), f(zn−1, . . . , zn−1)) + kd(g(p), f(p, . . . , p))] =

= A [d(g(zn−1), g(zn)) + d(g(p), f(p, . . . , p))] ,

which implies

d(g(zn), f(p, . . . , p)) ≤

≤ A [d(g(zn−1), g(zn)) + d(g(p), g(zn)) + d(g(zn), f(p, . . . , p))] .

From here we obtain that

d(g(zn), f(p, . . . , p)) ≤ Bd(g(zn−1), g(zn)) + Bd(g(p), g(zn))

or, by (3.7),

d(g(zn), f(p, . . . , p)) ≤ Bnd(g(z0), g(z1)) + Bd(g(p), g(zn)). (3.8)

We already know that B ∈ [0, 1) and that g(zn) → x∗ = g(p) as n → ∞.
Thus, by (3.8) it is immediate that d(g(zn), f(p, . . . , p)) → 0 as n → ∞, so
indeed

f(p, . . . , p) = x∗ = g(p),
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that is, p is a coincidence point for f and g, while x∗ is a coincidence value
for them.
In order to prove the uniqueness of x∗ we suppose there would be some q ∈ X

such that
f(q, . . . , q) = g(q) 6= x∗. (3.9)

Then for the coincidence points p and q we have:

d(g(p), g(q)) = d(f(p, . . . , p), f(q, . . . , q)) ≤

≤ d(f(p, . . . , p), f(p, . . . , p, q)) + · · · +

+d(f(p, q, . . . , q), f(q, . . . , q)),

which by (PK-C) implies

d(g(p), g(q)) ≤ A [d(g(p), f(p, . . . , p)) + d(g(q), f(q, . . . , q))] .

This obviously leads to d(g(p), g(q)) ≤ 0, which contradicts (3.9), so x∗ is the
unique coincidence value for f and g and it can be approximated by means of
the sequence {g(zn)}n≥0 given by (3.1).

3) Now there is still to be proved that the k−step iteration method
{g(xn)}n≥0 given by (3.2) converges to the unique coincidence value x∗ as
well.
In this respect we estimate

d(g(xn), g(p)) = d(f(xn−k, . . . , xn−1), f(p, . . . , p)) ≤

≤ d(f(xn−k, . . . , xn−1), f(xn−k+1, . . . , xn−1, p)) + · · · +

+d(f(xn−1, p, . . . , p), f(p, . . . , p)),

which by (PK-C) and knowing that d(g(p), f(p, . . . , p)) = 0 yields

d(g(xn), g(p)) ≤

≤ a [d(g(xn−k), f(xn−k, . . . , xn−k))+

+ · · · + d(g(xn−1), f(xn−1, . . . , xn−1)) + 0] +

+a [d(g(xn−k+1), f(xn−k+1, . . . , xn−k+1))+

+ · · · + d(g(xn−1), f(xn−1, . . . , xn−1)) + 0 + 0] +

+ · · · +

+a[d(g(xn−1), f(xn−1, . . . , xn−1)) + 0 + · · · + 0
︸ ︷︷ ︸

k times

].

Therefore

d(g(xn), g(p)) ≤ ad(g(xn−k), f(xn−k, . . . , xn−k)) +

+2a · d(g(xn−k+1), f(xn−k+1, . . . , xn−k+1)) + · · · +

+ka · d(g(xn−1), f(xn−1, . . . , xn−1)). (3.10)
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As g(p) = f(p, . . . , p) = x∗, for each j ∈ N we have that

d(g(xj), f(xj , . . . , xj)) ≤ d(g(xj), g(p)) + d(f(p, . . . , p), f(xj , . . . , xj)). (3.11)

Now using the same technique as several times before in this proof, we get
that for each j ∈ N

d(f(p, . . . , p), f(xj , . . . , xj)) ≤

≤ A [d(g(p), f(p, . . . , p)) + d(g(xj), f(xj , . . . , xj))] ,

that is,

d(f(p, . . . , p), f(xj , . . . , xj)) ≤ Ad(g(xj), f(xj , . . . , xj)),

so (3.11) becomes

d(g(xj), f(xj , . . . , xj)) ≤
1

1 − A
d(g(xj), g(p)), j ∈ N. (3.12)

Getting back to the above relation (3.10), by (3.12) it is immediate that:

d(g(xn), g(p)) ≤
a

1 − A
d(g(xn−k), g(p)) +

2a

1 − A
d(g(xn−k+1), g(p)) +

+ · · · +
ka

1 − A
d(g(xn−1), g(p)). (3.13)

Denoting ∆n = d(g(xn), x∗), the sequence {∆n}n≥0 will satisfy the conditions
in Lemma 2.2 due to Presić:

∆n ≤
a

1 − A
∆n−k +

2a

1 − A
∆n−k+1 + · · · +

ka

1 − A
∆n−1, n ≥ 1,

as well as
k∑

i=1

ia

1 − A
=

A

1 − A
< 1.

Then by the aforementioned lemma there exist L > 0 and θ ∈ (0, 1) such that
∆n ≤ Lθn, n ≥ 0, which actually means that

d(g(xn), g(p)) ≤ Lθn, n ≥ 0. (3.14)

It is now immediate that

d(g(xn), x∗) → 0, as n → ∞.

This proves the convergence of the k−step iterative method {g(xn)}n≥0 given
by (3.2) to the unique coincidence value x∗ of the operators f and g. Its rate
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of convergence is given by the estimation (3.3) which can be easily deduced

from relation (3.13) by repeatedly using (3.14), where C =
aL

1 − A

k∑

i=1

iθi−k.

4) Supposing f and g are weakly compatible, by Proposition 2.2 it follows
that they have a unique common fixed point, which is exactly their unique
coincidence value x∗.

Now the proof is complete.

�

Remark 3.1 For k = 1, g = 1X and Y = X, Theorem 3.1 reduces to the
result of Kannan [9]. For g = 1X and Y = X our result in [10] is obtained.

Remark 3.2 The particular case for metric spaces of Theorem 2.2 due to
M. Abbas and G. Jungck [1], originally proved in cone metric spaces, can be
obtained from the above Theorem 3.1 if k = 1 and Y = g(X).

We mention that in [1] g(X) is required to be a complete metric space,
a condition which turns to be too restrictive in applications. We replaced
it by the more practical and slightly relaxed ”there exists a complete metric
subspace Y ⊆ X such that f(Xk) ⊆ Y ⊆ g(X)”, which also implies that
f(Xk) ⊆ g(X) as in [1].

In the following we present a very simple example of a pair f and g

that satisfies the conditions in Theorem 3.1 above, while f does not satisfy
condition (P) due to S. Presić.

Example 3.1 Let X = [0, 1] with the usual metric, k = 2 and the operators
f : [0, 1] × [0, 1] → [0, 1] and g : [0, 1] → [0, 1] defined by

f(x, y) =







1

6
, x <

4

5
, y ∈ [0, 1]

1

20
, x ≥

4

5
, y ∈ [0, 1]

and

g(x) =







x, x <
4

5

1, x ≥
4

5
,

respectively. Then:

1) f and g satisfy the conditions in Theorem 3.1;
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2) f does not satisfy condition (P) from Theorem 1.1.

Proof. 1) Let us check first that f and g satisfy condition (PK-C) from
the above Theorem 3.1. In our particular case k = 2, so the above condition
(PK-C) becomes

|f(x0, x1) − f(x1, x2)| ≤ a [|g(x0) − f(x0, x0)|+ (3.15)

+ |g(x1) − f(x1, x1)| + |g(x2) − f(x2, x2)|] ,

for any x0, x1, x2 ∈ [0, 1], where a ∈ (0, 1
6 ) is constant.

Theoretically we should analyze 8 cases, as each of x0, x1 and x2 can be either
< 4

5 or ≥ 4
5 , but considering the definitions of f and g we only have to discuss:

I. x0, x1 < 4
5 or x0, x1 ≥ 4

5 , while x2 ∈ [0, 1].
In this case f(x0, x1) = f(x1, x2) and the left hand side of (3.15) will be
equal to 0, so (3.15) holds for any a ∈ (0, 1

6 ).

II. x0 < 4
5 , x1 ≥ 4

5 and x2 < 4
5 .

Then f(x0, x1) = 1
6 , f(x1, x2) = 1

20 , f(x0, x0) = 1
6 , f(x1, x1) = 1

20 ,
f(x2, x2) = 1

6 , g(x0) = x0, g(x1) = 1 and g(x2) = x2, and (3.15) becomes

∣
∣
∣
∣

1

6
−

1

20

∣
∣
∣
∣
≤ a

[∣
∣
∣
∣
x0 −

1

6

∣
∣
∣
∣
+

∣
∣
∣
∣
1 −

1

20

∣
∣
∣
∣
+

∣
∣
∣
∣
x2 −

1

6

∣
∣
∣
∣

]

. (3.16)

As
∣
∣x0 −

1
6

∣
∣ ≥ 0 and

∣
∣x2 −

1
6

∣
∣ ≥ 0, the minimum value of the right hand

side in (3.16) will be a 19
20 . Therefore a necessary condition for (3.16) to

hold is 7
60 ≤ a 19

20 , which finally yields a ≥
7

57
.

III. x0 ≥ 4
5 , x1, x2 < 4

5 .

Similarly to case II it follows that a ≥
7

57
.

IV. x0 ≥ 4
5 , x1 < 4

5 and x2 ≥ 4
5 .

Then f(x0, x1) = 1
20 , f(x1, x2) = 1

6 , f(x0, x0) = 1
20 , f(x1, x1) = 1

6 ,
f(x2, x2) = 1

20 , g(x0) = 1, g(x1) = x1 and g(x2) = 1, and (3.15) becomes

∣
∣
∣
∣

1

20
−

1

6

∣
∣
∣
∣
≤ a

[∣
∣
∣
∣
1 −

1

20

∣
∣
∣
∣
+

∣
∣
∣
∣
x1 −

1

6

∣
∣
∣
∣
+

∣
∣
∣
∣
1 −

1

20

∣
∣
∣
∣

]

. (3.17)

As
∣
∣x1 −

1
6

∣
∣ ≥ 0, the minimum value of the right hand side in (3.17) will

be a 19
10 . Therefore a necessary condition for (3.17) to hold is 7

60 ≤ a 19
10 ,

which finally yields a ≥
7

114
.
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V. x0 < 4
5 , x1, x2 ≥ 4

5 .

Similarly to case IV it follows that a ≥
7

114
.

Finally we conclude that neccessarily a ∈
[

7
57 , 1

6

)
, so f and g satisfy con-

dition (PK-C), for example with constant a =
7

57
∈ (0,

1

6
).

Since f([0, 1] × [0, 1]) =

{
1

20
;
1

6

}

and g([0, 1]) = [0, 1], there exists for

example the complete metric subspace Y =
[
0, 1

2

]
⊂ [0, 1] such that f([0, 1] ×

[0, 1]) ⊂ Y ⊂ g([0, 1]).

Then according to Theorem 3.1 f and g have a unique coincidence value in
[0, 1], which can be approximated either by means of the sequence {g(zn)}n≥0

defined by

g(zn) = f(zn−1, zn−1), n ≥ 1,

starting from any z0 ∈ [0, 1], or by means of the 2-step iterative method
{g(xn)}n≥0 defined by

g(xn) = f(xn−2, xn−1), n ≥ 2,

for any initial values x0, x1 ∈ [0, 1].

Indeed, as one can easily check, Ff =

{
1

6

}

, Fg =

[

0,
4

5

)

∪ {1} and the set of

coincidence values is given by C(f, g) =

{
1

6

}

.

Moreover, f and g are weakly compatible, as f(g( 1
6 )) = g(f( 1

6 )) = 1
6 , so,

by Theorem 3.1,
1

6
is also their unique common fixed point. Indeed, it is easy

to see that Ff ∩ Fg =

{
1

6

}

.

2) Now we shall prove that f is not a Presić operator. In our particular
case inequality (P) becomes:

|f(x0, x1) − f(x1, x2)| ≤ α1 |x0 − x1| + α2 |x1 − x2| , (3.18)

where α1, α2 ∈ R+, α1 + α2 < 1.
We will show that for certain points in [0, 1] inequality (3.18) is not satisfied.

For example, let x0 =
4

5
and x1 = x2 =

2

5
. Then f(x0, x1) =

1

20
, while
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f(x1, x2) =
1

6
. Inequality (3.18) becomes:

∣
∣
∣
∣

1

20
−

1

6

∣
∣
∣
∣
≤ α1

∣
∣
∣
∣

4

5
−

2

5

∣
∣
∣
∣
+ α2

∣
∣
∣
∣

2

5
−

2

5

∣
∣
∣
∣
,

which is equivalent to
7

60
≤ α1

2

5
. (3.19)

But α1 < 1, so it is obvious that (3.19) will never hold. Thus, f is not a Presić
operator, so our Theorem 3.1 effectively extends Theorem 1.1 of S. Presić.

�

4 An extension of the main result

Theorem 3.1 offers information about coincidence and common fixed points of
two operators, one of them defined on the Cartesian product Xk, f : Xk → X,
where k is a positive integer, and the second one a self-operator on X, g : X →
X. As the great majority of the common fixed point results in literature deal
with the case when both f and g are self-operators on X, our aim in this
section is to establish a common fixed point theorem for the more general case
f : Xk → X and g : X l → X, with k and l positive integers. In this respect
we shall begin with some definitions which extend the corresponding ones in
the previous section, and which can also be found in our recent paper [11].

Definition 4.1 Let X be a metric space, k, l positive integers and f : Xk →
X, g : X l → X two operators.

An element p ∈ X is called a coincidence point of f and g if it is a
coincidence point of F and G, where F,G : X → X are the associate operators
of f and g, respectively, see Remark 2.2.

An element s ∈ X is called a coincidence value of f and g if it is a
coincidence value of F and G.

An element p ∈ X is called a common fixed point of f and g if it is a
common fixed point of F and G.

Definition 4.2 Let (X, d) be a metric space, k, l positive integers and f :
Xk → X, g : X l → X. The operators f and g are said to be weakly com-

patible if F and G are weakly compatible.

In these terms we state now the following result, which extends the above
Theorem 3.1.
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Theorem 4.1 Let (X, d) be a metric space, k and l positive integers, f :
Xk → X and g : X l → X two operators such that f and G fulfill the conditions
in Theorem 3.1, where G : X → X is the associated operator of g.

Then:

1) f and g have a unique coincidence value, say x∗, in X;

2) the sequence {G(zn)}n≥0 defined by z0 ∈ X and

G(zn) = f(zn−1, . . . , zn−1), n ≥ 1, (4.1)

converges to x∗;

3) the sequence {G(xn)}n≥0 defined by x0, . . . , xk−1 ∈ X and

G(xn) = f(xn−k, . . . , xn−1), n ≥ k, (4.2)

converges to x∗ as well, with a rate estimated by

d(G(xn), x∗) ≤ Cθn, (4.3)

where C is a positive constant and θ ∈ (0, 1);

4) if in addition f and g are weakly compatible, then x∗ is their unique
common fixed point.

Proof. Having in view the definitions given in this section, all the conclu-
sions follow by applying Theorem 3.1 for f : Xk → X and G : X → X.

�

Remark 4.1 If we take l = 1, then by Theorem 4.1 we get Theorem 3.1 in
this paper, while for l = 1, g = 1X and Y = X the fixed point theorem in
[10] is obtained. Moreover, if we take k = 1, l = 1, g = 1X and Y = X, by
Theorem 4.1 we obtain the well known Kannan fixed point theorem [9], which
could be similarly stated in a cone metric space setting, as in [1].

We shall end with the following example which illustrates Theorem 4.1.

Example 4.1 Let X = [0, 1], k = 2, l = 3, f : [0, 1] × [0, 1] → [0, 1] as in
Example 3.1 and h : [0, 1] × [0, 1] × [0, 1] → [0, 1] defined by:

h(x, y, z) =







1
2 (y + z), (x, y, z) ∈ D1

xyz, (x, y, z) ∈ D2

1 − (x − y)2, (x, y, z) ∈ D3,
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where

D1 = [0, 1] × [0,
4

5
) × [0,

4

5
),

D2 = [0,
4

5
) × [

4

5
, 1] × [

4

5
, 1] ∪ [0, 1] × [

4

5
, 1] × [0,

4

5
) ∪ [0, 1] × [0,

4

5
) × [

4

5
, 1],

D3 = [
4

5
, 1] × [

4

5
, 1] × [

4

5
, 1].

Then f and h have a unique common fixed point in [0, 1].

Proof. We remark that the associated operator of h is H : [0, 1] → [0, 1]
defined by:

H(x) = h(x, x, x) =







x, x <
4

5

1, x ≥
4

5
.

By Example 3.1, f and H fulfill the conditions in Theorem 3.1, and the rest
follows by Theorem 4.1 above.

�
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